+ All Categories
Home > Documents > Université Paris Descartes

Université Paris Descartes

Date post: 18-Jan-2023
Category:
Upload: khangminh22
View: 0 times
Download: 0 times
Share this document with a friend
194
Université Paris Descartes Ecole doctorale Bio-Sorbonne Paris Cité Biologie Cellulaire et Moléculaire, Physiologie, Physiopathologie INSERM U970, Centre de recherche cardiovasculaire de Paris, Equipe 1 Physiopathologie des évènements cardiovasculaires chez les malades atteints de syndrome myéloprolifératif Bcr/Abl-négatif Pathophysiology of cardiovascular events in Bcr/Abl- negative myeloproliferative neoplasms Par Johanne Poisson Thèse de doctorat de physiologie et physiopathologie Dirigée par Pr. Pierre-Emmanuel Rautou Présentée et soutenue publiquement le 27 Septembre 2018 Devant un jury composé de : Pr. Chloé James Rapporteur Pr. Jonel Trebicka Rapporteur Pr. Caroline Le Van Kim Examinateur Dr. Yacine Boulaftali Examinateur Pr. Pierre-Emmanuel Rautou Directeur de thèse
Transcript

UniversitéParisDescartes

EcoledoctoraleBio-SorbonneParisCité

BiologieCellulaireetMoléculaire,Physiologie,Physiopathologie

INSERMU970,CentrederecherchecardiovasculairedeParis,Equipe1

Physiopathologiedesévènements

cardiovasculaireschezlesmaladesatteintsde

syndromemyéloprolifératifBcr/Abl-négatif

PathophysiologyofcardiovasculareventsinBcr/Abl-

negativemyeloproliferativeneoplasms

ParJohannePoisson

Thèsededoctoratdephysiologieetphysiopathologie

DirigéeparPr.Pierre-EmmanuelRautou

Présentéeetsoutenuepubliquementle27Septembre2018

Devantunjurycomposéde:

Pr.ChloéJames Rapporteur

Pr.JonelTrebicka Rapporteur

Pr.CarolineLeVanKim Examinateur

Dr.YacineBoulaftali Examinateur

Pr.Pierre-EmmanuelRautou Directeurdethèse

2

REMERCIEMENTS

Auxmembresdemonjury,c’estunimmensehonneurquevousmefaites,

ProfesseurChloéJames,mercid’avoirprisletempsd’évaluermontravailentempsque

rapporteur.Avoireulachancedevousrencontreretd’échangeravecvousaétéunvraihonneur.

ProfessorJonelTrebicka,Iwouldliketosincerelythankyouforacceptingtoevaluatemy

workandtobepartofthejuryformyPhDdefense.

ProfesseurCarolineLeVanKim,jevoussuisextrêmementreconnaissanted’avoiraccepté

defairepartiedemonjurydethèse.

DocteurYacineBoulaftali,mercid’avoiracceptédefairepartiedemonjury.C’estunréel

plaisirdevousavoiràmescôtéscejourlàetdepouvoiréchangeravecvoussurmontravail.

ProfesseurPierre-EmmanuelRautou,alias «PE», difficile de savoir par où commencer pour te

remercier.J’ailuquelquepart«quel’êtrehumainpossèdedeuxqualités:lepouvoiretledon.Le

pouvoirconduitl’hommeàlarencontredesondestin;ledonl’obligeàpartageraveclesautres

cequ’ilademeilleurenlui».Jenesuispassûrquetouslesêtreshumainspossèdentcesqualités

maisparcontretoic’estsûr.Taforceettonénergieincroyablepourallerdel’avantetconstruire

tonavenir est absolument inspirante (et épuisante juste à te regarder faire) et ton incroyable

passionàtransmettrelemeilleurdetoiestunechanceinouïepourlesgensquit’entourent.Ce

n’estqueledébutdenotrechemin,maisd’oresetdéjà,merci.

Auxgériatres,ProfesseurOlivierSaint-Jean,mercidem’avoirdirigéverscecentrederecherche

pourunmaster2,quis’esttranforméenthèseetm’aouvertàunnouveaumondepassionnant.

ProfesseurElenaPaillaud,Hayat,Julien,Mathilde,Elise,Tanguy,Victoireetlesautres,merci.

DocteurChantalBoulanger,mercidem’avoiraccueilliedansvotreéquipesansquoirienn’aurait

étépossible.Pourvosconseilsetvotrebienveillancetoutau longdemonparcoursdansvotre

équipe,merci.

3

DocteurAlainTedgui,Mercidem’avoiraccueilliedansvotrecentrederecherche.Ilyrègneunair

familial, bienveillant et extrêmement stimulant intellectuellement, qui est insufflé directement

parlamanièredontvousdirigezcecentre.

Atouslesmembresdel’équipe1,mercipourvotresoutienscientifique,techniqueetémotionnel.

Marion, merci pour ton aide sans faille. J’ai énormément appris à tes côtés. Aux étudiants de

passage quim’ont énormément aidé pendantma thèse,Hortense évidemment, Fatou,Mendel,

merci.Xavier,Cécile,Adel,Juliette,Michael,PM,Shruti,Stephanetbiend’autres,mercipourvotre

bonnehumeur.

Atouslesmembresdu2ièmeétageetduPARCC,mercipourvotrebonnehumeur.

Auxmembres de la plateformeadministrative,merci de réconcilier tous lemonde avec lemot

«administratif».Votregentillesseetvotreefficacitén’ontpasd’égal.

Amesamis,mercid’êtretoujourslà…

AmonencadrantdeM2,merci dem’avoir formé et dem’avoir donné le goût de la recherche.

Mercipourtoutescesdiscussionsscientifico-philosophiquesetpourtonsoutienlorsdesbonset

desmauvaismoments.

Amafamille,mercipourvotresoutiensansfaille.

4

Quelquesproverbes,dictonsetautrespenséesprovenantdu«placarddulaboratoire»en

guisedesouvenirsetremerciements

TogetherEveryoneAchievesMore1«Achaqueproblèmesasolutionetàchaquesolutionsonproblème».AdelHammoutene«Silesrésultatsnesontpasàlahauteurdetesespérances,distoiquelegrandchêneaussi,unjour,aétéungland!».Legrandsagedespistesdeski…«Situarrivesàexploiterlesgensetqu’ilst’aimentencorec’estquetuesunebonnechef».HortenseDavy(Jenesaispasbienàquiellefaitallusion)«L’oisivetéestmèredetouslesvices».Pierre-EmmanuelRautou«Impossiblen’estpasFrançais(ouAlgérienapparemment)».AdelHammoutene«100%desgagnantsonttentéleurchance».Team1(quandontentedesoumettreauNEJM)«Faitescequejedisetpascequejefais».Anonyme«Unbeauschémavautmieuxqu’unlongdiscours».Pierre-EmmanuelRautou«Cequiceconçoitbiens’énonceclairement».Pierre-EmmanuelRautou«Errarehumanumest,perseverarediabolicum!».Pierre-EmmanuelRautou«Cen’estpasledoute,c’estlacertitudequirendfou!».Nietzsche«Laconfiancen’exclutpaslecontrôle».Pierre-EmmanuelRautou«Ilvautmieuxviserl’excellenceetéchouerquelamédiocritéetréussir».Pierre-EmmanuelRautou«Jenerâlepasjem’exprime».MarionTanguy«L’avenirappartientauxgensquiselèventtôt».VincentPoisson«Medecineisascienceofuncertaintyandanartofprobability».Osler«Quelleestladifférenceentreuntourdeforceetuntourdecon?».Pierre-EmmanuelRautou«Laflemmen’estjamaisunbonconseiller».Pierre-EmmanuelRautou«Le(foie)grasc’estlavie».MarionTanguy–«Etnotregagnepain».AdelHammouteneEtpourfinir:«Johanneatoujoursraison».AdelHammoutene…Nocomment

5

I. LISTOFABBREVIATIONS..........................................................................................................................................................6

II. INTRODUCTION............................................................................................................................................................................7

A. Myeloproliferativeneoplasms..........................................................................................................................................7

1. Definitions.............................................................................................................................................................................7

a) PolycythaemiaVera....................................................................................................................................................9

b) Essentialthrombocythemia..................................................................................................................................10

c) Preprimarymyelofibrosisandprimarymyelofibrosis.............................................................................11

2. Pathophysiology...............................................................................................................................................................13

a) JAK/STATsignalling.................................................................................................................................................13

b) Mutationallandscape...............................................................................................................................................16

3. Nonvascularcomplications........................................................................................................................................23

a) Secondarymyelofibrosis........................................................................................................................................24

b) Acutemyeloidleukaemia.......................................................................................................................................25

4. Treatments..........................................................................................................................................................................26

a) PolycythaemiaVera..................................................................................................................................................26

b) Essentialthrombocythemia..................................................................................................................................28

c) Preprimarymyelofibrosisandprimarymyelofibrosis.............................................................................31

B. Myeloproliferativeneoplasmsandcardiovascularcomplications..................................................................32

1. RiskfactorsforcardiovascularcomplicationsinMPNs..................................................................................34

a) Drivermutations........................................................................................................................................................34

b) Leukocytes....................................................................................................................................................................35

a) Platelets..........................................................................................................................................................................36

b) Redbloodcells............................................................................................................................................................36

2. Venousthrombosisandmyeloproliferativeneoplasms.................................................................................37

a) Pathophysiologyofvenousthrombosisinmyeloproliferativeneoplasms......................................37

b) SitespecificityinMPNspatients.........................................................................................................................50

3. Arterialvasculareventsandmyeloproliferativeneoplasms........................................................................58

a) AtherosclerosisandMPNs.....................................................................................................................................58

b) Beyondatherosclerosis...........................................................................................................................................71

III. Thesiswork.................................................................................................................................................................................83

A. Aims............................................................................................................................................................................................83

B. JAK2V617Finarterialevents................................................................................................................................................841. Article1:ErythrocytemicrovesiclesincreasearterialcontractioninJAK2V617Fmyeloproliferativeneoplasms.....................................................................................................................................................................................84

C. JAK2V617Finsplanchnicveinthrombosis..................................................................................................................1201. EndothelialJAK2V617FandBudd-Chiarisyndrome..........................................................................................120a) Backgroundandaims............................................................................................................................................120

b) Materialsandmethods.........................................................................................................................................120

c) Article2:EndothelialJAK2V617FdoesnotenhanceliverlesionsinmicewithBudd-Chiari

syndrome..............................................................................................................................................................................125

2. Calreticulinmutationsandsplanchnicveinthrombosis.............................................................................128

a) Article3:Selectivetestingforcalreticulingenemutationsinpatientswithsplanchnicvein

thrombosis:Aprospectivecohortstudy.................................................................................................................128

IV. DISCUSSIONANDPROSPECTS.........................................................................................................................................137

A. JAK2V617Finarterialevents.............................................................................................................................................137B. JAK2V617FinBudd-Chiarisyndrome............................................................................................................................139C. CALRandsplanchnicveinthrombosis......................................................................................................................141

V. CONCLUSION.............................................................................................................................................................................142

VI. REFERENCES...........................................................................................................................................................................143

VII. APPENDIX...............................................................................................................................................................................170

A. Appendix1:Review:Liversinusoidalendothelialcells:physiologyandroleinliverdiseases......170

B. Appendix2:Replyto“CalreticulinmutationsandtheirimportanceinBudd-Chiarisyndrome”...187

C. Appendix3:Curriculumvitaeandlistofpublications.......................................................................................191

6

I. LISTOFABBREVIATIONS

AML:Acutemyeloidleukaemia

BCS:Budd-Chiarisyndrome

BM:Bonemarrow

CALR:Calreticulin

CML:Chronicmyelogenousleukaemia

COX:Cyclooxygenase

CV:Cardiovascular

CVT:Cerebralvenousthrombosis

EC:Endothelialcells

EPCR:ProteinCreceptor

EPO:erythropoietine

EPOR:Erythropoetinreceptor

ERK:Extracellularsignal-regulatedkinase

ET:Essentialthrombocythemia

FERM:Four-point-oneezrinradixinmoesin

G-CSF: Granulocyte colony-stimulating

factorreceptor

HU:Hydroxyurea

HUVECs:Humanumbilical vein endothelial

cells

IFN-α:Interferon-alpha

IL:Interleukin

IPSET: International prognostic score for

thrombosisinessentialthrombocythemia

IPSS: International prognostic scoring

system

JAK:JanusKinase

JH1:Jakhomology1

MAPK:Mitogen-activatedproteinkinases

MDS:myelodysplasticsyndrome

MPL: Myeloproliferative leukaemiavirus/

Thrombopoietinreceptor

MPNs:Myeloproliferativeneoplasms

NETs:Neutrophilextracellulartraps

NO:Nitricoxide

Pa:Pascal

PAD4:Petidyl-argininedeiminase

PAI-1: Type I plasminogen activator

inhibitor

Ph:Philadelphia

PI3K:Phosphatidylinositol-3’-kinase

PIAS:ProteininhibitorofactivatedSTAT

PMF:Primarymyelofibrosis

PrePMF:Prefibrotic/earlyprimary

PSGL-1:P-selectinglycoproteinligand-1

PTP:Proteintyrosinephosphatases

PV:Polycythaemiavera

PVT:Portalveinthrombosis

RBCs:Redbloodcells

SH2:Srchomology2

SOCS: Induction of suppressor of cytokine

signallingproteins

STAT:Signaltransducersandactivators

SVT:Splanchnicveinthrombosis

t-PA:tissueplasminogen

TAFI: Thrombin activated fibrinolysis

inhibitor

TF:Tissuefactor

TFPI:Tissuefactorpathwayinhibitor

TM:Thrombomodulin

TNFα:Tumornecrosisfactoralpha

TPO:Thrombopoietin

TYK:Tyrosinekinases

u-PA:urokinase

vWF:VonWillebrandfactor

WBC:Whitebloodcells

WHO:Worldhealthorganization

WT:Wild-type

7

II. INTRODUCTION

A. Myeloproliferativeneoplasms

1. Definitions

Myeloproliferative neoplasms (MPNs) are clonal hematopoietic diseases characterized

by an overproduction of differentiated hematopoietic cells. The first report of

«myeloproliferative disorders» in 1951 described a group of disease without a clear

separation between polycythaemia vera, thrombocythemia chronic granulocytic leukaemia,

splenicmyeloidmetaplasiaandleuko-erythroblasticanaemiawithbonemarrowfibrosis[1].

The2001worldhealthorganization(WHO)classificationseparatedfourcategoriesofchronic

myeloid neoplasms: 1/Chronic myeloproliferative diseases, including what was called

"classical myeloproliferative diseases" - i.e. chronic myelogenous leukaemia (CML),

polycythaemiavera(PV),essential thrombocythemia(ET)andprimarymyelofibrosis (PMF)-,

chronicneutrophilic leukaemia, chroniceosinophilic leukaemia/hyper-eosinophilic syndrome

and unclassified chronic myeloproliferative disease -, 2/myelodysplasic syndromes,

3/myeloproliferative/myelodysplasicsyndromes,and4/mastcelldisease[2].

In the 2008 WHO classification, the term “myeloproliferative disease” was replaced by

“myeloproliferativeneoplasm”.Inaddition,mastcelldiseasewasincludedintheMPNsgroup

and myeloid neoplasms associated with hyper-eosinophilia and abnormalities of PDGFRA,

PDGFRBorFGFR1wereisolatedinanewcategory[3].

The elucidation of the molecular mechanisms underlying MPNs started in 1960 with the

discovery of the Philadelphia (Ph) chromosome in chronicmyelogenous leukaemia [4], later

characterizedasareciprocaltranslocationbetweenthechromosome9and22andidentifiedas

the BCR-ABL1 transcript [5]. This transcript allowed separating chronic myeloproliferative

8

neoplasmsgroupinto2majorentities:Phpositive(i.e.chronicmyelogenousleukaemia)andPh

negativechronicmyeloproliferativeneoplasms(Figure1).

In 2016, thanks to the discovery of several other molecular mechanisms and to the better

characterizationofmorphologicalfeatures,particularlyinPhnegativeMPNs,anupdated2008

WHOclassificationwaspublished[6].Clearboundariesbetweenthe3entities,PV,ETandPMF

could not be well established, as a certain continuum in the progression of ET and PV to

secondary myelofibrosis is observed. Thus, a new transitional entity was described: the

prefibrotic/early primary myeloproliferative (PrePMF), distinct from “true” essential

thrombocythemia[6].

MythesisworkfocusesonPhnegativeMPNs,i.e.PV,ETandPrePMF/PMF,thereafterreferred

asMPNs.

MPNsannual incidenceandprevalencewidely variesbetween studies andgeographic

areas.Inwesterncountries,PV,ETandPMFincidencerangesfrom0.5to3,from0.4to2and

from0.1to1per100000individualsperyear,respectively,whiletheirprevalencerangesfrom

5to57,from4to57andfrom0.5to2.7per100000inhabitantsrespectively[7,8].

9

Figure1:Myeloproliferativeneoplasms2016classification[6].

a) PolycythaemiaVera

PV is the most common MPN. PV was first described by a French physician, Henri

Vaquezin1892[9].In1903,WilliamOsler,distinguishedPVfrombothrelativeandsecondary

polycythaemia [10]. PV is characterized by erythrocytosis, with a progressive increased

erythropoiesis, thrombopoiesisandgranulopoiesis.Patientsalsodisplaysplenomegalydueto

extra-medullar haematopoiesis and can evolve to myelofibrosis and acute leukaemia. The

diagnosticcriteriaofthe2016updateoftheWHOclassificationarepresentedinTable1.

Chronicneutrophilicleukemia

Chroniceosinophilicleukemia

Hypereosinophilicsyndrome

MPNsunclassifiable

Myeloproliferativeneoplasms

Philadelphiachromosome+ Philadelphiachromosome-

ClassicalAtypical

Polycythemiavera

Essentialthrombocytosis

Early(Prefibrotic)andOvert

Primarymyelofibrosis

Chronicmyeloidleukemia

10

Table1.WHOcriteriaforPV[6]

Majorcriteria 1. Haemoglobin>16.5g/dLinmenand16g/dLinwomen

or,

Haematocrit>49%inmenand48%inwomen

or,

increasedredcellmass

2. Bone marrow (BM) biopsy showing hyper-cellularity for age

with trilineage growth including prominent erythroid,

granulocytic, and megakaryocytic proliferation with

pleomorphic,maturemegakaryocytes

3. PresenceofJAK2V617ForJAK2exon12mutation

Minorcriteria Subnormalserumerythropoietinlevel

DiagnosisofPVrequiresmeetingeitherall3majorcriteria,orthefirst2majorcriteria

andtheminorcriterion

Note:Criterionnumber2 (BMbiopsy)maynotbe required in caseswith sustainedabsolute

erythrocytosis:haemoglobinlevels>18.5g/dLinmen(haematocrit,55.5%)or>16.5g/dLin

women(haematocrit,49.5%)ifmajorcriterion3andtheminorcriterionarepresent.However,

initialmyelofibrosis(present inupto20%ofpatients)canonlybedetectedbyperforminga

BMbiopsy;thisfindingmaypredictamorerapidprogressiontoovertmyelofibrosis(post-PV

myelofibrosis)[6].

b) Essentialthrombocythemia

Essentialthrombocythemiawasdescribedforthefirsttimein1934,byEmilEpsteinand

AlfredGoedel[11].ItisthemostindolentMPNandischaracterizedbythrombocytosisalone.

However, isolated thrombocytosis may be the first manifestation of PV or PMF/PrePMF. In

addition to thrombocytosis, patients can display mild splenomegaly, leucocytosis and can

evolvetomyelofibrosisandacuteleukaemia.2016WHOcriteriaforETdiagnosisaredescribed

inTable2.

11

Table2.WHOcriteriaforET[6]

Majorcriteria 1. Plateletcount≥450X109/L

2. BMbiopsyshowingproliferationmainlyofthemegakaryocyte

lineage with increased numbers of enlarged, mature

megakaryocytes with hyperlobulated nuclei. No significant

increase or left shift in neutrophil granulopoiesis or

erythropoiesis and very rarely minor (grade 1) increase in

reticulinfibers

3. Not meeting WHO criteria for BCR-ABL1+ CML, PV, PMF,

myelodysplasticsyndrome(MDS)orothermyeloidneoplasms

4. PresenceofJAK2,CALRorMPLmutation

Minorcriteria Presence of a clonal marker or absence of evidence for reactive

thrombocytosis

DiagnosisofETrequiresmeetingeitherall4majorcriteria,orthefirst3majorcriteria

andtheminorcriterion

c) Preprimarymyelofibrosisandprimarymyelofibrosis

PMF was described for the first time in 1879 by Gustav Heuck [12]. It is the least

commonandmostaggressiveMPN.PMFmanifestationsincludedenovobonemarrowfibrosis,

splenomegaly due to extra-medullary haematopoiesis, increase in circulating CD34+ cells,

anaemia, variable changes in platelet and leukocyte counts, and constitutional symptoms

(>10%weightlossin6month,nightsweatsandunexplainedfever(>37.5°C)).PMFcanresult

inbonemarrowfailureandtransformationtoacuteleukaemia[13].

PrePMFwasacontroversialentity[14]thathasbeendistinguishedinthe2016updateofthe

WHO classification from “true ET” and overt PMF (Tables 3 and 4) [6]. A clear distinction

between PrePMF “true ET” and overt PMF is however not always obvious, since there is a

continuumbetween these3entities [15,16].Yet,PrePMFhas clearlyaworseprognosis than

“trueET”[17–20].

12

Table3.WHOcriteriaforPre-PMF[6]

Majorcriteria 1. Megakaryocytic proliferation and atypia, without reticulin

fibrosis>grade1*,accompaniedbyincreasedage-adjustedBM

cellularity, granulocytic proliferation, and often decreased

erythropoiesis

2. Not meeting the WHO criteria for BCR-ABL1+ CML, PV, ET,

MDS,orothermyeloidneoplasms

3. Presenceof JAK2,CALR,orMPLmutationor intheabsenceof

thesemutations,presenceofanotherclonalmarker,orabsence

ofminorreactiveBMreticulinfibrosis

Minorcriteria Presence of at least 1 of the following, confirmed in 2 consecutive

determinations:

a. Anaemianotattributedtoacomorbidcondition

b. Leucocytosis≥11X109/L

c. Palpablesplenomegaly

d. LDH increased to above upper normal limit of institutional

referencerange

DiagnosisofprePMFrequiresmeetingall3majorcriteria,andatleast1minorcriterion

*Seetable5

Table4.WHOcriteriaforPMF[6]

Majorcriteria 1. Presence of megakaryocytic proliferation and atypia,

accompanied by either reticulin and/or collagen fibrosis

grades2or3*

2. NotmeetingWHOcriteriaforET,PV,BCR-ABL1+CML,PV,ET,

MDS,orothermyeloidneoplasms

3. PresenceofJAK2,CALR,orMPLmutationorintheabsenceof

thesemutations,presenceofanotherclonalmarker,orabsence

ofreactivemyelofibrosis

Minorcriteria Presence of at least 1 of the following, confirmed in 2 consecutive

determinations:

a. Anaemianotattributedtoacomorbidcondition

b. Leucocytosis≥11X109/L

c. Palpablesplenomegaly

d. LDH increased to above upper normal limit of institutional

referencerange

e. Leuco-erythroblastosis

DiagnosisofPMFrequiresmeetingall3majorcriteria,andatleast1minorcriterion

*Seetable5

13

Table5.Gradingofmyelofibrosis[6]

MF-0 Scattered linear reticulin with no intersections (crossovers)

correspondingtonormalBM

MF-1 Loosenetworkofreticulinwithmanyintersections,especially

inperivascularareas

MF-2 Diffuse and dense increase in reticulin with extensive

intersections, occasionally with focal bundles of thick fibres

mostlyconsistentwithcollagen,and/orfocalosteosclerosis

MF-3 Diffuse and dense increase in reticulin with extensive

intersectionsandcoarsebundlesofthickfibresconsistentwith

collagen,usuallyassociatedwithosteosclerosis

2. Pathophysiology

a) JAK/STATsignalling

Haematopoiesisisthecumulativeresultofhighlyregulatedsignaltransductioncascades

that are mediated by cytokines (interleukins, interferons, colony-stimulating factors,

thrombopoietinanderythropoietin[21])andtheircognatereceptors(composedofatleasttwo

singlemembrane-spanningchains)[22].However,mosthematopoieticcytokinereceptorslack

a cytoplasmic kinase domain and transmit their signals via a family of cytoplasmic tyrosine

kinases(TYK)termedJanusKinase(JAK),composedof4members,JAK1,JAK2,JAK3etTYK2

[22].WhileJAK3andTYK2aremainlyimportantfor immuneresponses, JAK1andJAK2have

broad functions that range from immune response, neural development and haematopoiesis

[22].Homodimericreceptorssuchaserythropoetinreceptor(EPOR),thrombopoietinreceptor

(Myeloproliferative leukemia virus - MPL), granulocyte colony-stimulating factor receptor

(GCSFR) are coupled with JAK2, whereas heteromeric receptors are coupled with JAK1 and

JAK2/TYK2or JAK3[23].ThecompleteKnock-outof Jak1or Jak2 is lethal inmice.Following

cytokineengagement, receptorchainsoligomerizeand transactivate the twoassociated JAKs.

Activated JAKs phosphorylate the tyrosine residues in the cytoplasmic part of the cytokine

14

receptors,which allow the selective binding ofDNA-binding proteins, the signal transducers

andactivators(STAT-1,-2,-3,-4,-5a,-5band-6)familyandinalesserdegreeotherpathway

such asmitogen-activated protein kinases (MAPK) andphosphatidylinositol-3’-kinase (PI3K)

[24].Tyrosine-phosphorylationof STATsallows them todimerize, translocate to thenucleus

and regulate the expression of a broad number of genes involved for example in cell

differentiation, proliferation and survival [25]. Several mechanisms negatively regulate JAK-

STAT pathway, such as ubiquitin-mediated receptor internalization, dephosphorylation of

tyrosines in the JAK activation loop by protein tyrosine phosphatases (PTP), induction of

suppressor of cytokine signalling proteins (SOCS) and protein inhibitor of activated STAT

(PIAS)thatinhibitthetranscriptionalactivityofSTATs(Figure2)[24].

Figure2: JAK-STATsignalling [26]. “RepublishedwithpermissionofSpringer

Nature,from[26];permissionconveyedthroughCopyrightClearanceCenter,Inc.”

15

JanusKinasesarecomposedof(Figure3)[27]:

• A Jak homology 1 (JH1) domain, a tyrosine kinase domain located at the

carboxyterminusoftheprotein

• A JH2domain,apseudo-kinasedomaindirectlyadjacent to the JH1domain,

whichpreventJH1inappropriatekinaseactivity

• A receptor binding module at the N-terminal of the protein, including an

atypical Src homology 2 (SH2) domain (JH3) and a FERM (four-point-one

ezrinradixinmoesin)domain(JH4-JH7)

Figure3:JAK2structure

JAK2playsanessentialroleinthemaintenanceofhematopoieticstemcells,viathrombopoietin

(TPO) and stem cell factor signal transduction and in myelopoiesis through erythropoietin

(EPO),TPO,GCSF,granulocyte-macrophagecolony-stimulatingfactor,interleukin-3(IL-3)and

IL-5[24].JAK2hasalsobeenshowntoactasanendoplasmicreticulumchaperoneproteinthat

facilitatesEPOandTPOreceptorsexpressionatthecellsurface[28].JAKsignallingregulatesa

wide range of cellular function and is also involved in the pathogenesis of non-hematologic

diseasesincludingrheumatoidarthritis,inflammatoryboweldiseases,cardiacischemicstress,

solidmalignancyandcirrhosis[22,29–31].

FERM(JH4-JH7)JH3

AtypicalSH2

JH2

Pseudokinase

JH1

kinase

JAK2

N C

16

b) Mutationallandscape

AllMPNsentitiesarise fromasinglesomaticallymutatedhematopoieticstemcell that

clonally expands and gives rise to virtually all clonal myeloid cells. Such mutations, called

drivermutations, are located in JAK2,CALR (Calreticulin) andMPL genes. Additional genetic

and/orepigeneticanomaliesarealsoinvolvedinMPNsphenotypeandprogression[23,32–34].

(1) Drivermutations

Driver mutations have been described as mutually exclusive, but recent data have

showntheirpossiblecoexistence,suchas JAK2V617FwithJAK2exon12or JAK2V617FwithCALR

mutations[35].

JAK2genemutations

JAK2 mutations are the most common MPN drivers. Before 2005, the molecular

pathophysiologyofMPNswaslargelyelusive.In2005,aGtoTsomaticmutationatnucleotide

1849,inexon14ofJAK2,wasdescribed.Thismutationresultsinthesubstitutionofavalineto

aphenylalanineatcodon617(JAK2V617F) intheJH2pseudo-kinasedomain, impairingtheJH2

pseudo-kinasedomainphysiological inhibitory actionon JH1kinasedomain and resulting in

JAK2 constitutive activation [36–39] (Figure 4 et 5). In the heterozygous state, receptors

coupled to JAK2V617F are still responsive to growth factors.Onlywith JAK2V617Fhomozygosity,

usuallydueto9puniparentaldisomy,dothesereceptorsbecomeautonomouswithrespectto

growth factors (Figure 4) [35–37]. It results in an increased activation of STAT 1, 3 and 5,

MAPK and phosphoinositide 3-kinase (PI3K) [35,40–42]. In addition, JAK2V617Fmay allow

escaping from negative regulators, such as the suppressor of cytokine signalling 3 [43]. The

exactmechanismhowJH2mutationpreventsthisinhibitionisstillunclear.

17

Figure 4: JAK2V617F [44]. Reproduced with permission from [44], Copyright

MassachusettsMedicalSociety

JAK2V617Fcanbefoundinaround70%ofMPNs:95%inPVand50%to60%inETand

PrePMF/PMF [44]. JAK2V617F activates signalling through EPOR, MPL and G-CSFR. JAK2V617F

appearsinpluripotenthematopoieticprogenitorandispresentinallmyeloidlineages(Figure

4).JAK2V617FhasbeenmorerarelydetectedinB,NKcellsandlaterindiseaseprogressioninT

cells[23].JAK2V617Fissupposedlyabsentinnon-haematopoieticcells.However,2independent

teams described the presence of JAK2V617F in endothelial cells in the liver and the spleen of

patientswithsplanchnicveinthrombosis[45,46]andinendothelialprogenitors[47].

Althoughthereasonwhythesamemutation,JAK2V617Fisresponsibleforseveralphenotypesis

still unclear, some mechanisms have been put forward. First, additional genetic and/or

18

epigenetic changes are involved in the disease presentation (see chapter “other genetic

aspects”) [23,32,33]. Second, JAK2V617F mutation often undergoes a transition from

heterozygositytohomozygosityduetooccurrenceofmitoticrecombinationresultingincopy-

neutrallossofheterozygosityalongavariablesizeregionontheshortarmofthechromosome

9(9pLOH)[37,48–50].Third,thevariantallelefrequencyishighlyvariable,withacontinuum

betweenthethresholdofdetection(around1%)to100%(around25%inETand>50%inPV)

[49].Fourth,JAK2V617FhasalsobeenshowntoactindependentlyfromtheJAK-STATsignalling,

on chromatin phosphorylation, impairing histonemethylation [51,52], but the implication of

thiseffectonchromatininMPNspathophysiologyisunknown.

AninsertionoradeletioninJAK2Exon12(locatedattheinterfacebetweentheSH2-JH2

linkerregion)isdetectedinapproximately3%ofpatientwithPV,representingthemajorityof

JAK2V617F negative PV patients. This JAK2 Exon 12 mutations probably alters the interface

between JH1 and JH2 domains [53] (Figure 5). Patient carrying JAK2Exon12mutations are

younger than those with JAK2V617F [53,54]. Several JAK2 Exon 12 mutations have been

described,themostfrequentbeingtheN542-E543del(23%),E543-D544del(11%)andF537-

K539delinsLandK539L(10%)[53].JAK2Exon12isusuallynotfoundinETandPMFpatients,

butcanbedetectedinPMFsecondarytoPV[54].JAK2Exon12mutationsareassociatedwitha

morebenignphenotypethanJAK2V617F,rangingfromisolatederythrocytosistoacompletePV

phenotype [35]. The variant allele frequency can be low and homozygosity can also appear

[55].

19

Figure5:JAK2andCALRmutations

CALRgenemutations

CALRgene,encodingforcalreticulin,isthesecondmostcommonMPNdrivergene.CALR

is a multifunctional protein involved in glycoprotein folding and calcium homeostasis in

endoplasmic reticulum. CALR phenotype depends on the presence of MPL [56,57]. Indeed,

CALRbindstoMPLintheendoplasmicreticulumbyinteractionofitslectindomainwithMPL

N-glycosylation, controls the quality of the proteins, and then dissociates from the receptor,

which traffics to the cell surface. The completely glycosylated MPL is expressed at the cell

surfacewhereitcanbindTPOtobeactivated[23,35].

In2013, frameshiftmutations intheCALRgenewerediscoveredinpatientswithout JAK2or

MPLmutations(50%-60%inETand75%inPMF)[58,59].CALRmutationsconsist inawide

range of insertions or deletions, inducing a +1 (-1+2) frame shift, in exon 9,which removes

FERM(JH4-JH7)JH3

AtypicalSH2

JH2

Pseudokinase

JH1

kinase

AJAK2

N C

Insertion/Deletion

inexon12

V617F

GtoTsubstitutioninexon14

BWildtypeCALR

Ndomain Cdomain KDEL

CMutatedCALR

Ndomain

Pdomain

CdomainPdomain NovelCdomain

Insertions/deletionsinexon9

20

KDEL, a canonical endoplasmic reticulum retrieval motif important for protein retention,

togetherwithaswitchfromanegativelychargedtoapositivelychargedpeptidesequencein

theCALRC terminaldomain (Figure6).Mutationspreserving theoriginal reading frameare

notknowntobepathogenic[23,35,60–62].

MutantCALRbindstoMPLintheERbythesamedomainasthewild-type(WT)CALR,butthe

newCterminusreinforcestheinteraction.Thus,CALRproteinremainsattachedtoMPL,which

trafficstocellsurfaceandisexpressedatthemembraneinanimmatureformandattachedto

CALR(Figure6).TheimmatureMPLisactivatedbythenewCterminus(autocrineactivation)

resulting in a JAK2 dimerization and downstream STAT5 and ERK (extracellular signal-

regulated kinase) phosphorylation independently of TPO presence and can only be slightly

activatedbyTPO[23,56,63–65].

Thetwomostfrequentmutationsaretheso-calledtype1mutation,i.e.a52-bpdeletion(del52

responsibleforthelostoftheWTexon9sequenceandcalcium-bindingsites),andthetype2,

i.e.a5-bpinsertion(ins5whichisclosertotheWTsequencewith50%ofconservednegative

charges).Theotherpathogenicmutationsareclassifiedastype1-likeortype2-likebasedon

theconservationofanαhelixclosetotheWTintype2-likemutations[61].Type1mutations

represent55%ofCALRmutationsinETand75%inPMF,whiletype2represent35%inETand

15%inPMF[66].

CALRmutationsinhematopoieticstemcellsmainlyactivateMPL,andatalowleveltheG-CSFR,

butnottheEPOR,explainingthethrombocytosisassociatedwithCALRmutations[23,64].CALR

mutations give a greater proliferative advantage compared to JAK2 mutations [67]. Indeed,

CALRmutationsareusuallyheterozygous,butcanbehomozygousasaresultof19uniparental

disomy[68].VariantallelefrequencyforCALRisusuallyhigh(around40%)[58,59].

ETdrivenbyCALRmutationsaffectpredominantlymen,withayoungerage,ahigherplatelets

count and a lower haematocrit level than ET driven by JAK2 orMPL [49,69]. This reflects a

21

higher level of MPL activation induced by CALR mutations than by MPL heterozygous

mutations. This elevated MPL activation might account for the high risk of myelofibrosis

transformation associatedwith CALR mutations [70], as confirmed byMPLmousemodel in

which excessive MPL signalling results in MF [71] and by other mouse models where

homozygousMPLincreasesBMreticulindeposition[72].

Figure 6: CALR mutations [23] “Republished with permission of American

society of hematology, from [23] ; permission conveyed through Copyright Clearance

Center,Inc.”

MPLgenemutations

MPLmutations,resultinginatruncatedformofthethrombopoietinreceptorgene,have

beenassociatedwithMPNs.ActivationofMPLbyTPOinducesJAK2andTYK2activation,but

only JAK2 is indispensable for cell proliferation [23].MPL mutations are the least frequent

22

drivermutations inMPNs and occur in ET (around3%) andPMF (around5%) [73,74]. The

most frequentMPLmutations, on the tryptophanW515, are located at the boundary of the

trans-membraneandcytosolicdomainsofMPL,locatedinexon10(MPLW515WLandK)[75].

MPL mutations are responsible for receptor conformational change, activating JAK2 in the

absenceofthrombopoietinandincreaseSTAT3,STAT5,ERKandAKTsignalling[75,76].MPL

mutationsareusuallyheterozygous,butcanbehomozygous[72].

(2) Othergeneticaspects

Thesamedrivermutationscanleadtoverydifferentphenotypesinpatientsandinmice,

especially concerning JAK2V617F, implying other associated mechanisms [23,35,77]. Different

genetic,epigeneticandenvironmentalfactorsinfluenceMPNphenotype:

• Aspecificdrivermutationcanorientatetowardsaspecificphenotype,suchasJAK2

Exon12 towards erythrocytosiswhile JAK2V617F ismorepleiotropic, andCALR and

MPLtowardsthrombocytosis.Thedifferencecouldbeduetoadifferentialcoupling

ofJAK2proteinswithspecificcytokinereceptors.Indeed,JAK2Exon12preferentially

bindsEPORandJAK2V617FMPL[78].

• Thelossofheterozygosity,whichispossibleforalldrivermutations,butparticularly

forJAK2V617F,isamajordeterminantofthedegreeoferythrocytosisbothinpatients

andinmousemodels[33,79,80].TheexactdifferentialmechanismintheJAK-STAT

pathway activation under the homozygous or heterozygous mutation remains

unclear, but it can be hypothesized that homozygosity favours EPOR binding,

becausemostofhomozygousJAK2V617FarefoundinPVpatient[77].

• Germlinepredispositionscanbeseparated in2groups:onewithcommonvariants

that predispose toMPNs, and onewith rare variants that can be found in familial

MPNs.Thesegermlinevariants involvesensitivityofmegakaryocyteprogenitors to

23

TPO, cell senescence, JAK-STAT signalling, myeloid differentiation, DNA damage

repairandepigeneticregulation[77,81–87]

• Otheradditionalsomaticmutationshavebeenshowntobepresentinapproximately

onethirdofpatientswithMPNs,involvingDNAmethylation,DNArepair,chromatin

modificationsandmRNAsplicing,asreviewedelsewhere[23,59,88].

• The order of mutations apparition also seems to play a role in the phenotypic

presentation.Forexample,inpatientscarryingJAK2V617Fmutation,agroupso-called

“JAK2-firstpatients”ismorelikelytopresentPVandtodevelopthrombosisthanthe

so-called“TET2-firstpatients”[89].

• Patient-specificfactors,suchasage,sex,renalfunction,EPOlevelandironstatusare

alsoinvolvedintheclinicalpresentationofMPNs[77].

Inconclusion,theinappropriateactivationofJAK-STATsignallingiscommontothethreemain

drivermutationsandplaysanimportantroleinthediseasepathogenesis.Nogeneticcauseis

found in around10%of patientswithMPNs. There are also clearly other actors involved in

MPNs,buttheirexactandrelativeimplicationremainstobeclarified.

3. Nonvascularcomplications

ThenaturalhistoryofMPNsishighlyvariableandrangesfromslowprotractedcourse

toaprogressivecoursewithtransformationtosecondarymyelofibrosisand/oracutemyeloid

leukaemia. However, the first cause of mortality of patients with MPNs is represented by

vascularcomplications,whicharediscussedbelow(section“myeloproliferativeneoplasmsand

vascularcomplications”).Themediansurvival inaMayoCliniccohort including826patients

wasapproximatelyfortheallpopulation20yearsforET,14yearsforPVand6yearsforPMF

andforpatientsunder60yearsold33,24and15yearsrespectively[90].

24

a) Secondarymyelofibrosis

All MPNs have the propensity to progress towards a late myelofibrotic stage

characterizedbysplenomegalyanddecreasedcirculatingcellscountduetoBMfailure.Criteria

for thediagnosisofpost-PVorpost-ETMFpublishedby the internationalworkinggroup for

MPNsresearchandtreatment(IWG-MRT)aredetailedinTable6andTable7respectively[91].

ThefrequencyofsecondaryMFdiffersbetweenPVandET,rangingfrom20%10yearsormore

afteroriginaldiagnosisinPVpatients,tolessthan1%after10yearsandlessthan10%after15

yearsoffollow-upinETpatients[17,92].ThedistinctionoflatePMFfrompost-PVorpost-ET

MFrequiresdiseasehistory,butmegakaryocytemorphologycanbealsohelpful.Indeed,incase

of post-PVMF,megakaryocytes retain their typical PVmorphological features (pleomorphic

nuclei with minimal maturation defects and without significant dysmegakaryopoiesis and

severe alteration in the nucleus-to-cytoplasm ratio) [93]. The pathophysiology of PMF and

post-PVMFaremostlikelydifferent:post-PVMFresultsfromaslowlyevolvingclonaldisease

withtheaccumulationofmanygeneticalterationsoverthetime,whilePMFshowsapropensity

tofibredepositionatanearlystage[93,94].

25

Table6.IWG-MRTcriteriaforpost-PVmyelofibrosis[91]

Required

criteria

1. DocumentationofapreviousdiagnosisofPVasdefinedbythe

WHOcriteria*

2. Bonemarrowfibrosisgrade2-3**

Additional

criteria

a. Anaemia or sustained loss of requirement of either

phlebotomyorcytoreductivetreatment

b. Aleucoerythroblasticperipheralbloodpicture

c. Increasingsplenomegaly

d. Development of ≥ 1 of three constitutional symptoms: >10%

weight loss in 6 month, night sweats, unexplained fever

(>37.5°C)

Diagnosisofpost-PVmyelofibrosisrequiresmeetingall2requiredcriteria,andatleast

2additionalcriterion

*cfTable1;**cfTable5

Table7.IWG-MRTcriteriaforpost-ETmyelofibrosis[91]

Required

criteria

1. DocumentationofapreviousdiagnosisofETasdefinedbythe

WHOcriteria*

2. Bonemarrowfibrosisgrade2-3**

Additional

criteria

a. Anaemia and a ≥ 2mg.ml-1 decreased from baseline

haemoglobinlevel

b. Aleucoerythroblasticperipheralbloodpicture

c. Increasingsplenomegaly

d. IncreasedLDH(abovereferencelevel)

e. Development of ≥ 1 of three constitutional symptoms: >10%

weight loss in 6 month, night sweats, unexplained fever

(>37.5°C)

Diagnosisofpost-ETmyelofibrosisrequiresmeetingall2requiredcriteria,andatleast

2additionalcriterion

*cfTable2;**cfTable5

b) Acutemyeloidleukaemia

The incidenceof acutemyeloid leukaemia (AML) range from1.5% inpatientwithET,

5% in patientwith PV to 8%-10% in thosewith PMF [35,95,96]. Average duration between

diagnosisofMPNandAMLdevelopmentisalsohighlyvariable,rangingfromapproximately30

months to>80months,with a shorterduration inPMF than inPVandET [97,98].Age and

chemotherapy increases the incidence of AML [99,100]. AML is also associated with 9p

uniparental disomy, 1q amplification and additional cytogenetic mutations [35]. AML more

26

frequently involves a sub-clone (de novo AML, like in patients without MPNs), but can also

involve the founding hematopoietic stem-cell clone [35]. AML diagnosis is based on blasts

count(>20%inthebonemarrowor intheblood)andisbasedontheclassicalFAB(French-

American-British) classification of AML and the more recent WHO criteria focusing on

significantcytogeneticandmoleculargeneticsubgroups[6].

4. Treatments

The only curative treatment would be allogenic stem cell transplantation, but this

approach remains limited due to the age of the patients, the comorbidities and the high

mortalityassociatedwiththisprocedure.BecausesurvivalofETpatientsiscloseto-normaland

10-yearsurvivalofPVpatientsis>75%witha10-yearriskof leukemictransformation<5%

andfibrotictransformation<10%[90],thegoalofcurrenttreatmentinpatientswithPVand

ET ismainly toprevent cardiovascular complications,which exceed20% [101].Accordingly,

currenttreatmentstrategiesarebasedonthromboticriskstratification.

a) PolycythaemiaVera

(1) Riskstratification

PVpatientswithahistoryofthrombosisandanadvancedageareconsideredathigher

risk of thrombosis, with a distinction regarding the treatment between arterial and venous

events.Inaddition,in2018treatmentalgorithm,hypertensionandleucocytosisarealsotaken

intoaccount[102].

(2) Firstlinetreatment

In all patients, phlebotomy, to keep haematocrit bellow 45%, and low dose aspirin

therapy once a day, which may be increased to twice a day in case of hypertension and

leucocytosis,arerecommended[102].Inhigh-riskpatients,i.e.thoseaged60yearsormore,or

27

withahistoryofvascularevent,aspirintwiceadayisrecommendedincaseofarterialevent

and systemic anticoagulation in caseof venous thrombosis togetherwith cytoreductivedrug

[102–104].Themostcommonlyusedcytoreductiveagentishydroxyurea(HU).HU,alsoknown

ashydroxycarbamide,isaribonucleotidereductaseinhibitor,whichinhibitsDNAsynthesisand

stops cell cycle in phase S, resulting in cell death. HU reduces cardiovascular events, in

comparisonwithphlebotomy alone and lowers leukemic transformation in comparisonwith

historicalcohortstreatedwithchlorambucil[105].Therewasacontroversyaboutapotential

increased risk of leukemic transformationwithHU, but several uncontrolled studies did not

confirm this risk [106]. HU only allows clinical and haematological response, but has no

influence on molecular aspects. The other option for first line treatment is pegylated

interferon-alpha (IFN-α), which is relatively safe and can allow clinical, haematological and

molecularresponse[102,107–110].However,HUisinmostcasesthefirst-linetreatmentinPV,

pegylatedIFN-αbeingusedforHUintolerantpatientorassecondlinetherapy[102].

(3) Secondlinetreatment

Threedrugs canbe considered for second line treatment in caseofHU intoleranceor

inefficacy:namelypegylatedIFN-α(seepreviouschapter),busulfanandruxolitinib.Pegylated

IFN-α and busulfan display a better activity against clonal proliferation and a better

haematological andmolecular response [102,109,111–113]. In addition, pegylated IFN-αand

busulfanbeingolddrugs,thelong-termsafetyisavailableandacceptable.Thelatestproposed

treatment is Ruxolitinib, a JAK2-JAK1 inhibitor and is recommended for HU resistant or

intolerantpatients [32,102,103].Theuseofruxolitinib inHUresistantpatients isbasedon2

large,randomizedcontrolledtrials,RESPONSEandRESPONSE-2,demonstratingahigherrate

ofhaematocritcontrol,ofreductioninspleensize,andofimprovementingeneralsymptomsas

comparedwithstandardtherapies.However,ruxolitinibhadlimiteddisease-modifyingactivity,

with less than 24% of complete hematologic remission and less than 2% of molecular

28

remission [114–116]. Ruxolitinib studies where not designed to evaluate the impact on

cardiovascularevents,noronleukaemiaormyelofibrosisfreesurvival. Inaddition, longterm

and immunosuppressive consequences of ruxolitinib are still unknown. Future therapies

should focus on controlling cardiovascular events, which are the first cause of death in this

mostly indolent disease, but because of a lack of clear pathophysiological understanding of

thesecomplications,newoptionsremainlimited.

b) Essentialthrombocythemia

(1) Riskstratification

LifeexpectancyinpatientswithETisclosetohatofthegeneralpopulation[90].Driver

mutations do not influence overall survival. Because of the overall good survival of patients

withET,preventionofcardiovasculareventsisthemaingoalofthetreatment[117].Thetwo

featuresclassicallytakeninconsiderationtobasetherapeuticdecisionsareage>60yearsold

andhistoryofthrombosis[118].Inaddition,JAK2-MPLmutationsareindependentriskfactors

for thrombosis [69,119]. More specifically, JAK2V617F was identified as a risk factors for

cardiovascular events, along with thrombosis history, age > 60 years old, leucocytosis and

cardiovascular CV risk factors in a cohort of 891 patient with ET [120]. Extreme

thrombocytosis (> 1000 x 109/L) and CALRmutationswere associatedwith a lower risk of

thrombosis[120–122].Arecentthromboticriskfactorstratification,theIPSETScorebasedon

1019patients[123],validatedinanindependentcohortof585patientswithET[124],defines

4groups,describedinTable8.Therecommendedtreatmentforeachgroupofpatientsisbased

onexpertopinionsandnotbasedoncontrolledstudies.

29

Table 8. Revised international prognostic score for thrombosis in essential

thrombocythemia(IPSET)[123]

Verylowrisk Nothrombosishistoryand≤60yearsold

JAK2wildtype

Lowrisk Nothrombosishistoryand≤60yearsold

WithJAK2mutation

Intermediate

risk

Nothrombosishistoryand>60yearsold

JAK2wildtype

Highrisk Thrombosishistoryor>60yearsold

WithJAK2mutation

CALRmutationsdoesnotmodifythisscore[121]

(2) Firstlinetreatment

In“very lowrisk”patients,asimplesurveillance isrecommended.Low-doseaspirin is

prescribed in patients with cardiovascular risk factors, without extreme thrombocytosis or

acquired von Willebrand syndrome. In case of extreme thrombocytosis with symptoms or

bleedingcomplications,HU is recommended todecreaseplatelet count [118]. For “lowrisk”

patientsitisnowrecommendedtotreatwithlowdoseaspirin,onceortwiceadaydepending

on thepresenceof cardiovascular risk factorsandwith thepreviouslymentionedprecaution

regarding extreme thrombocytosis [118,125]. For “intermediate risk” patients, HU can be

discussedasafirstlinetreatment,butisnotmandatory[123].Therecommendationforaspirin

treatmentisthesameasin“low-risk”patients.For“high-risk”patients,HUisrecommendedas

firstlinetreatment.Indeed,HUdecreasessignificantlycardiovasculareventsinthispopulation.

Itshouldhoweverbenotedthatinthestudybasingthisrecommendation,adifferentdefinition

ofhighriskpatientswasusedandthegoalwastodecreaseplateletscountbelow600x109/L

[126]. We now know that extreme thrombocytosis is not associated with an increase in

cardiovascular risk [120,127]. In addition, aspirin twice daily in case of arterial thrombosis

historyisrecommended.Whileincaseofvenousthrombosishistorysystemicanticoagulation,

30

with or without aspirin once a day in case of associated cardiovascular risk factor, is now

recommended[104,118,128,129].

(3) Secondlinetreatment

IncaseofHUintoleranceorresistance[130],severaltreatmentscanbeconsidered:

The firstonerecommended,which isyetoff label inFrance, ispegylated IFN-α,especially in

youngpatientsandpregnantwomen[117,118].Indeed,pegylatedIFN-αin“highrisk”patients

hasbeenshowntoberelativelysafewithgoodclinicalandhaematologicalresponseandfew

molecularremissions,especiallyinthepresenceofCALRmutations[131–133].

AnagrelidehasbeenevaluatedinfirstlinetreatmentforET.Eventhoughitwasnotinferiorto

HU in termsofhaematologicalefficacyandthromboticcomplicationsprevention[134], there

wasanincreasedriskofbleedingcomplicationsandmyelofibrosis[135,136].Thus,anagrelide

shouldbeconsideredasasecondlinetreatment.

Busulfan can be also used,with good haematological response, butwith only fewmolecular

responses.Therewasapreviousconcernaboutthepotentialriskofleukaemictransformation

withBusulfan.However,alargeinternationalstudyincludingmorethan1500patientsdidnot

confirmthisrisk[111–113,137].

RuxolitinibwastestedinanoncomparativephaseI/IItrialincludingHUresistantETpatients

where it decreasedplatelet count,WBC count,ET-related symptomsandachievedmolecular

responseinapproximately60%ofpatientsafter312weeksoftreatment[138].Theimpactof

ruxolitinibonthromboticcomplicationsinETpatientsishoweverstillunclear[32,118,139].A

randomizedcontrolledtrialcomparedruxolitinibwithbestavailable therapy(HU,anagrelide

and interferon) in “high risk” ET patients intolerant or resistant to HU and showed greater

ameliorationinET-relatedsymptomswithruxolitinib,butnosignificantdifferenceintermof

haematologicalresponse,cardiovasculareventsandleukemictransformation[140].

31

Ruxolitinib iscurrentlytestedassecondlinetherapyinpatientswithhigh-riskETin2trials:

the RESET 272 study (NCT03123588) in the United States comparing ruxolitinib with

anagrelide,andaFrenchstudy(NCT02962388)comparingruxolitinibwithanagrelideorIFN-α

[139]. TheRUXO-BEAT trial (NCT02577926) inGermany is comparing ruxolitinibwithbest

available therapy in patients with high-risk ET who may be treatment-naive or previously

treated [139]. The remaining question is the place of a high cost new drug in an indolent

diseasesuchasET,withpossiblelong-terminfectiouscomplications.TherealchallengeinET

treatmentistheadequatedistinctionof“true”ETfrompre-PMFtodecidetheappropriateand

safertreatmentandthepreventionofcardiovascularcomplications.

c) Preprimarymyelofibrosisandprimarymyelofibrosis

The only curative treatment for PMF is allogenic stem cell transplantation. Other

treatmentsremainpalliativetocontrolanaemia,splenomegalyandgeneralsymptoms.

(1) Riskstratification

UnlikePVandET,riskstratificationinPMFhasbeendeveloptopredictdeathfromany

cause, using the IPSS (International prognostic scoring system) at the time of diagnosis or

duringthecourseofthedisease(Table9)[17,117,141,142].

Table9.Internationalprognosticscoringsystemforprimarymyelofibrosis[141,142]

1. Age>65years

2. Constitutionalsymptoms

3. Haemoglobin<10g/dL

4. (Whitebloodcells)WBCcount>25x109/L

5. Bloodblast≥1%

Thepresenceofzero(lowrisk),one(intermediaterisk-1),two(intermediaterisk-2),or

three(highrisk)ofthesefivevariablesdefinesfourriskgroups.

(2) Allogenicstemcelltransplantation

In“intermediaterisk-2”and“highrisk”patientswithPMFanddependingonthepatient

performance status, age, comorbidities and donor availability, allogenic stem cell

32

transplantation must be considered, because it is the only available curative treatment.

Reducedintensityconditioningregimentcanbeproposedbuthasnotbeenevaluatedagainst

standardconditioning[117,142–144].

(3) Otheravailabletreatments

Forpatientsnoteligibletoallogenicstemcelltransplantation,symptomatictreatments

andruxolitinibarerecommended.

Ruxolitinib is the first and only approved agent for PMF since 2012 [145,146]. Only

“intermediate risk-2” and “”high risk patients or “low risk” and “intermediate risk-1” with

troublesome symptoms and/or splenomegaly are eligible for Ruxolitinib. Indeed, Ruxolitinib

significantly improves splenomegaly and symptoms, but molecular response and improved

bonemarrowfibrosisandsurvivalremainmoderate[147–149].OtherJAKinhibitorsarebeing

testedinclinicaltrialforPMFpatients,butnonehavebeenapprovedyetandseveralhavebeen

withdrawnduetotoxicity[32,117].

Other symptomatic treatments include HU for splenomegaly if ruxolitinib is not available,

transfusion, EPO, corticosteroids, immunomodulating drugs (thalidomide, lenalidomide),

danazolandsplenectomyforanaemiamanagement[117].

B. Myeloproliferativeneoplasmsandcardiovascularcomplications

TheprevalenceofmajorthrombosisatthetimeofdiagnosisinETandPVpatients,range

from10%to29%and34%to39%respectively,andatfollow-upfrom8%to31%inbothET

andPV, themost frequenteventsbeingmyocardial infarction, strokeandvenous thrombosis

[150–155]. In PV, cardiovascular mortality account for 41% of all deaths (15% myocardial

infarction,8%congestiveheartfailureand8%pulmonaryembolism),whichrepresentthefirst

cause of death in this patients [150]. Arterial events are the most common one, indeed it

represent60-70%ofcardiovasculareventsinpatientswithMPNs[152–154,156].

33

According to Virchow’s triad several factors contributes to thrombosis pathophysiology:

vascularwallabnormalities(endothelialdysfunctionorbreach),bloodcomponentsandblood

flow. Indeed each of them participates to vascular homeostasis and pathology. Arterial and

venousthrombosismechanismsarenotexactlysimilar,theactorsarethesamebuttheirroles

are different and some molecular mechanisms are vascular bed type-specific. However, the

classical viewof separatespathophysiologybetween arterial thrombi involvingplatelets and

inflammation andvenous thrombi fibrin and redblood cells (RBCs) is nowbeing challenged

[157,158]. Indeedseveral linesofevidencesuggest thatarterialandvenous thrombosishave

some common pathophysiology: 1/ The existing risk of venous thrombosis in patient with

arterialpathologyandviceversa2/Theproofofinflammationandplateletsactivationinvolved

in venous thrombosis and fibrin in arterial thrombosis3/The endothelial dysfunctionbeing

key in both settings 4/ The anticoagulant therapy efficiency in both settings [158,159]. Still

some specific factors remain different between arterial and venous thrombosis, mainly the

bloodflowconditionandthepresenceofatherosclerosisinarterialbeds.InmostMPNsstudies

and reviews, thrombosis is used as a generic term. However, this term usually encloses all

cardiovascular events resulting in a reductionor cessationof blood flow to a tissue, ranging

fromarterial ischemiawithorwithoutunderlyingatherosclerosisand thrombosis, tovenous

thrombosis from the limb to the liver. For the clarity and to underline specific factors Iwill

focuson1/risk factors forcardiovascularevents in thecontextofMPNswithspecific factors

such as genetic abnormalities, 2/ the venous thrombosis, generalities and site specificity in

MPNscontextand3/thearterialvasculareventsinthecontextofatherosclerosisandbeyondit

inpatientswithMPNs.

34

1. RiskfactorsforcardiovascularcomplicationsinMPNs

a) Drivermutations

(1) JAK2mutations

JAK2V617FisassociatedwithanincreasedriskofarterialandvenouseventsinETandPV

patients.Indeed,oneretrospectivestudyinETpatients,showedanincreasedriskofCVevents

associatedwithJAK2V617Fforarterialandvenousevents(RR1.41ingeneralpatientsand1.87in

patients younger than 60 years), but more specifically for arterial events, splanchnic vein

thrombosisandcerebralvenousthrombosisandnotforcommonvenoussite[160].

Inanotherretrospectiveseries[161]of1282patients,JAKWTETpatientshadandecreasedrisk

of CV events compare to JAK2V617FET and PV patients. The five years follow-up showed an

occurrence of CV events in 9% of JAKWT ET, 11% in JAK2V617F ET and 14% in JAK2V617F PV

patients[161].Atdiagnosis, leukocytesandnotJAK2V617Fwereindependentlyassociatedwith

anincreasedriskofCVeventsinPVpatients,whileafter5yearsfromdiagnosisJAK2V617Fallele

burden became the only independent factor associated with thrombotic events. Indeed

leukocytes decreased in follow-up due to HU treatment. Interestingly, the frequency of CV

eventsprogressively increasedaccording to theamountofmutatedalleleburdenboth inET

andinPVpatients[161].

Severalmetaanalysisincludingmorethan2000patients,consistentlyshowedthatJAK2V617FET

patientshavea two foldhigherriskofdevelopingarterialandvenousevents than JAK2WTET

patients[162–164].

Inpatientswithpre-PMForPMF,JAK2V617FwasnotassociatedwithCVevents[153,163]

(2) CALRmutation

ET patients with CALR mutations have a decreased risk of CV events, but are also

younger, with higher platelets count and lower haematocrit level than ET patients with

35

JAK2V617F mutation, which are confusing parameter that could account for the decreased

thrombotic risk [49,69,165]. One meta analysis of 435 CALR mutated patients and 1116

JAK2V617FpatientswithPMFconfirmedthatCALRmutatedpatientsdisplayalowerriskofCV

eventscomparetoJAK2V617Fpatients[166].

In conclusion, JAK2V617F is associated with an increased risk of arterial and venous

cardiovasculareventsinETandPV,butnotinPMFpatients.However,confusingfactorssuch

asthealleleburden,bloodcellscountandthetreatmentresponse,arealsoimplicatedinthis

association.CALRmutationisassociatedwithalowerriskofCVeventsthanJAK2V617Fpatients.

b) Leukocytes

In PV, ET and PMF leucocytosis has been consistently associatedwith cardiovascular

events, especially arterial events [153,167–171]. In addition, leucocytosis is associated with

worse survival in ET, PV and PMF patients, reflecting amore active and aggressive disease

[137,172], but there is still no clear evidence that loweringwhite blood cellsmight have an

effect on CV risk even if it is recommended [173,174].One prospective study found a lower

thrombosisriskwith lowering leukocytessecondarytoHUtreatment,howeverHUdecreases

alsootherbloodcellssuchasredbloodcellsandactsondiseaseactivity[175].

Thetimepointofwhenleukocytescounthasthehighestpredictivevalueforthrombosisand

thecutoffarestillunknown[137].Indeed,inETpatients,somestudiesfoundthatthecountat

diagnosiswasasignificantriskfactorandnotatfollow-upusuallyundertreatment[176],while

someotherfoundtheopposite[177].Inaddition,leucocytosisseemstohaveahigherimpactin

lowriskpatients(young,withoutJAK2V617Fmutation)thanhighriskone[168,178].Suggesting

thatseveralmechanismscouldbeinvolvedincardiovasculareventsrelatedtoMPNsdepending

ofthetypeofdiseaseandtheevolution.

36

a) Platelets

Most studies did not find an association between increased platelets count and

thrombotic risk [167,169,178–180] or survival [137,174]. Thematter of the cut-off remains

central. Indeed, beyond a certain cut-off (>1000 to 1500 G/L), extreme thrombocytosis is

associated with less arterial events and more bleeding complications, in particular in

associationwith anti-platelets therapy [181–184].The issue is that acquiredVonWillebrand

disease, with potential bleeding complications, can be also seen without extreme

thrombocytosis [118,185]. An other confounding factor is that highest platelets count

correlateswithlessacuteleukaemiaandmyelofibrosistransformationbecausethrombocytosis

incontrarytoleukocytosis,isasignoflessaggressivedisease[180].

b) Redbloodcells

Increasedhaematocritwithhyper-viscositysyndromehasbeenlinkedtoCVeventsfora

long time, particularly arterial one [186–188]. A randomized trial designed to evaluate the

intensity of treatment needed in PV patients has shown that a target haematocrit less than

45%, decreased significantly CV death and major CV events in comparison with a target

between 45 and 50% [189]. However the ECLAP study, a prospective observational study,

failed to prove that an haematocrit level > 50% in follow-upwas associatedwith CV events

[180].Two importantpointshave tobe taken intoconsideration: (a) the fact that in the first

studytreatmentnotonlydecreasedhaematocritlevelbutalsoleucocytecountand(b)thefact

that thedifferencesobservedcouldbesecondaryto treatment intensityanddiseaseseverity.

Retrospectivestudiesalsoshowedcontradictoryresults,withtheissueofthecut-offremaining

and the differences in treatment intensity used to achieved the recommended goal of an

haematocrit<45%[153,177,178].

37

Inconclusion,thequantitativeanalysisofbloodcellscounthasbeendebatedwildlyin

the literature,butenclosemajorartefacts.Bloodcellcountsareprobablyamirrorofdisease

severity and treatment efficacy, but no conclusion can be made regarding CV events

pathophysiology.

2. Venousthrombosisandmyeloproliferativeneoplasms

a) Pathophysiologyofvenousthrombosisinmyeloproliferative

neoplasms

Bloodflowispermanentlyincontactwiththeendotheliumandremainsfluid.Indeed,

the luminal surface of quiescent endothelial cells is anticoagulant andnon-thrombogenic. By

contrast,macromoleculesofthebasallaminaarestronglythrombogenic.Incaseofendothelial

activation or injury, with an exposition of the sub-endothelial matrix, primary haemostasis

results in platelets adherence and initiation of the coagulation cascade leading to fibrin

formation (secondary haemostasis) to stop the bleeding, beforemechanisms of tissue repair

areputinplaceinparalleloffibrinolysis.

(1) Activationofendothelialcells(EC)(Figure7)

The endothelium is amonolayer of ECs,which constitutes the inner cellular lining of

vessels(arterialandvenousvessels,capillariesandlymphaticsystem).Itwasfirstthoughtto

be a physical barrier containing blood inside vessels, but its pleiotropic function in vascular

homeostasisandorganpathophysiologyisnowrecognized[190].

The first step of the haemostatic process is the loss of the endothelial anticoagulant

function,byactivationorinjury.Theendotheliumhasadoublepivotalroleinthisprocess:1/

promotingthethromboticprocessatthesiteofinjurybyexpressionofadhesionmolecules(E-

Selectin and P-Selectin) and Von willebrand factor (vWF) and 2/ limiting the thrombotic

processbyhealthyendotheliumsurroundingthesiteofthrombosis,byreleasingprostacyclin

38

and nitric oxide (NO) [191]. vWF is a multimeric protein, which is mainly synthesized by

endothelialcellsand isstoredwithintheWeibel-Paladebodies[192,193].vWFplaysamajor

roleintheinitialplateletsrecruitment,particularlywhentheshearrateishigh[191,192].vWF

isalsoassociatedwithcollagenVIinthesub-endotheliumandactsasabridgebetweenmatrix

andplateletviatheGPIb/IX/Vglycoprotein[194].DamagedoractivatedECsreleaseinthe

circulation specific soluble markers including selectins, thrombomodulin, and vWF [195],

whichcanbeusedasindexofendothelialdamageincardiovasculardisorders[196,197].

Several indirect observations argue in favour of EC activation and injury in MPNs

patients. First, soluble E-Selectin (CD62) [198–201], and thrombomodulin (TM) levels are

increasedinthebloodofETandPVpatients[202,203].Howevertheirdirectimplicationsinthe

pathophysiologyof CV events inMPNs are still unknown. vWF levels havebeen consistently

found increased inMPNs patients [203–205].Moreover,MPNs patientswith past history of

thrombosishaveahigherlevelofvWFthanthosewithoutit[204].Circulatingendothelialcells,

CD146+, that are knownmarkers of vascular injury [206] are also increased in the blood of

MPNspatients compare tohealthy controls [201,207–209]and inMPNspatientswithapast

history of thrombosis compare to thosewithout it [210]. In addition, one study reported in

2009theexistenceofJAK2V617Finhepaticveinsendothelialcellsfrom2Budd-Chiarisyndrome

patients [45]. Subsequently, JAK2V617F was also detected in splenic endothelial cells from

patients with myelofibrosis [46]. Later, JAK2V617F was found in circulating endothelial

progenitor cells (ECFC) in 5 out of 17 JAK2V617F patients [47], a finding confirmed by an

independentgroup[211,212].Interestingly,patientsharbouringJAK2V617F inECFCwerethose

with a history of thrombosis (splanchnic vein thrombosis, deep vein thrombosis or stroke)

[47,211].

39

In conclusion, indirect evidence suggests that ECs in MPNs patients are activated.

However, their direct implication in the pathophysiology of venous thrombosis in MPN has

beenonlyrecentlyhighlighted.IndeedthegroupofC.James[213],demonstratedthatJAK2V617F

inendothelialcellsinducestheexposureofP-selectinatthesurfaceofendothelialcells,which

increased neutrophils and mononuclear cells adhesion in vitro. Interestingly, in vivo, small

concentrations of tumor necrosis factor alpha (TNFα) were required to uncover this effect.

Importantly,miceexpressing JAK2V617F inECs(Pdgfb-icreERT2+/-)developedmorethrombi in

the lungs. The only other teamwho lookedpreviously at the implication of JAK2V617F in ECs,

usedanarterialFeCl3assay,whichinducesECsdamage,likelymaskingchangesinendothelial

phenotypeduetothemutation[214].

In conclusion, JAK2V617F in EC seems to favour endothelial activation and venous

thrombosis,asshownbyC.Jamesteam.

(2) Circulatingbloodcellsrecruitment(Figure7)

Plateletsrecruitmentandactivation

After endothelial activation or injury, circulating platelets adhere and begin the

haemostaticprocess.Thisplatelet recruitmentdependson several integrinspresenton their

surface that mediate adhesion to the sub-endothelium (collagen, fibronectin, laminin).

ActivatedplateletsundergomorphologicalchangesanddegranulationwhichreleaseADP,ATP,

thromboxane A2, serotonin, vWF and fibrinogen, activating neighbouring platelets and

amplifying the aggregation process [192]. Activated platelets express at their surface and

releaseinthecirculationtheadhesivemolecule,P-Selectin[192].

In MPNs patients, platelets P-Selectin expression and soluble P-Selectin level are increased

compared to healthy control in basal condition and after stimulation with several agonists

[200,215–221].InadditionthelevelofsolubleP-Selectinishigherinpatientswithpast-history

40

ofthrombosisthanwithout[200,215,217,222].Thisincreasedplateletsactivationissupported

bytheelevatedcirculatingplateletaggregatesinMPNspatientscomparedtohealthycontrols

[217–219,221,223,224],particularlyinthepresenceofJAK2V617Fwhenthealleleburdenishigh

[225].

Regarding platelets integrins expression, Jensen et al [215], found reduced levels of CD41

(GPIIbIIIa)andCD42b(GP1b)butincreasedlevelofCD36(GPIV)comparedtohealthycontrols

in basal condition. Interestingly, after stimulation there was less increased expression of

surface integrins than in healthy controls [215]. A lower expression of platelets CD41 and

CD42b was confirmed in ET patients compared to healthy controls in basal and stimulated

conditions[220].Thedecreasedfunctionalityisinlinewithabnormalaggregationdescribedin

several studies [182,215,220,226–228]. Platelet function inMPNs remain poorly understood

andseveralfactorshavetobetakenintoconsideration:1/Plateletsaggregationfunctiontests

arehighlyvariableeveninhealthyindividuals2/Sheddingadhesionmoleculesmirrorplatelets

activationbutalsocorrelateswithdecreasedplateletsexpressionofintegrins(GPIVandGP1b)

and platelets adhesiveness as a negative feed-back [229,230] and 3/ There is different

populationandtherapy(specificforMPNsandanti-platelets)inthesestudies.

Toovercomethese limitations inherenttopatients’sampleanalyses,murinemodelsofMPNs

havebeenused.Hobbsetalusedheterozygous Jak2Floxed/1Mx1Cre1+miceasaETmodel

and found that platelets from Jak2V617F knock-inmice had an increased response to agonists

that translated into increased aggregation in vitro and a decrease tail bleeding time,

independently of the platelet count [231]. Contradictory data have been found in a PV-like

disease model (irradiated WT transplanted with VavCre/Jak2V617F KI bone marrow), which

showed a decreased platelets activation (decreased GPVI) and responsiveness to different

41

agonists.TimetoocclusionafterFeCl3treatmentwassurprisinglyshorter,butformedthrombi

wereunstableinJak2V617Fmice[232].

TheroleofmutatedplateletshasbeenalsostudiedinaPf4-Cre/FF1mice,withJak2V617Fonly

expressedinmegakaryocytes(increasedCFU-MK,butnoincreasedcirculatingbloodcells)and

plateletsaggregationinresponsetodifferentagonistswassimilartoWT[214].However,Pf4-

Creactivity isnotmegakaryocytelineage-specificbutextendstoothermyeloidandlymphoid

lineages[233,234].InanET-likemodel(Tie2-Cre/FF1mice,withJak2mutationinmyeloidand

endothelialcells)thetailbleedingtimewasincreasedincomparisonofcontrolmice.However,

whenplateletsnumberwasnormalizedinthismodeltherewasnodifferencesanymore[214].

Thisstudysuggeststhatitisthenumberofplateletsandnotthemutationthatisresponsible

for this abnormal haemostasis. Strassel et al compared a murine model of thrombocytosis

without Jak2 mutation (Yall;Mpl withmisbalance between thrombopoietin and its receptor)

andthrombocytosissecondarytoJak2V617FmutationinacontextofET-likedisease(irradiated

WT transplantedwithVavCre/Jak2V617FKIbonemarrow)andPV-likedisease (irradiatedWT

transplanted with MxCre;FF1/Jak2V617F KI bone marrow) [235]. Interestingly, they used

different thrombotic challenges: 1/ a microvascular one (collagen-adrenaline injection) and

foundanincreasedmortalityinthe3modelscomparedtoWT;2/anarterialthrombosisassay

withFeCl3injury,whichwasnotmodifiedinthe3groupcomparetoWT;and3/avenacava

stasismodel(completeligation),whereclotsweresimilarintermofsizeinthe3groups(with

a higher platelet to fibrin ratio) compared to WT. In term of haemorrhagic tendency (tail

bleeding assay), Yall;Mpl and VavCre;FF1 displayed an increased bleeding time with lower

proportion of the more reactive high-molecular-weight forms of vWF in their plasma but

withoutcleardefectsinplateletactivation,whichwerenormaloronlyweaklydecreased.This

studyhighlightsthefactthatitismorethenumberofplateletsthatmattersthanthemutational

statusitselfonplateletsfunction,whichisconcordantwithonehumanstudythatshowedthat

42

soluble P-Selectin expression was similar between MPNs patients and secondary

thrombocytosispatients,bothhigherthanhealthycontrols[236].

The importantdiscrepanciesbetweenmurinestudiesareprobablymultifactorial,1/different

strainsandphenotype,2/differentplateletsisolationproceduresforinvitroaggregationand

activationwhichareknowntoaltertheresults[237],3/differentnonphysiologicalthrombotic

modelsand4/differentthrombocytosislevelwhichareknowntoaffecthaemostasis.

Inconclusion,plateletsfunctioninMPNsisstillunclear,butthereisnoevidentprothrombotic

phenotype.

Neutrophilsrecruitment

Activated platelets potentiate several neutrophil functions, and neutrophils, in turn,

enhanceplateletadhesivenessandaggregation.P-selectinappearstobeakeyendothelialcell

receptor that captures circulating leukocytes expressing P-selectin glycoprotein ligand-1

(PSGL-1)[238].Intheabsenceofendothelial injuryoractivation,theinitiationofthrombosis

canalsobesupportedbyplatelets-neutrophilsinteractions[239].

LeucocytesactivationinMPNspatientsissupportedbyseverallinesofevidence,namely

increasedlevelofadhesivemolecules,suchasL-selectin[198],increasedneutrophilproteases

level(elastaseandmyeloperoxidase)[203,240]and increasednumberofplatelets-neutrophil

aggregates [241]. Platelets from ET patients contribute to this activation since they do not

inhibit anymoreneutrophils activation [242].Activatedneutrophils release superoxideanion

promoting inreturnplateletsaggregationandadhesiveness [242].Furthermorean increased

expressionofMac1(alsoknownassurfacereceptorintegrinCD18/CD11b)byleukocytescould

play a role in favouring platelets’ activation in MPNs patients [243] and CD18

hypermethylation has been shown to be correlated with a higher risk of thrombotic

complicationsinPMFpatients[244].

However, leukocytesactivationanalysisaccording to the JAK2V617Fmutationhaveshownthat

43

some markers are altered in the presence of JAK2V617F (i.e., CD14 and leukocyte alkaline

phosphatase),whereasothersarenotdependantofJAK2V617F(i.e.,CD11bandplasmaelastase)

[220,240]. In conclusion, leucocytes seem to be activated in MPNs patients. However

mechanisms dependent and independent of the JAK2V617F mutation coexist and probably

contribute to thepathophysiologyof cardiovascular events in the context ofMPNs, but their

directrolehasnotyetbeenproven.

Another mechanism by which neutrophils can participate to thrombosis is by the

formation of neutrophil extracellular traps (NETs). Indeed, in the presence of pathogens,

neutrophilscanreleasechromatinandtheirgranularcomponents,creatingfibroustrapswith

anti-microbial properties [245]. In the absence of pathogens, activated neutrophils can also

produceNETs,whichareinvolvedinvenousthrombosisbyseveralmechanisms:1/NETscan

bindplateletsandredbloodcellsinthethrombi,2/thereleasedneutrophilelastaseinactivates

tissue factor pathway inhibitor, thus resulting in a pro-coagulant activity and 3/ NETs can

activateendothelialcellsandplateletsandincreasevWFrelease[246].Interestingly,NETsare

increased in a CML mouse model [247]. A recent study showed also an increased NETs

formationinvitrobothfromJAK2V617Fhumanandmouseneutrophilsinresponsetoionomycin

stimulation [248].Tosupport the increasedNETosis inMPNspatientsand its role invenous

thrombosis, experiments carried out in Jak2V617Fmice (Jak2V617F/WT;Vav-Cremice) found that

increasedNETformationwasassociatedwith increasedvenousthrombosis(lungthrombosis

and inferiorvenacavastenosis),whichwasabrogatedbyruxolitinibadministration[248]. In

addition petidyl-arginine deiminase (PAD4) is increased in leucocytes from Jak2V617Fmouse

modeland is required forNETs formationand thrombosis invivo.However,opposite results

wereobtainedpreviouslyby another group reporting an increasedneutrophil activationbut

surprisinglynodifferencesinNETsformationinresponsetoTNFαandIL-8andimpairedNETs

formationinresponsetoPMAstimulationinpatientscomparetohealthycontrols[249].Such

44

apparentlydiscrepantresultsmaybetheresultofthedifferentstimuliused.

In conclusion, the leucocytes activation in patients and in MPNs mouse model, in

addition to the demonstration of the implication of NETs in venous thrombosis in vivo by

Wolachet al, clearly support the fact thatNETosis is implicated invenous thrombosis in the

contextofMPNs

RBCandvenousthrombosis

RBCsarethemostabundantbloodcells,howevertheirroleinvascularhomeostasisand

cardiovasculareventshasbeenoverlookeduntilmajorworksonsicklecellsdisease[250].Itis

nowproventhatRBCsplayanimportantroleinvascularhomeostasisandinthehaemostatic

processinbotharterialandvenoussystem.Indeed,RBCscandirectlyadheretotheactivated

endothelium or subendothelial matrix and to other blood cells, including neutrophils and

platelets [250]. In addition, haemoglobin released from haemolysed or damaged RBCs can

scavengeNO,whichmodifiesvasculartoneandfavoursplateletsadhesionandactivation[188].

Under in vivo arterial flow conditions, axial migration of RBCs occurs with displacement of

platelets to themuralplasmatic zone, exposing them tomaximalvesselwall shearing forces.

With increased haematocrit, the width of the plasmatic zone becomes narrower, allowing

greater platelet-endothelial cell as well as platelet–platelet interactions [186]. Finally, RBCs

within thrombiarecompressed intoshapes(“polyhedrocytes”) thatpermit tightpackingand

reduce clot permeability, which may delay access of thrombolytic enzymes to the clot and

consequentlydelaythrombusresolution.Thismechanismwasthought tobe involvedonly in

venoushaemostasis,howevermorerecentdatasuggestthatRBCsarealsopresentinarterial

thrombi [188,251]. In MPNs patients, we can speculate that the higher haematocrit will

promoteplateletsactivation.Howeverithasneverbeenproveninthiscontext.

Unlike sickle cells disease, MPNs are not considered as a haemolytic pathology. Indeed,

45

haptoglobiniscatabolizedmorerapidlyinPVpatientsbutwithoutoverthemolysis[252]anda

morerecentstudyfoundalowlevelofhaptoglobinonlyinapproximately30%ofPMFpatients,

whichwasassociatedwithhighJAK2V617FalleleburdenandRuxolitinibusewithoutanysignof

acute hemolysis [253]. Nonetheless, even if there is no obvious clinical evidence of intra-

vascular haemolysis inMPNspatients, Rusak et al have shown the presence of an increased

leveloffreehaemoglobininPVpatientsincomparisonofcontrol[254],butits implicationin

cardiovasculareventsinMPNshasnotbeentested.

Basedonpreviousworkonsicklecellsdisease,Wautieretal[255]showedthatRBCsfromPV

patients adhere more to HUVECs under static and venous flow conditions (post-capillary

venule shear equivalence around 0.1 Pascal (Pa)) than RBC from healthy volunteers. This

difference disappeared in higher shear stress conditions, equivalent to arteries (around 1

Pascal (Pa)). This increased endothelial adhesion was mediated by erythroid Lu/BCAM

(receptorforlamininα5chain-amajorcomponentofextracellularmatrix)andwaspotentiated

after Lu/BCAM phosphorylation by PKA. Phosphorylation of Lu/BCAM is increased in RBCs

fromPVpatients,andismediatedbyJAK2V617Fmutation,throughRap1/Aktsignallingpathway,

independentlyof theclassicalEPOR/JAK2/PI3K/Aktpathway [256].Theseresultsprove that

JAK2V617FisstillactiveinmatureRBCs.However,thesephenotypicmodificationsofRBCshave

notyetbeendirectlylinkedtocardiovasculareventsinvivo.

46

Figure7:VenousthrombosisandMPNs

47

(3) Formationoffibrin-richthrombus(Figure8)

The second step after platelets activation and adhesion is the activation of the coagulation

cascadetoeventuallyproducefibrin.

Thebloodcoagulationcascadecanbedividedintothreeparts:theextrinsic(TF,FVIIa),

intrinsic(FXIIa,FXIa,FIXa),andcommon(FXaandthrombin)pathways(reviewedinref[238]).

Tissuefactor(TF)isresponsiblefortheinitiationofthecoagulationcascade.Inhealthyblood

vessels, TF is located in the vessel wall underlying the inactivated endothelium. In disease

conditions, TF present in the subendothelial is exposed to circulating blood following

endothelial damage; TF is also expressed by activated endothelium and leucocytes and by

microvesicles (MVs), i.e. small membrane vesicles released from activated cells [257,258].

Coagulationcascadeactivationleadstoproductionofthrombin(FIIa),whichcleavesfibrinogen

intofibrin,allowingfibrinpolymerization[238].Fibrinnetworkcombinedwiththeaggregated

activated platelets, bind leukocytes and RBC and forms the blood clot [192]. Endothelium

actively participates in the regulation of blood coagulation by its anticoagulant properties.

Endothelium produces tissue factor pathway inhibitor (TFPI), an inhibitor of TF-factor VIIa

complex [259] and thrombomodulin (TM), which enhances the anticoagulant activity of the

protein C (inhibitor of factors V and VIII) in associationwith its specific cofactor, protein S

[192].EndotheliumalsoexpressesatitssurfaceproteinCreceptor(EPCR),whichincreasesthe

activityoftheproteinCandheparin-likesulphatedglycosaminoglycanthatbindsandactivates

anti-thrombin[192].

Patients with ET and PV display features suggesting an activation of coagulation

cascade, since they have increased levels of prothrombin fragment, thrombin-antithrombin

complexes and D-Dimers [220,260], but also increased thrombin generation using thrombin

48

generationassaysandparticularlyinpatientswithJAK2V617Fmutation[219,241,260–263].The

following changes reported in patients with MPN could account for this activation of the

coagulation:(a)anacquiredactivatedproteinCresistance,evenhigherinpatientswithapast

history of thrombosis [219,225,262]; (b) increased levels of TF in the plasma and on MVs,

whichwashigherincaseofJAK2V617Fandcorrelatedwithalleleburden[219,225,264];(c)TM

resistance,whichwasinfluencedbyJAK2V617FalleleburdenandthepresenceofMVs[261];(d)

decreasedlevelsofproteinS[202,225,262];(e)increasedlevelofheparanase(TFactivator)in

thebonemarrowofMPNspatientsascomparedtoCMLpatientsandin JAK2V617F transfected

humanglioma cells as compared to control,whichwasdependent of theEPO-JAK2pathway

[265].

Phosphatidylserine exposure (negatively-charged membrane phospholipid) facilitates

the binding of coagulation proteins (FII, FVII, FIX, and FX) with positively-charged γ-

carboxyglutamicaciddomainsandtheassemblyofthecofactor/proteasecomplexes[266].In

newly diagnosed and untreated ET patients (JAK2V617F, CALR and triple negative)

phosphatidylserineexpressionisincreasedoncirculatingbloodcells(leucocytes,plateletsand

erythrocytes) and on serum-cultured Human umbilical vein endothelial cells (HUVECs)

compared to healthy controls [260]. Among ET patients, those with JAK2V617F mutation

displayedhigherlevelofphosphatidylserineexposureoncirculatingbloodcellsthanCALRand

triple-negativepatients[260].

Whenthebloodclotisnolongerneeded,fibrinolyticsystemallowsitsdissolution.An

inactivepro-enzyme,plasminogen,isconvertedintoactiveplasminbytwodifferentactivators,

the activator of the tissue plasminogen (t-PA) and urokinase (u-PA) and degrades the fibrin

[192].Themainplasmainhibitoroft-PAandu-PAisthetypeIplasminogenactivatorinhibitor

(PAI-1)[267].

49

Several linesofevidencepointout toa lessefficient fibrinolyticsysteminMPNs,withhigher

PAI-1levelandactivityaswellasalowerthrombinactivatedfibrinolysisinhibitor(TAFI)inET

and PV patients than in healthy controls and patientswith secondary thrombocytosis [268–

272].Moreover,patientswithETandPVhavereducedclotpermeabilityandalongerclotlysis

timethancontrols[273,274].

Although these coagulation cascade modifications constitute an indirect evidence of an

imbalancetowardaprocoagulantstatus,nodirectlinkhasbeenmadebetweenthesechanges

and JAK2V617F, the JAK-STATsignalling (except theone fromKoganetal [265])or the riskof

thrombosisinthecontextofMPNsinaprospectivecohortorinvivo.

Figure8:CoagulationcascadeandMPNs

ìTF

FVIIa

Leucocytes PlateletsEndothelialcellsMVs

FXa

Prothrombin Thrombin

Fibrinogen Fibrin

FIXaFXIa

FXIIa

Intrinsicpathway

Extrinsicpathway

Commonpathway

Polymerization

TFPI îTM

îAPC

îProtS

EPCR

ìElastases

ìElastases

Plasminogen

Plasmin

Fibrinolysis

Clotformation

u-PA

t-PA

ìPAI-1

TFPS

ìTAFI

Anticoagulant

Factors

ActivatedPlatelets

FVIIIa FVa

Polyphosphate

50

b) SitespecificityinMPNspatients

Most of systemic hypercoagulability states are associatedwith local thrombotic phenotypes,

which is supportedbymice experiments showingdifferent thrombosispatterndependingof

themicegeneticbackgroundandthebreedingconditions[275,276].Thesuggestedmajoractor

responsible forthissitespecificity is theendothelium[276]. Importantly,endothelial-derived

anticoagulant and pro-coagulant molecules described in the previous chapter are unevenly

expressed between the different vasculature as illustrated in Figure 9 and in the same site,

betweenendothelialcell,becauseofphenotypicmosaicism[277].

Inaddition,tothedifferentfactorsthatcouldparticipatetovenousthrombosis,detailedinthe

previous chapter, site-specific properties that could contribute to specific localization of

thrombotic lesions are detailed in the following paragraphs. Indeed, in patients withMPNs,

venous thrombosisgenerallyoccurs in limbdeepveinsand/orpulmonaryveins (embolism),

but the involvement of unusual venous sites is characteristic, with splanchnic vein and less

frequentlycerebralveinthrombosis.

51

Figure9:Sitespecificityofanticoagulantandprocoagulantfactors(adaptedfromAirdet

al[275])

(1) Limbdeepveinsthrombosis

The specificity of the lower extremities’ veins is the presence of venous valves, where

thrombosispreferablyinitiates.Indeed,insidethevalves,endothelialcellsareexposedtolow

blood flow velocity, decreased oxygen tension (hypoxemia) and increased circulating blood

cellsadhesion[275].Thepreviouslydetailedincreasedadhesiveproteinexpressionbymyeloid

cells in the context of MPNs (cf chapter above) could be enhance in the venous valves and

participate todeepvein thrombosis. Inaddition, inpatientswithMPNs,hypoxemiamightbe

more severe in the venous valves. Indeed HIF-1a (hypoxia-inducible factor) seems to be

increased in the bone marrow of patients with newly diagnosed MPNs and correlates with

JAK2V617Falleleburden[278].PVpatientsexposedtohypoxemiainaltitudehavealmost4fold

morevasculareventsthantothoselivingnearthesea[279].Hypoxiaisalsoimplicatedinthe

generationofNETs(cfchapterabove),awellknownpro-thromboticphenomenonincreasedin

MPNspatients[246,248].Thus,hypoxemiacouldparticipatetothepathophysiologyofvenous

TM

t-PA

EPCR

TFPI

vWF

TM

t-PA

EPCR

TFPI

vWF

TM

t-PA

EPCR

TFPI

vWF

Vein ArteryCapillary

52

thrombosisinthecontextofMPNs,butthedirectlinkbetweenhypoxemiainMPNsandvenous

thrombosisandparticularlylimbdeepveinthrombosishasnotyetbeenproven.

(2) Splanchnicveinthrombosis

Splanchnic vein thrombosis (SVT) includes Budd-Chiari syndrome (BCS) and portal vein

thrombosis (PVT). Primary BCS is a rare disorder defined as a hepatic venous outflow

obstruction at various levels from small hepatic veins to the terminal portion of the inferior

venacava[280].Non-malignantnon-cirrhoticextra-hepaticPVTischaracterizedbythrombus

development in the main portal vein and/or its right or left branches and/or splenic or

mesentericveins,orby thepermanentobliteration that results fromaprior thrombus [280]

(Figure10).EstimatedincidenceofBCSandofPVTintheabsenceofcirrhosisandofcanceris

0.35-2.5casespermillionperyearand1per100000millionperyear,respectively[281,282].

The pathogenesis of SVT is largely dependent on the presence of systemic pro-thrombotic

conditions thatpromote thrombus formation in the respective splanchnic veins [280,283]. If

patientswithBCSorPVTcommonlyhaveriskfactorsforthrombosis,BCSandPVTrepresent

only≈1% of all venous thromboembolism suggesting that patients developing BCS and PVT

haveadditionallocalfactors[284].

53

Figure10:Splanchnicveinthrombosis

MPNsaretheleadingcauseofSVTandarediagnosedin25to50%ofpatientswithSVT[285].

Importantly,PVTandBCSare2’000and10’000foldmorecommoninpatientswithMPNsthan

inthegeneralpopulation[286].ThereasonforthisspeciallinkbetweenMPNsandSVTisstill

unclear.Potentialmechanisms,developedbelow,aresummarizedinFigure11.

JAK2V617Fmutationinvolvement

JAK2V617FisdetectedinmostpatientswithSVTandMPNs,sinceonly10%to20%have

evidenceforMPNatbonemarrowbiopsyoratassessmentofendogenouserythroidcolonies

formationandnoJAK2V617F[287].JAK2exon12,CALRorMPLmutationsarerarelyidentifiedin

patientswithSVT[287].

Overthelasttenyears,severalstudieshaveshedanewlightonthiscloserelationshipbetween

MPNs and BCS or PVT. A study reported in 2009 the existence of JAK2V617F in hepatic veins

endothelialcellsfrom2Budd-Chiarisyndromepatients[45].Subsequently,JAK2V617Fwasalso

detectedinsplenicendothelialcellsfrompatientswithmyelofibrosis[46].Later,JAK2V617Fwas

Budd-Chiari

syndrome

Portalevein

thrombosis

Inferiorvenacava

54

foundincirculatingendothelialprogenitorcells(ECFC)in5outof17JAK2V617Fpatients[47],a

finding confirmed by independent groups [211,212]. Interestingly, patients harbouring

JAK2V617F inECFCwere thosewithahistoryof thrombosis(splanchnicvein thrombosis,deep

vein thrombosis or stroke) [47,211]. JAK2V617F -mutated ECFC showed significantly higher

adhesion proficiency to mononuclear cells than normal ECFC [47]. Nevertheless, the exact

mechanismofhowalterationsintheendotheliumleadtoBCSorPVTremainsunclear.

The previously cited work of C James [213] showing increased P-Selectin expression in

transducedJAK2V617Fculturedendothelialcellsandtherelatedincreasedneutrophilsadhesion

and invivo thrombosiscouldbepartoftheexplanation.However,micedevelopedthrombiin

the lungs and there was no information about potential splanchnic vein thrombosis. In

addition, this explanation stands only if the presence of JAK2V617Fmutation is specific of the

digestivevascularbed. Ifendothelial JAK2V617Fmutation isubiquitous,additional local factors

areneeded.Interestingly,inthestudybyCJamesandcolleagues,invivo,smallconcentrations

of TNFa were required to uncover the pro-thrombotic effect of the endothelial JAK2V617F

mutation [213]. This could explain the splanchnic specificity of thrombi, considering that

potentialinflammatorymediatorsderivedfromthegutmighttriggerP-selectinexposure.

However,againstthehypothesisthatJAK2V617Fmutationisresponsibleforthissplanchnicvein

thrombosisspecificityinMPNs,isthealsohighassociationofSVTwithparoxysmalnocturnal

hemoglobinuria, which is a rare acquired hematologic disorder of hematopoietic stem cells

withoutJAK2mutationinvolvement,suggestingmechanismsbeyondJAK2V617F.

ECFCs

IncreasedECFCsfrequencywasindependentlyassociatedwithpreviousSVTinaMPNs

cohortandwasabsentinSVTpatientswithoutMPNs,thusincreasedECFCscouldbespecificof

SVTinthecontextofMPNs[211].Inaddition,asdescribedpreviouslyECFCscarryingJAK2V617F

display higher adhesion capacity to mononuclear cells than normal ECFC [47]. We do not

55

knownwhereECFCsarecapted,buttheycouldgotothelivervasculature.Therewasalsomore

ECFCs in femaleandyoungpatientswhichcorrespond to thesubpopulationofhigherriskof

SVT in MPNs, while there was no differences in ECFC frequency between sexe and age in

healthy controls [211]. Thus even if the mechanism underneath is unknown, ECFCs could

explainthisassociationbetweenMPNsandSVT.

IncreasedECFCsfrequencywasalsoindependentlyassociatedwithnon-activeMPNs(normal

bloodcellcount)[211].TheauthorsalsoconcludethatpatientswithnonactiveMPNsdisease

associated with SVT are a separate entity, based on several other papers pointing out the

association of «indolent» MPNs and SVT [288–290]. However this concept of «indolent»

MPNsandSVThasbeenchallengedbyhepatologists,arguingthatthe«normal»bloodformula

isnotduetoanindolentMPNbuttotheportalhypertensioninthesepatients.Indeed,patients

with portal hypertension and hyper-splenism usually present hemodilution and

thrombocytopenia,thusa«normal»bloodcountwithSVTsuggestsanunderlyingMPN[291–

293].However,upto70%ofpatientswithSVTdonotcarryapriordiagnosisofMPNs[294]

whileitonlyrepresents40%maximumofpatientswithallthrombosis,andinasmallcohort6

out of 8 patients with JAK2V617F negative results at the time of SVT diagnosis were found

JAK2V617Fpositiveafter21monthof follow-up[295].Thissuggestsprobablyavery lowallele

burdenatthetimeofdiagnosis.WecouldspeculatethatmaybeJAK2V617FalleleburdeninECFC

and endothelial cells and not in circulating myeloid cells are the crucial points for SVT. In

addition, aside from the specific case ofMPNs and SVT, «indolent»MPNhas also been seen

with other type of cardiovascular events, such asmyocardial infarction and cerebral venous

thrombosis[288,290]thussupportingtherealityofthisentity.

Liverendothelialcellsspecificity

Endothelium morphology and function varies depending of the type of vessels and

organs.Indeed,arterialandvenousendotheliumisacontinuouslayer,coupledbytightjunction

56

and anchored to a continuous basal membrane. By contrast, the endothelium can be

fenestratedwith a basalmembrane in endocrine and exocrine glands, gastrointestinal tract,

choroid plexus, kidney glomeruli and subpopulations of renal tubules or without basal

membraneinvenoussinusoidalvascularbedsintheliverandintheglomeruli,spleenandbone

marrow [296]. The liver contains different types of endothelial cells, including arterial

endothelialcells,venousendothelialcellsintheportalsystemandthehepaticveins,andliver

sinusoidal endothelial cells. As reviewed inAppendix 1, the liver sinusoidal endothelial cells

haveaveryspecificphenotype[297].Oneofthecharacteristicsofliversinusoidalendothelial

cellsisanimmunetolerance,whichpreventsaresponsetothesegutfactors[298].Thereisno

evidence that the endothelial cells of the portal and hepatic veins are similarly protected

[275,298],whichcouldcreateavulnerabilitytothesepossiblypro-thromboticfactors.

Thepossibleinvolvementoflivervasculature, impliedbytheincreasedECFCinpatientswith

SVT is further supported by thework thatwas carried out on pulmonary hypertension and

MPNs. Indeed, a link exists between pulmonary hypertension and MPNs, with multiple

mechanismssuggestedsuchasmyeloidmetaplasia,angiogenesis,pulmonaryvenousocclusive

disease, endothelial dysfunction and fibrosis [299–301]. The increased proliferation seen in

pulmonaryendothelialcellsinthecontextofpulmonaryhypertensionisdependantontheJAK-

STATsignallingpathway[302].Wecouldspeculatethatthesamemechanismscouldtakeplace

in the liver and participate to thrombotic events because of endothelial activation and

proliferation.Thelinkbetweensinusoidvesselsandhematopoieticnicheisnowwelldescribed

in the bone marrow of patients with MPNs [303–310], thus the possible extra-medullar

haematopoiesis taking preferentially place in the liver and the spleen and the related

endothelial activation and proliferation could participate to this association between

splanchnicsystemandMPNs.

57

Otherfactors

Phagocytosis of abnormal RBC by the liver and the spleen, as shown in secondary

erythrocytosis mouse model (EPO overexpression) could be an interesting additional pro-

thrombotic mechanism to evaluate [311]. In addition, extravascular haemolysis seen in the

liverandthespleenofpatientswithMPNscouldparticipatetothissite-specificthrombosis,by

releasingfreehaemoglobinthatcangenerateoxidativestress,andendothelialcellsactivation

[299].

Figure11:PotentialmechanismsinvolvedinsplanchnicveinthrombosisandMPNs

(3) Cerebralveinthrombosis

Cerebralvenousthrombosis(CVT)isararecondition.Itincludesthrombosisofcerebral

veinsandduralsinuses.Itrepresents0.5%ofallstrokesandaffect4to5peoplepermillionin

thegeneralpopulation[312].InMPNspatients,theprevalenceofCVTisaround1%,whichis

approximately2000timeshigherthan inthegeneralpopulation[160,313].MPNs isrevealed

by CVT in 3 to 7%of patientswith CVT. JAK2V617F is detected inmost of them, half of them

withoutovertMPN[314–317].

58

Nootherfactorthanthosedescribedinthepreviouschapterscanyetexplainthisassociation.

Whether JAK2V617F is present in cerebral endothelial cells and could participate to this

associationisstillunknown.

3. Arterialvasculareventsandmyeloproliferativeneoplasms

ThefollowingparagraphsreviewthemechanismsbywhichMPNsmightfavourarterial

events. In human,most arterial vascular events happen in the context of atherosclerosis. In

some particular contexts, such as auto-immune and auto-inflammatory diseases or genetics

abnormalities,arterialeventscanhappenwithoutunderlyingatherosclerosis.

a) AtherosclerosisandMPNs

Atherosclerosis is a progressive disease involvingmediumand large size arteries and

causing several cardiovascular diseases, including coronary artery disease, stroke and

peripheral arterial disease. MPNs patients are supposedly predispose to premature

atherosclerosis,becauseofchronicinflammationandhighriskofarterialcardiovascularevents

[318,319],howeverthedirectlinkhasyetnotbeproveninpatientsorinanimalmodel.Clonal

haematopoiesis has recently been linked to atherosclerosis but outside the context of overt

MPNs.Onlyonestudylookatcarotidplaquein40ETpatients,freeofovertatherosclerosisand

therewasnodifferencescomparetohealthycontrolsbuttheeffectifwaslowandthepatients

treatment for MPNs was not mentioned [320]. However, there was significantly more high

carotidcalcificationscorethanhealthycontrol,whichisknowntopredictmajorcardiacevents

[320].SeveralknownfactorsinMPNscouldfavouratherosclerosisandaredetailedbelow.

(1) Clonalhaematopoiesisandatherosclerosis

Recentstudiesopenedanewfieldincardiovascularresearchregardingthelinkbetween

clonal haematopoiesis and cardiovascular disease, in particular atherosclerosis. Indeed,

59

carrying somatic mutations in haematopoiesis-related genes increased by 2-fold the risk of

developing atherosclerosis, an effect that was comparable or even greater than that of

conventional risk factors [321]. Hematopoietic stem/progenitor cells accumulate somatic

mutationsduringlife.Someoftheserandommutationsconferacompetitiveadvantagetothe

mutant cells, leading to its clonal expansion, whichwithout haematological abnormalities is

calledclonalhaematopoiesisofindeterminatepotential(CHIP)[322].Mostsomaticmutations

associatedwithclonalhaematopoiesisoccurin3genes(DNAmethyltransferase3α[DNMT3A],

tetmethylcytosinedioxygenase2[TET2],andadditionalsexcombslike1[ASXL1])thatencode

for epigenetic regulators that are involved in the control of haematopoiesis. Jaiswal et al.

publishedacase–controlstudiesthattogetherenrolled4726participantswithcoronaryheart

disease and 3529 controls and by whole-exome sequencing detected the presence of CHIP.

JAK2 mutation without “overt MPNs” is referred as CHIP in this study [323] while this

definition is contestedbyothers [324].However,5outof6patientswith JAK2V617Fmutation

andmyocardialinfarctioninthisstudydisplayedanormalbloodcount[323,325].Inaddition,

thepresenceof JAK2V617Fmutation inpatientswithoutovertMPNsandwithcerebralvenous

thrombosis [316], stable coronary heart disease [326], or peripheral artery disease [327]

support the fact that JAK2V617F can be found before a possible complete MPNs diagnosis.

JAK2V617F and TET2 mutations conferred a 12 and 2 fold increased risk of coronary heart

diseaserespectivelycomparedtopatientswithoutmutations[323].Intwoindependentstudies

TET2 loss-of-function–driven clonal haematopoiesis accelerates atherosclerosis in

hyperlipidemic mice [323,328], which in the first study was mainlybecause of exacerbated

expressionofproinflammatorycytokineIL-1β[328].Inthiscontext,theCANTOStrial,thefirst

successfulimmunotherapytrialinpreventingsecondaryatheroscleroticcardiovasculardisease

in high-risk patients exhibiting evidence of systemic inflammation, using a neutralizing

antibody (canakinumab) against IL-1β could be interesting in the context of clonal

60

haematopoiesis and MPNs [329]. However, the exact mechanism underlying accelerated

atherosclerosisinthecontextofclonalhaematopoiesisisstillunknown.Andthedirectroleof

JAK2V617Finatherosclerosisdevelopmenthasyetnotbeenexplored.

(2) Initiationphase(Figure12)

Shearstress

Cells lining the circulation are exposed to fluid forces that generate a wide range of

hemodynamic stresses that vary greatly depending on the area and the pathophysiological

context.Forcesactingonvesselsduetobloodflowcanberesolvedintotwoprincipalvectors,

perpendicular to the wall (representing blood pressure) and parallel to the wall, creating a

frictional force, at the surface of the endothelium, called shear stress [330]. Shear stress

evaluatedbyPoiseuille’slawisclassicallyexpressedindyne/cm2(orsometimesinPascal(Pa))

andisproportionaltotheflowandviscosityandinverselyproportionaltotheradius:τ=4μQ

/ π r3(μ=viscosity, Q=flow, r=radius) [331]. In a normal, straight portion of a artery, shear

stressisbetween10to70dyne/cm2,whileitisonlybetween1and6dyne/cm2inanormal

vein[331].Atbifurcationsandcurvatures,flowisbidirectional,decreasingshearstress[331].

Aconstantphysiologicalshearstressisrequiredtomaintainahealthyendothelialphenotype,

withanticoagulantandanti-inflammatoryproperties,andisprotectiveagainstoxidativestress

and cell death [331,332]. Atherosclerotic plaques appear in these specific areas, namely

intersectionsandcurvatures,wherebloodflowisdisturbed.

In MPNs patients, increased haematocrit and hyper-viscosity have been the oldest

aspect incriminated in the associated cardiovascular events [189,333–335]. Lowering

haematocritdecreasesthromboticevents[189].However,therapeuticsusednotonlydecrease

shear stress but also act on other factors, such as pathological circulating blood cells, NO

pathwayandinflammation.Wecouldarguethatthisincreasedhyper-viscosityincreasesshear

61

rate and could actually compensate endothelial dysfunction.However, excessive shear stress

can be deleterious for the endothelium and activate platelets [336,337]. Indeed, paradoxical

hypotension following moderate increased haematocrit (<19% from baseline) and blood

viscosity, due to the subsequent increase in shear stress and the induction of the eNOS-NO

pathwayhasbeendescribed,whilethiseffectwaslostforhigherhaematocrits[338].

Endothelialdysfunction

Innormalconditions,theendotheliumisabletogeneratevasodilatorfactorsinresponse

to increased shear stress in order to attenuate blood pressure. The loss of this property is

called endothelial dysfunction [339]. In the previously described low shear stress areas,

endothelial cells display increased permeability, activation, senescence and apoptosis. Low

density lipoproteins (LDLs) cross the endothelial barrier and accumulate in the sub-

endotheliumintheseareas[340].ThenLDLsundergoseveralmodifications,suchasoxidation

afterexposuretoreactiveoxidativespeciesfromendothelialcellsandmacrophages.Oxidized

LDLsalso inhibit theproductionofNO inendothelial cells, favouringendothelialdysfunction

andvasoconstriction[341].ModifiedLDLsareremovedbymacrophages,whichinturnbecome

foamcellsandaccumulateintheintima[342].

In MPNs patients, only one study suggested a role of endothelial dysfunction [343].

Indeed, endothelial dependant flow mediated vasodilatation was markedly decreased in PV

patients even in the absence of overt arterial disease; whereas endothelium-independent,

nitroglycerine-inducedvasodilatationwasnot impairedcompared tocontrol. Inaddition this

impaired flow mediated vasodilatation was not correlated to the haematocrit level and

plateletscount[343].

62

Endothelialtomesenchymaltransition

Accumulating evidence suggests that endothelial to mesenchymal transition (phenotypic

switchbywhichECs lose their characteristics and acquiremesenchymal traits) represents a

keylinkinthecomplexinteractionsbetweeninflammatorystressandendothelialdysfunction

[344,345]. The degree of endothelial to mesenchymal transition correlates with coronary

atherosclerosisinpatients,isenhancedindisturbedshearstressareasandasbeeninvolvedin

atherosclerosis initiation (through endothelial dysfunction), progression (through plaque

remodelling) and complications (throughplaque instability) [344,346]. In patientswithPMF

more than 30% of endothelial cells in the spleen and the bone marrow vessels exhibit

mesenchymal phenotype [347]. In addition, endothelial TGFβ signalling correlates with the

degree of endothelial to mesenchymal transition in atherosclerotic mouse model [346] and

increased TGFβ signalling is well described in MPNs patients [348–350]. Thus, we could

speculate that the activatedTGFβ signalling inMPNspatients could promotes endothelial to

mesenchymal transition and atherosclerosis development. However, even if endothelial to

mesenchymal transition is present in MPNs patients, its implication in atherosclerosis

developmentandarterialCVeventshasneverbeenstudyinthiscontext.

(3) Progressionphase(Figure12)

RecruitmentofInflammatoryCells

Considerableevidencesupportstheearlyinvolvementofthemonocyte/macrophage,

themostprominentcellularcomponentoftheinnateimmuneresponse,duringatherogenesis.

Leukocytes adhesion to the endothelium is essential in the development of atherosclerosis.

This interaction is facilitated by the coordinated expression of various adhesion molecules

(selectinsandintegrins)andchemo-attractantfactors[351].Secondaryhomotypicinteraction

betweenleukocytesispossibleviaPSGL-1/L-selectinbinding[351].Then,leukocytescrossthe

63

endothelium via trans-endothelial migration (diapedesis) [352]. In the context of

atherosclerosis modified LDLs in the intima trigger an early inflammatory response, which

favourmonocyteandmacrophagesrecruitment intothe intimaviaactivatedendothelialcells

expressingadhesivereceptorsandreleasingcytokines,suchasmonocytechemotacticprotein-

1,IL-6,andIL-8[353–355].

In MPNs patients leucocytes and endothelial activation, in addition to increase

adhesive molecules expression (as described above) could participate to an increase tissue

inflammation [151,220,223,243,356]. In addition,MPNspatients display a lowgrade chronic

inflammation,withsignificantlyhigherlevelofseveralcytokinescomparedtohealthycontrol,

such as MCP-1, IL-6, IL-8 [357] and hsCRP [356] that could participate to premature

atherosclerosis, as described in other chronic inflammatory diseases, such as rheumatoid

arthritis, systemic lupuserythematosusordiabetes [358–360].Thestudy fromC James team

also suggests a pro-inflammatory endothelial phenotype with increased P-Selectin in the

presenceof JAK2V617Fmutation inendothelialcells [213].The invitroexperimentsweredone

on HUVEC, which mimic arterial endothelial cells, however in mouse model only venous

thrombosiswasevaluated.Inadditionthepresenceofthemutationinarterialendothelialcells

hasneverbeenprovenyet.

Monocytes-macrophagestransition/Foamcellsformations

Thetransformationofrecruitedmonocytesintolipid-ladenmacrophagesor“foamcells”

bymodified LDL is central to the development of atherosclerotic lesions [361]. Deregulated

uptakeofmodifiedLDLviascavengerreceptorssuchasSR-AandCD36determinesfoamcells

formation in vivo [362,363]. Scavenger receptors expression is regulated by PPAR Gamma

(transcription factor) and by cytokines such as TNF-α and IFN-γ [340]. During progression,

macrophagesandfoamcellsthenundergocelldeathleadingtothedepositionofextracellular

lipidsandapoptoticcellsformingthelipidcore[340].

64

The increased number of activated macrophages and monocytes with increased pro-

inflammatory cytokine production in patientswithMPNs [357] could favour atherosclerosis

development, but it has never been directly proven. In MPNs patients, foam cell formation

couldbealteredby1/increasedphagocyticsignalonmutatedbloodcellsorby2/anincreased

phagocyticcapacitybymacrophages,withintheplaque.

First,hypocholesterolemiahasbeendescribedalongtimeagoinMPNspatients[357].

Non-receptor-mediated removal of LDL is increased in MPNs patients compared to healthy

controls [364,365] and this catabolism takes place in the bone marrow and the spleen of

patients [366]. We could speculate that this increased LDL removal probably by activated

monocytes-macrophages would increased foam cell formation or that hypocholesterolemia

wouldpreventatherosclerosis.Scavengerreceptorsand foamcells formationhasneverbeen

studiedinthecontextofMPNsandatherosclerosis.

Secondly,CALRexpressedatthecellsurfaceisknowntotransduceaphagocyticsignal

tomacrophages,bybindingtotheLDLreceptoronphagocytesandiscounterbalancedbyanti-

phagocytic signal by CD47 [367]. One group looked at phagocytic signal from blood cells in

MPNspatients[368].TheyhaveshownthatHaematopoieticstemcellsandmaturebloodcells

fromPV/ETpatientshaveasimilarsurfaceexpressionofCALRandCD47comparedtohealthy

control and that JAK2 and CALR mutations do not alter this expression. In addition,

haematopoietic stem cells andmature blood cells fromMPNs patients and healthy controls

displayedasimilarsensitivitytohealthymacrophagesengulfment[368].

Inconclusion,mutatedbloodcellsdon’tseemtotriggerincreasedphagocyticresponse

tohealthymacrophagesinMPNspatients,howevermacrophagesthemselvescoulddisplayan

increasedphagocyticcapacity,thuspossiblyfavouringfoamcellandatherosclerosisformation,

evenifithasneverbeenproven.

65

Adaptiveimmunecells

It is now clear that adaptative immune response is also implicated in atherosclerosis

development.Indeed,anarrayofplaqueantigensispresentedtoeffectorT-lymphocytes,such

as NK cells by antigen-presenting cells, such as dendritic cells [353]. NK cells can promote

atherosclerosisbysecretingcytokinesthatactivateimmunecellspresentintheatherosclerotic

lesionandbytheinductionofapoptosisbycytotoxicproteins[369].Inaddition,regulatoryT

cellscaninducethedownregulationortoleranceoftheimmunesystemleadingtolimitationof

atherosclerotic plaque progression and complications in an antigen-specific and non-specific

manner[370,371].Patientswithclinicallystableatheroscleroticplaquereportedhigherlevels

ofTregsthanpatientswithrecurrentmyocardialinfarction[372,373].

SeveralevidencespointouttheinvolvementoflymphoidlineageinMPNs.Indeed,MPL

and JAK2V617F mutations have been found in lymphocytes, mainly B and natural killer cells

(more rarely and later in T cells) [23,77,357]. The hypothesis is that somedrivermutations

couldoccur inamoreprimitive lympho-myeloidprogenitor.Onegrouphaveshownin54ET

patientsthancomparetohealthycontrols,B-cellsweresignificantlymoreactivated(CD69and

CD86,increasedintracellularIL-6andIL-1βlevels,andhigherexpressionofTLR4)regardless

of the mutational statut. However, without clear explanations, these increased B-Cells

activationwasnot found inPVpatients [374].RegardingNKcells, sanchezet alhave shown

thatpatientswithPVpresentedanincreasenumberofNKcells,whichcancarryJAK2V617F in

comparisonwithhealthydonor[375].However, theNKcellsphenotypewassimilarbetween

PVpatientsandhealthycontrols[375].RegulatoryTcellshavebeenstudiedbyseveralteams

withcontradictoryresults[376].Zhaoetal[377]describedanincreasednumberofregulatory

T cells in 21 PV patients compare to healthy controls,whileKeohane et al [378] studied 50

patients withMPNs (ET, PV and PMF) in which regulatory T cells were lower than healthy

controls.

66

Inconclusion,lymphoidcellsmodificationsrelatedtoMPNsexist,butneedtobeconfirmedand

theirimplicationsindiseaseprogressionandcomplicationsarestillunknown[357].

(4) Neovesselformation

Inanormalvesselwall,microvasculature is limited to theadventitiaandoutermedia

[379]. In the presence of atherosclerosis, the intima thickens and intimal neoangiogenesis

appears [380]. This network of leaky neovessels is involved in the development of

atherosclerosis, in intra-plaquehaemorrhageand its complications (acute rupture) and is an

independent predictor of systemic cardiovascular outcome [379,381]. The molecular

mechanisms responsible for neovessels formation relate predominantly to hypoxia in the

thickenedplaquethroughHIF-1activation,whichstimulateeNOSandVEGF-A.InadditionHIF-

1canbeactivatedbyinflammatorypathway(Tolllikereceptor,TNF,NF-kBandothergrowth

factors(IGF-1,IGF-2,FGF-2andTGF-1)favouredbyinflammatorycellsinfiltration[379].

To approach the question of angiogenesis in the context of MPN, we must first adjust the

definition of endothelial progenitors cells (EPC),which have been extensively studied in the

context of MPNs, but without consistent results because of variable definitions and

identifications methods [382,383]. Progenitor cells in adults are highly heterogeneous and

presentdifferentstagesofdifferentiation,thusmakingtheiridentificationdifficult.Asaharain

1997, described from circulatingmononuclear cells circulating progenitors, CD34+, VEGFR+,

Tie2+,which part of them can differentiate in ECs in vitro (CD34, CD31, Flk-1, Tie-2, and E

selectin), that he called EPC [384]. Confusion exists because all cell type involved in adult

vasculogenesisarecalled«EPC».Prateretal[206]clarifiedthedifferenttypesofthesocalled

“endothelial progenitor cells” and concluded that the more appropriate way to identify

endothelial progenitor cells is based on their ability to form endothelial colonies in long

outgrowth culture (ECFC) [385,386], the other so called endothelial progenitors cells are

67

probablynot fromendothelialoriginbutparticipatecanalso incardiovasculardisease [387–

390].

Furthermore, endothelial cells (only proved in venous endothelium) andECFC can carry the

JAK2V617Fmutationandiscorrelatedwithpreviousthromboticevents[47,208,211,212].Some

studiesfoundmutationalabnormalitiesrelatedtoMPNsonlyintheothertypesofEPC,which

aresuspectedtobeofmyeloidoriginandnot inECFC[386,391].Anyway,non-mutatedECFC

frompatientsshowedanincreasedproliferativepotentialcomparedtohealthycontrols,which

could participate to increased angiogenesis in MPNs patients regardless of the mutational

status [386]. Indeed, an increased micro-vascular density has been described in the bone

marrowofMPNspatients,especiallyinthepresenceofmyelofibrosisandhighJAK2V617Fallele

burden, with increased level of VEGF/VEGFR [304–310]. Angiogenesis inversely correlates

withsurvival,butnostudieswithanti-angiogenictreatmenthavebeenshowntobeefficientin

MPNspatientsondiseaseactivity[392].However,incontrastwithbonemarrowangiogenesis

anditsroleinthedevelopmentofMPNs[207],theimplicationofendothelialprogenitorcells

andangiogenesisinthecontextofcardiovasculareventsisstillunclearinMPNspatients.

We could speculate that this increased angiogenesis in MPNs patients could participate to

atherosclerotic development and complications. In addition, as described in the previous

section, hypoxia pathways are enhanced inMPNs patients and could play a part not only in

venousthrombosisbutalsoinneovesselformationinthecontextofatherosclerosis[278,310].

(5) PlaqueRuptureandThrombosis(Figure12)

Physical disruption of plaques may trigger thrombosis and promote downstream ischemic

events.Differenttypesofphysicaldisruptionmayoccur[340,353](figure13):

• Themostcommonmechanismofplaquedisruptionisafractureoftheplaque’sfibrous

cap(60-80%).

68

• Second, superficial erosion or microscopic areas of endothelial cells desquamation

accountforapproximatelyone-quarteroffatalcoronarythrombosis(20-40%).

• Rarely, disruption of the micro-vessels that form within atherosclerotic plaques

furnishesanotherscenarioforsuddenplaqueprogression.Theneovesselsintheplaque

maybeparticularlyfragileandpronetomicro-haemorrhage[381].

2othermechanismscanparticipateinatherosclerosisischemiccomplications(Figure13):

First thrombi embolism: as the thrombus begins to protrude into the lumen the fibrin

component increases, but any surface exposed to the blood in the lumenwill be covered by

activated platelets. While antegrade flow continues over this exposed thrombus, clumps of

activated platelets are swept down into the distal intramyocardial arteries as microemboli

[393].

Secondly, arterial spasm is an under diagnosed phenomenon that can happen outside of

atherosclerosis context (cf next chapter), but is also favoured by underlying non stenotic

atherosclerotic plaque, because of local endothelial dysfunction responsible for local intense

vasoconstriction[393,394].

Thrombus-mediated complications of atherosclerosis depends more on plaque composition

and vulnerability than on the degree of stenosis [340]. Lesions thrombogenicity depend on

tissuefactorexpressionwithintheplaque[257].Vulnerableplaquesaremostlycharacterized

by a large lipid core rich in tissue factor with increased number of inflammatory cells

infiltrations covered by a thin fibrous cap (low vascular smooth muscle cells density and

collagen disorganization) prone to rupture [340].Weakening of the fibrous cap results from

extracellular matrix proteins degradation and from endothelial and smooth muscle cell

disappearancelikelyaftercellapoptosis[395,396].

69

Figure13:Differentmechanismsforarterialischemia[394].“Republishedwithpermission

ofWoltersKluwerHealth,Inc,from[394].;permissionconveyedthroughCopyrightClearance

Center,Inc.”

In MPNs patients, the phenomenon described in the venous section, with activated

leucocytes and platelets in addition to a pro-coagulant status can participate to increased

atherosclerotic complications. Indeed, severalmechanisms can lead to complications: 1/The

activated leucocytes and NET’s infiltration associated with increased inflammation might

increase plaque vulnerability, 2/the increased neutrophils proteases release can favour

endotheliumerosionand3/theenhancedangiogenesisand intra-plaqueneovessel formation

could lead to plaque haemorrhage and disruption. In addition, endothelial to mesenchymal

transition, which has been described in MPNs is associated with plaque instability [344].

Figure13:PotentialmechanismsinatherosclerosisandatherothrombosisinMPNs

71

b) Beyondatherosclerosis

Arterial ischemia with or without obstruction may occur in the absence of

atherosclerosis.Indeed,thrombosisand/orischemiawithoutatherosclerosiscanhappenin

thepresenceofvasculitis (insystemic lupuserythematosusandTakayasus’sorgiantcell

arteritisforexample)orinapparentlynormalarterialvessel,likeinMPNs[275,397–399].

The other possible mechanism for arterial ischemia without atherosclerosis is by

microvasculaturedysfunctionand/orthrombosis[400,401].

In patients with MPNs, a multicentric European study including 1051 patients with PV

withoutpasthistoryofthrombosisshowedanincidenceofarterialcardiovasculareventsof

2%perpatientperyear(3yearsfollow-up)[402],whileinpatientswithoutPVandwith

similar cardiovascular risk factor the incidence was 0.2% per patient per years [403].

Interestingly, another study showed inpatientswithPVandET that21%of thosewith

myocardial infarction did not have significant coronary stenosis (>50%) by angiography

[404],whiletheprevalenceofmyocardialinfarctionwithnormalcoronaryangiographyis

estimated to range from 1 to 10% maximum [400,405]. These data suggest that other

mechanisms beyond atherosclerosis are involved in MPNs patients and prompted the

Europeansocietyof cardiology to recommendsearching forMPNs incaseonmyocardial

infarctionwithoutobstructivecoronarydisease[400].

The absence of significant atherosclerosis stenosis, or normal coronary artery does not

mean the absence of atherosclerosis involvement. Indeed, plaque disruption and

thromboembolismcanappearwithnonsignificantstenosisandnonsignificantand/ornot

72

visible atherosclerosis plaque can favour othermechanisms, such as vasospastic angina

andmicrovasculaturedysfunction(Figure14)[401].

Figure14:Arterialischemiatriad(adaptedfrom[401])

(1) Arterialvasospasm(Figure15)

Arterial vasospasm can occur in normal or atherosclerotic arteries and has been

described to participate to myocardial infarction and ischemia with non obstructive

coronary disease [400,401,406]. Themechanisms responsible for vasospastic angina are

stillnotelucidated,butendothelialdysfunctionandvascularsmoothcellhyper-reactivity

have been described [400,401,406,407]. Vasoconstriction abnormalities are classically

describedinthecoronaryheartdisease,butcanalsooccurinbrainarteries[408].

Vasospam

Microvascular

ischemia

Atherothrombosis

73

The endotheliumplays amajor role in the control of vasomotor tone. Indeed, under the

influence of various physical and humoral stimuli derived either from the blood or the

perivascularcompartment,endotheliumcontrolsvascularsmoothmusclecellscontraction,

byreleasingvariousmoleculeswithvasodilatororvasoconstrictoractions,orbyphysically

interactingwiththem.

Endothelium-derivedrelaxingfactors

Nitricoxide

In 1980, Furchgott and Zawadzki demonstrated that vasodilatation induced by

acetylcholine was dependent on the presence of an intact endothelium and appeared

depend on a powerful unknown factor, referred to as a relaxing factor derived from

endothelium (EDRF) [409]. Several studies have shown that EDRF is released into the

bloodvesselsunderbasalconditions,aswellasafterstimulationwithacetylcholine,andits

biological effects were mediated by stimulating soluble guanylate cyclase resulting in

elevated levels of cyclic GMP in vascular smooth muscle cells [410]. Based on the

similarities between the pharmacological properties of EDRF and NO, EDRF has

subsequentlybeenidentifiedasNO[411]andL-arginineastheprecursorofNOsynthesis

byendothelialcells[412].EndothelialcellsmetabolizeL-argininethroughendothelialNO

synthase (eNOS) to form NO and L-citrulline [192]. NO synthesis can be stimulated by

receptor-dependent agonists (acetylcholine and bradykinin), or independent receptors

(calciumionophores),butalsobyshearstressexertedbythebloodflow(Figure15)[413].

Once NO is produced by eNOS, it diffuses quickly through cell membranes to act as a

powerfulparacrinemediator,withahalf-lifeofafewsecondsintissuesandphysiological

fluidssinceitreactswithsuperoxideaniontoformperoxynitriteorisrapidlyinactivated

74

byoxyhaemoglobin to formnitrate andmethaemoglobin [192].Although themajority of

NOphysiologicaleffectsareduetotheactivationofsolubleguanylatecyclase,otheractions

aretheconsequenceofaparticularreaction,theS-nitrosylationofvariousproteins,which

modulates a number of physiological processes, including cell proliferation [411],

apoptosis[414,415],andionchannelactivity[416].

Inaddition toNO, threeothergaseousmediatorshavebeendescribed:carbonmonoxide

(CO),hydrogensulfide(H2S)andpossiblysulfurdioxide(SO2)[192].

In MPNs patients, plasma NO level has been measured in several studies

[198,199,254].Cellaetal found thatNOplasma level in18ETpatientswasdecreasedas

compared to 19 healthy controls, but in the 14 PV patients NO level was increased as

comparedtothehealthycontrolsgroup,potentiallysecondarily to increasedshearstress

(mean haematocrit at 58%). Hydroxyurea increased significantly the NO level in ET

patientsanddidnotmodify it inPVpatients inthisstudy[198]. In linewiththis finding,

Piccinetal [199], foundadecreasedNOlevel in11untreatedETpatientscompareto18

healthycontrolsandRusaketal[254],increasedNOlevelin73PVpatientsincomparison

of38healthycontrols.

However, all these studies used the nitrite/nitrates evaluation methods. Although

Nitrite/nitrates can be byproducts of eNOS-derived NO oxidation [417], they are not

completely specific of the NO pathway [418]. Thus, what these study looked at, are the

oxidize form of NO and not its active form. The best method to assess NO is Electron

Paramagnetic Resonance Spectroscopy [418]. However, this technique is not easily

availableandcomplicatedandhasnotbeenused,inMPNspatients.

75

The only study available to evaluate NO active form inMPNs patients is the previously

mentioned work done by Neunteufl et al, that showed that endothelial dependant flow

mediated vasodilatation was markedly decreased in PV patients even in the absence of

overtarterialdisease[343],whicharguesforanimpairedNOpathwayinPVpatients.

PhosphorylationofeNOSbyAktrepresentsaCa2+-independentregulatorymechanismfor

activationofeNOS[419].Thus,wecouldextrapolatethattheactivationofAktbyJAK2V617F

mutation,couldup-regulateeNOSactivityandthatthedecreasedactiveNOlevelinMPNs

patients could be the result of an increased scavenging or an inactive eNOS by different

mechanismssuchasuncoupling[420].Indeed,Rusaketal[254]foundinhiscohortof73

PVpatientsthatplasmaticnitrites/nitrateslevelmoderatelycorrelatedwithincreasedfree

haemoglobin. In addition, the increased free haemoglobinwas correlatedwith the blood

pressure,supportingtheideaofincreasedNOscavenginginMPNspatients.

Prostacyclin

In the vascular system, prostacyclin is produced preferentially by the

endothelium,byseveralenzymesincludingphospholipaseandcyclooxygenase(COXs)and

is themainmetaboliteofarachidonicacid.Prostacyclin isapowerful inhibitorofplatelet

adhesion to the surface of endothelial cells and platelet aggregation and acts as a

vasodilatorderivedfromtheendotheliumandaninhibitorofvascularsmoothmusclecells

migrationandproliferation[192].

In1985,asuperficialveinwassurgicallyremovedfrom18patientswithnewlydiagnosed

MPNs (with an old definition), and the prostacyclin generation by these vessel were

analysedand foundnormal [421].Prostanoidmetaboliteswere thenextensivelystudy in

patientsunderaspirintreatmenttoevaluateitsefficacyinMPNspatients.Indeed,Cavalca

76

et al showed that the prostanoid metabolism was similar in the serum and urine from

MPNspatientstreatedwithaspirinthanhealthycontrols[422],buttheplateletsfunctional

response was abnormal as compared to controls, shifting towards increased platelets

aggregation,witharesistancetoanti-aggregatingprostaglandin[423–425].However,this

studydidnotincludeacontrolgroupofETpatientswithoutaspirintreatment.

Prostacyclin analogueshavebeenused successfully only in case reports inpatientswith

MPNs,inseveremesentericischemiainacontextofprimarythrombocytemia[426]andin

coronaryvasospasminapatientwithCML[427].

Endothelium-derivedcontractingfactors

Endothelin-1

Endothelin-1 (ET-1) interacts with two G protein-coupled receptors called ETA

andETB.ETAandETBreceptorsarebothlocalizedonvascularsmoothmusclecellswhere

they exert vasoconstrictor, proliferative and hypertrophic role. Endothelial cells express

ETB receptors, which activation is associated with the release of NO and prostacyclin.

These endothelial effects of ET-1 counterbalance the effects of ETA and ETB receptor

stimulationonvascularsmoothmusclescells[428,429].

ET-1levelswereonlymeasuredinserumfromtreatedpatientswithMPNs,whereitwas

lowerthaninhealthycontrols[199],butnodataonbasalET-1productioninMPNpatients

wasavailable.OneveryinterestingcasereportfromapatientwithJAK2V617FpositivePMF

showed an abundant ET-1 staining in the bone marrow, which could participate to

osteosclerosis, via osteoblast stimulation [430]. But we could speculate that if the bone

marrowendotheliumproducesabundantlyET-1,itcouldbethesameinothersitesandin

thebloodcirculation.

77

ThromboxaneA2

Thromboxane A2 is an arachidonic acid-derived vasoconstrictor agent, mainly

derived fromplateletCOX-1,but that canalsobeproducedbyothercell types, including

endothelial cells. Thromboxane A2 stimulates not only causes platelet aggregation and

contractionofvascularsmoothmusclecells,butalsotheexpressionofadhesionmolecules

and leucocytes infiltration [431]. Thromboxane A2 levels have been measured by

numerous groups since platelets were thought to be the major cells involved in

cardiovascular complications inMPN.An increased thromboxaneA2 level in theplasma,

excreted in the urine and released ex-vivo by platelets has been described in PV andET

patients [204,432–441]. One prospective study found that the level of thromboxane A2

excreted in the urine was associated with the development of arterial micro-vascular

phenomenon after aspirinwithdraw in PV and ET patients [442]. Thromboxane A2was

also extensively studied tounderstand the apparent aspirin resistance inMPNspatients.

Indeed, in MPNs patients, because of the abnormal megakaryopoiesis, with accelerated

platelet regeneration, low-dosingaspirin incompletely inhibitsplatelets thromboxaneA2.

Thisimpairedplateletinhibitioncanberescuedbymodulatingtheaspirindosinginterval

(Twiceaday)ratherthanthedose[422,437,443,444]

Reactiveoxygenspecies

Theoxidativestressplaysanimportantroleintheregulationofvasculartone.In

response to different stimuli, several endothelial enzymes, including xanthine oxidase,

NADPH oxidase, decoupled NO synthase or cyclo-oxygenations, are able to produce

reactive oxygen species, especially hydrogen peroxide and anion superoxide. The

superoxide anion effectively inactivates NO (reaction giving rise to peroxynitrite), thus

78

reducingitsbioavailabilityandfavouringendotheliumdependantcontractions.Inaddition,

peroxynitrites cause nitration of proteins, in particular prostacyclin synthase, thereby

inhibiting their activity. The metabolism of arachidonic acid is then diverted to

vasoconstrictorprostaglandinsynthesispathways[192].

If the roleofROS inbonemarrowand stemcells in clonal expansion iswell established

[358,445–449], its implication in vascular events in patientswithMPNs has never been

evaluated.However,severallinesofevidencesuggestageneralunbalancedoxidativestress

statusinMPNspatients.

First, in vitro, JAK2V617F leukemic cell lines produce an higher level of oxidative stress

productswith increasedDNAdamage fromaberrantPI3K signalling, concomitantlywith

repressedapoptosisthancellstransfectedwithcontrolsiRNA[450].

Second,ex-vivo,neutrophil-derivedreactiveoxygenspecieshasbeenmeasuredinseveral

MPNcohorts.MPNneutrophilsdisplay increasedbasalROSproduction [249,451],which

wasnotrestrictedtoJAK2V617Fpatients,butalsoinJAK2WTandCALRpatients[249].Inone

cohort,neutrophilderivedROS levelsweresignificantlyhigher inPVpatients than inET

andPMFpatients[249].

Finally, invivo, only few studies analysed the oxidative status,withdiscrepancies due to

populationheterogeneity.MostofthemfoundhigherserumROSproductslevelsinMPNs

patients [452–454] and lower antioxidant status [453] than in healthy individuals. This

finding was confirmed by whole blood transcriptional profiling from ET, PV and PMF

patients,withasignificantup-regulationofseveraloxidativestressgenes inconcertwith

down-regulation of important anti-oxidative defence genes [455]. However, one recent

79

study selected30ETpatientswithout ahistoryof thrombosis oron-going cytoreductive

treatments, toavoidconfounding factorsand foundnostatisticaldifferences inROS level

between patients and healthy controls [456]. Two explanations can be put forward to

account for this discrepancy: (a) there was a tendency towards increased antioxidant

systeminMPNpatients,maybeasamechanismcompensating increasedROSproduction

[456]; (b)MPNpatients includedwereat lowor intermediaterisk for thrombosis,which

might reduce the probability of finding significant differences in ROS level between

patientsandcontrols.

IfoxidativestatusofMPNspatientshasbeenanalysed instemcellsor theneutrophils, it

has not been assessed in other cells participating in vascular homeostasis and

pathophysiology. Indirectdata could suggest an involvement in addition toneutrophil of

redbloodcells,becauseofanpossiblecorrelationbetweenROSandhaemoglobinvaluein

PV patients [452]. In retrospective studies, ROS products were significantly higher in

patientswiththrombosiscomparedtothosewithoutthromboticevents[452,453],butthis

findingdoesnotgivecausalityargumentsofROSforthromboticevents.

AngiotensinII

Kidney-derivedrenincleavesliver-derivedangiotensinogentoformangiotensinI

incirculatingblood,whichisthenconvertedintoangiotensinII,themaineffectorpeptide

oftherenin–angiotensinsystem,byangiotensin-convertingenzymepredominantlylocated

attheluminalsideoftheendothelium.Angiotensin-IIactivatesitsreceptorinthesurfaceof

vascular smooth muscle cells, which mediates most of its effects, including

vasoconstriction,increasedproliferationofvascularsmoothmusclecellsandextracellular

80

matrix synthesis. The vasoconstrictor effect of angiotensin-II is essentially due to Gq

proteinactivationresultinginintracellularcalciummobilization,butalsobyanincreased

reactive oxygen species production following NADPH oxidase activation. Angiotensin II

actionon its endothelial receptors induces a vasodilator effect secondary to increaseNO

production[192].

In MPNs patients, increased local bonemarrow synthesis of ACE and other angiotensin

components has been identified in PV and ET patient, particularly in the presence of

JAK2V617F mutation [457–461]. Therefore, up-regulation of the local bonemarrow renin-

angiotensinsystemhasbeensuggestedtoplayaroleinthedevelopmentofMPNs[457].Its

participationincardiovascularcomplicationsisnotyetproved.Indeed,theRASisnotonly

implicatedinvasculartone,butalsoincelladhesionandmigrationthroughMMP2/MMP9

and ICAM1 regulation [461,462]. However, in the ECLAP study patients under ACE

inhibitorornothadthesameriskofthrombosis[457].

Inconclusion,MPNspatientsseemtodisplaya tendency towardendothelialdysfunction,

withdecreasedvasodilatoragentsandincreasedvasoconstrictiveone,whichcouldplaya

partinarterialdisease.

81

Figure15:PotentialmechanismsinvasospamandMPNs

(2) Microvasculatureischemia

Anothermechanismspossiblyinvolvedinarterialeventsbeyondatherosclerosisis

microvascular dysfunction [406] Coronary microvascular dysfunction is definedas

epicardial,microvascularendothelial,ornonendothelialdysfunctionthatlimitsmyocardial

perfusion,mostoftendetectedasreducedcoronaryflowreserve[406].

Traditionalatherosclerosisriskfactorssuchasaging,hypertension,diabetesmellitus,and

dyslipidemia are associated with coronary microvascular dysfunction [406]. Other risk

factors are also associated with coronary microvascular dysfunction, such as systemic

inflammation, abnormal adrenergic nerve function, platelets function and platelets-

leukocytes aggregates [406]. Like macrovascular spam, the microvascular bed can also

suffer from unbalanced vasodilatation-vasoconstriction [394]. Inflammation, platelets-

leukocytes abnormalities and endothelial dysfunction are found in MPNs patients and

could contribute to microvascular dysfunction and consequently to arterial events.

Interestingly, perivascular fibrosis in the coronary microvasculature can contribute to

82

myocardial ischemia [394] and one team found in a PV mouse model, a major heart

dysfunctionwithextensivefibrosis[463].

MPNs patients display frequently dermal microvascular dysfunction and thrombosis,

characterized by erythromelalgia (painful red or blue extremities), that by pathology

examinationdemonstratedfibromuscularhyperplasia,narrowingofthelumen,swellingof

ECs, andplatelet-rich thrombi in arterioles [275,397,464]. Thus,we could speculate that

other sites than thedermcoulddisplaymicrovasculardysfunctionand/or thrombosis in

MPNspatients.

83

III. Thesiswork

A. Aims

Thisworkfocusesonthepathophysiologyofcardiovasculareventsinthecontextof

myeloproliferativeneoplasms.

First, arterial cardiovascular events are the most common one in patients with

MPNs. As detailed in the introduction, othermechanisms beyond atherosclerosis can be

suspected. Indeed, patientswithMPNsdisplay a high frequencyofmyocardial infarction

with normal coronary angiography. The mechanism underlying the link between

myocardial infarction without obstructive coronary disease and MPNs is unknown, but

vasoactivephenomenon(local intensevasoconstriction)canbesuspected.Therefore, the

purposeofthefirststudywastoexaminetheconsequencesofJAK2V617Fonarterialvascular

reactivity.

Secondly,myeloproliferativeneoplasmsare the leadingcauseofBCSand JAK2V617F

hasbeendetectedinendothelialcellsinpatientswithSVT.TheconsequencesofJAK2V617F

in liver endothelial cells are still unknown. Therefore, second study focused on the

consequencesofendothelialJAK2V617FinthecontextofBCS.

Finally,theaimofthelaststudywastoidentifythesubgroupofpatientswithSVTat

thehighestriskofharbouringCALRmutationsandthusrequiringthisgenetictesting.

84

B. JAK2V617Finarterialevents

1. Article1:Erythrocytemicrovesiclesincreasearterialcontraction

inJAK2V617Fmyeloproliferativeneoplasms

Erythrocytemicrovesiclesincreasearterial

contractioninJAK2V617Fmyeloproliferative

neoplasms

Authors:Johanne.Poisson1,Marion.Tanguy1,Hortense.Davy2,Fatoumata.Camara1,

Marie-Belle.ElMDawar1,Cécile.Devue1,Marouane.Kheloufi1,Juliette.Lasselin1,Aurélie.

Plessier2,Villeval.Team3,Olivier.Blanc-Brude1,Michèle.Souyri4,Jean-LucVilleval3,

Chantal.M.Boulanger1,Pierre-Emmanuel.Rautou1,2,5*

Affiliations:

1Inserm,UMR-970,ParisCardiovascularResearchCenter,PARCC,ParisDescartes

University,Paris,France.

2Serviced'Hépatologie,CentredeRéférencedesMaladiesVasculairesduFoie,DHUUnity,

PôledesMaladiesdel’AppareilDigestif,HôpitalBeaujon,AP-HP,Clichy,France

3InsermU1170,InstitutGustaveRoussy,UniversityParisIX,Villejuif,France

4InsermUMR-S1131,IHU,UniversityParisDiderot,Paris,France.

5UniversityParisDiderot,Paris,France.

Originalarticle(Submitted)

85

One Sentence Summary:

InJAK2V617Fmyeloproliferativeneoplasms,redbloodcellsmicrovesiclesincreasearterial

contractionbypromotingendothelialoxidativestress,aneffectpreventedbysimvastatin.

Abstract:

Arterial cardiovascular events are the leading cause of death in patients with JAK2V617F

myeloproliferative neoplasms. Their mechanisms are poorly understood. A significant

proportionof theseeventsoccur intheabsenceofatherosclerosis. JAK2V617F ispresent in

myeloid and endothelial cells. Consequences of JAK2V617F on vascular reactivity are

unknown.Usingmyographyexperiments,wedemonstratedthattheaortaofmicecarrying

Jak2V617Finmyeloidcellsdisplayedastrongincreaseinarterialcontractioninresponseto

vasocontrictive agents. This effect required the presence of endothelial cells, but not of

Jak2V617F in endothelial cells. This effect was not observed in mice with polyglobulia

induced by epoietin. This increased arterial contraction was reproduced by circulating

microvesiclesisolatedfrompatientscarryingJAK2V617F.Wetesteddifferentsubpopulations

ofmicrovesiclesandonlymicrovesiclesderivedfromJak2V617Fredbloodcellsinducedthis

increased arterial contraction. This effect implicated nitric oxide. We observed that the

endotheliumoftheaortaofmicewith Jak2V617Fmyeloproliferativeneoplasmsdisplayeda

high level of oxidative stress. We thus treated these mice with N-acetyl-cysteine and

showednormalizationofarterialcontraction.Thesedatapromptedustotestsimvastatin,

whichhasantioxidanteffects,inmicewithJak2V617Fmyeloproliferativeneoplasmsandwe

observedastrongimprovementinarterialcontraction.Inconclusion,ourresultsshowthat

JAK2V617F myeloproliferative neoplasms induce a potent increase in arterial contraction,

86

mediated by red blood cells microvesicles and endothelial oxidative stress. This could

account for the high frequency of arterial events associated with JAK2V617F

myeloproliferative neoplasms. Simvastatin appears as promising strategy in this setting.

(250/250)

87

[MainText:]

Introduction

Bcr/Abl-negative myeloproliferative neoplasms (MPNs) are clonal hematopoietic

stemcelldisorderscharacterizedbytheproliferationofparticularhematopoieticlineages

without blockage in cell maturation. They include polycythaemia vera, essential

thrombocythemia,andprimarymyelofibrosis(1,2).JAK2isthemostcommonMPNdriver

gene. JAK2V617F is a gain of functionmutation leading to growth factors hypersensitivity,

detectedinaround70%ofMPNs(95%inpolycythaemiaveraand50%to60%inessential

thrombocythemia and pre-primarymyelofibrosis / primarymyelofibrosis) (3). JAK2V617F

appearsinpluripotenthematopoieticprogenitorcellsandispresentinallmyeloidlineages

(2).Inaddition,severalindependentgroupsdescribedJAK2V617F inendothelialcellsinthe

liverand the spleenofpatientswith splanchnicvein thrombosis (4,5) and in circulating

endothelialprogenitorcells(6–8).

Cardiovasculardiseases(CVD)revealMPNsinabout30%ofthepatientsandarethe

first causeofmorbidityandmortality in thesepatients (9).Arterialevents represent60-

70%ofthesecardio-vascularevents(10–13). Interestingly,myocardial infarctionwithout

significantcoronarystenosisbyangiographywasobservedin21%of patientswithMNP

(14)versusonly3%inasimilarpopulationwithoutMPN(15).Thisobservationprompted

theEuropeansocietyofcardiologytorecommendsearchingforMPNsincaseofmyocardial

infarction without obstructive coronary artery disease (16). The mechanism underlying

this link betweenmyocardial infarctionwithout obstructive coronary artery disease and

MPNs is unknown, but vasoactive phenomenon (local intense vasoconstriction) can be

suspected(17,18).

88

Therefore,thepurposeofthepresentstudywastoexaminetheconsequencesofthe

JAK2V617Fonarterialvascularreactivity.

Results

Increased arterial contraction in mice with Jak2V617F both in myeloid and

endothelialcells

As JAK2V617F ispresent inbothmyeloidandendothelialcells inpatientswithMPN(4,

5), we first investigated vasoactive response in a mouse model mimicking the human

disease. We generated mice expressing Jak2V617F in myeloid and in endothelial cells by

crossing Jak2V617F Flex/WTmice with VE-Cadherin-cre mice. VE-Cadherin being expressed

during early embryonic life in a precursor of both endothelial and myeloid cells (19),

Jak2V617F Flex/WT;VE-Cadherin-cre, thereafter referred to as Jak2V617F BM-EC, developed as

expectedaMPN,attestedbyhigherspleenweight(2.3to5.7%ofbodyweightvs.0.3to0.6

%for littermatecontrols, p<0.0001),higherhaemoglobin level,plateletandwhiteblood

cell counts than littermate controls (Figure1A toD).Theendothelial recombinationwas

verifiedbycrossingVE-Cadherin-crewithmTmGmice(Fig.S1).

Byperformingmyographyassay,weobservedthataortasfromJak2V617FBM-ECmice

displayedamajorincreasedresponsetophenylephrine(Figure1E),butalsotopotassium

chloride(Figure1F)andangiotensinII(Figure1G),ascomparedwithlittermatecontrols.

Removing endothelium suppressed this increased arterial contraction (Figure 1H). Thus,

Jak2V617Finendothelialandmyeloidcellsstronglyincreasesresponsetovasoconstrictorsin

anendothelial-dependentmanner.

Fig.1.IncreasedarterialcontractioninaJak2V617Fmyeloproliferativemousemodel

Representativepictureofthespleen(A).Haemoglobin(B),platelet(C)andwhitebloodcellcount(D)of8to12weeksold

controlmice (Jak2WT;n=13)and Jak2V617FFlex/WT;VE-Cadherin-cremice (Jak2V617FBM-EC;n=13).Dataareexpressedasmedian

with interquartile range. Cumulative dose-response curves to phenylephrine (E) (Jak2WT, n=13; Jak2V617F BM-EC, n=13), to

angiotensinII(G)(Jak2WT,n=3;Jak2V617FBM-EC,n=4)andcontractionresponsetopotassiumchloride(80mmol/L)(F)(Jak2WT,

n=13; Jak2V617FBM-EC,n=13)ofaortaswithendothelium.Cumulativedose-responsecurves tophenylephrineofaortaswithout

endothelium(H)(Jak2WT,n=6;Jak2V617FBM-EC,n=6).Dataareexpressedasmeanwithstandarderrorofthemean.Jak2WTmice

areinblueandJak2V617FBM-ECmiceinred.Abbreviations:ns,notsignificant;*p<0.05,***p<0.001.

10-9 10-8 10-7 10-6 10-5 10-40

5

10

15

20

Log (Phenylephrine mol/L)

Co

ntr

acti

on

(m

N)

Jak2wt

Jak2V617F BM-EC

*

*

***

***

***

******

******

***

Jak2wt

Jak2V617F

BM-EC

0

5

10

15

20

Co

ntr

acti

on

(m

N)

*

10-9 10-8 10-7 10-6 10-5 10-40

5

10

15

20

Log (Phenylephrine mol/L)

Co

ntr

acti

on

(m

N)

Jak2wt

Jak2V617F BM-EC ns

10-9 10-8 10-7 10-60.0

0.5

1.0

1.5

2.0

Log (Angiotensin II mol/L)

Co

ntr

acti

on

(m

N)

Jak2wt

Jak2V617F BM-EC

*

Jak2wt

Jak2V617F

BM-EC

0

5

10

15

20

25

Haem

og

lob

in level (g

/dL

)

***

Jak2wt

Jak2V617F

BM-EC

0

1000

2000

3000

4000

Pla

tele

ts c

ou

nt

(10

9/L

)

***

Jak2wt

Jak2V617F

BM-EC

0

10

20

30

40

Wh

ite b

loo

d c

ells c

ou

nt

(10

9/L

)

***

A B C D

E F G H

1cm

Jak2WT

Jak2V617F

BM-EC

IncreasedarterialcontractioninmicewithJak2V617Frestrictedtomyeloidcells

butnottoendothelialcells

To determine if this increased arterial contraction was due to Jak2V617F in

endothelial cells or inmyeloid cells,we first generatedmice expressing Jak2V617F only in

endothelial cells. We crossed Jak2V617F Flex/WTmice with inducible VE-Cadherin-cre-ERT2

miceexpressingthecrerecombinaseaftertamoxifeninjectiononlyinendothelialcells.As

expected,Jak2V617FFlex/WT;VE-Cadherin-cre-ERT2(thereafterreferredtoasJak2V617FEC)mice

did not developMPN (Figure 2A-D). Endothelial recombinationwas verified by crossing

VE-Cadherin-cre-ERT2micewithmTmGmice (Fig. S1).We observed no difference in the

arterial response tophenylephrinebetween the Jak2V617FECmiceand littermate controls

(Jak2WT)(Figure2E).

ToassesstheimplicationofJak2V617Finmyeloidcells,wegeneratedmiceexpressing

Jak2V617F only inmyeloid cells, by transplanting lethally irradiated C57BL/6micewith a

Jak2V617F bone marrow obtained from Jak2V617F BM-EC mice. Irradiated C56BL/6 mice

transplanted with Jak2WT BM were used as controls. Myeloid expression of Jak2V617F

induced a MPN (Figure 2F to I) and an increased arterial response to phenylephrine

(Figure2J).Takenaltogether,thesefindingsdemonstratethatJak2V617Finmyeloid,butnot

inendothelialcells,isresponsibleforanincreasearterialcontraction.

Fig. 2. Jak2V617F

specifically expressed in endothelial cells (A-E) or in myeloid cells (F-J) Representative picture of the spleen (A and F). Blood cell count of 10 to 13 week old control mice (Jak2

WT, n=7, blue) and Jak2

V617F

Flex/WT;

VE-Cadherin-cre-ERT2 mice (Jak2

V617F EC, n=7, red) (B to D) and of 13 to 15 week old chimeric C57BL/6 mice transplanted with a bone

marrow of wild-type mice (Jak2WT

, n=5, blue) or of Jak2V617F

BM-EC mice (Jak2V617F

BM, n=5, red) (G) (H) (I). Data are expressed as median

with interquartile range. Cumulative dose-response curve to phenylephrine of aortas from Jak2WT

(n=7, blue) and Jak2V617F

EC (n=7, red) (E)

and from Jak2WT

(n=5, blue) and Jak2V617F

BM (n=5, red) (J). Data are expressed as mean and standard error of the mean. Abbreviations: ns, not

significant; * p<0.05, ** p< 0.01.

10-9 10-8 10-7 10-6 10-5 10-40

5

10

15

Log (Phenylephrine mol/L)

Co

ntr

acti

on

(m

N)

Jak2wt

Jak2V617F

EC

ns

10-9 10-8 10-7 10-6 10-5 10-4

0

5

10

15

Log (Phenylephrine mol/L)

Co

ntr

acti

on

(m

N)

Jak2wt

Jak2V617F BM

*

*

**

**

*

Jak2wt

Jak2V617F

EC

10

15

20

25

Haem

og

lob

in level (g

/dL

)

ns

Jak2wt

Jak2V617F

EC

0

500

1000

1500

2000

Pla

tele

ts c

ou

nt

(10

9/L

)

*

Jak2wt

Jak2V617F

EC

0

5

10

15

20

Wh

ite b

loo

d c

ells c

ou

nt

(10

9/L

) ns

Jak2wt

Jak2V617F

BM

0

5

10

15

20

25

Haem

og

lob

in level (g

/dL

)

**

Jak2wt

Jak2V617F

BM

0

500

1000

1500

2000

Pla

tele

ts c

ou

nt

(10

9/L

)

**

Jak2wt

Jak2V617F

BM

0

5

10

15

20

Wh

ite b

loo

d c

ells c

ou

nt

(10

9/L

)

ns

A B C D E

F G H I J

1cm

JAK2WT

JAK2V617F

EC

1cm

Jak2WT

Jak2V617F

BM

IncreasedarterialcontractioninducedbymicrovesiclesfromJAK2V617Fpatients

Wethensoughttoidentifythemediatorsresponsiblefortheincreasedresponseto

vasoconstrictors when Jak2V617Fwas present on myeloid cells and tested the hypothesis

that circulating blood might convey biological information from myeloid cells to the

vascularwall.Circulatingmicrovesicles,i.e.extracellularvesicleshavingasizerangingfrom

0.1to1μm,arenowrecognizedastriggersofvarioustypesofvasculardysfunction(20).We

therefore examined the effect of circulating microvesicles isolated from the blood of

patients with MPN on vascular responses to vasoactive agents. We isolated plasma

microvesiclesfrom7patientscarryingJak2V617F,(2males,5females;blooddrawnbefore

introduction of cytoreductive therapy), and from5 healthy controls (2males, 3 females;

age not significantly different from patients) We incubated these microvesicles at their

plasma concentration with aortic rings from wild type mice and observed that plasma

microvesicles from patients carrying Jak2V617F reproduced the increased response to

phenylephrine(Figure3A).

Increasedarterialcontraction inducedbyredbloodcell,butnotbyplateletor

leukocytederivedmicrovesiclesfromJak2V617Fmice

Wethensoughttodeterminethesubpopulationofmicrovesiclesresponsibleforthis

increased arterial contraction.We generatedmicrovesicles fromeach type of blood cells

fromJak2V617FBM-ECmiceorlittermatecontrolsandincubatedthesemicrovesicles,atthe

sameconcentration,withaorticringsfromwildtypemice.AsshowninFigure3,redblood

cellderivedmicrovesiclesgeneratedfrom Jak2V617FBM-ECmicereproducedtheincreased

93

response to phenylephrine while platelet, peripheral blood mononuclear cell and

polynuclearneutrophilmicrovesiclesdidnot(Figure3B-E).

Todeterminewhethertheincreasednumberofredbloodcellscouldinitselfexplain

thiseffect,wegeneratedamousemodelofpolycythaemia without Jak2V617F,byepoietin

injections.After3weeksofepoietintreatment,haemoglobinreachedalevelsimilartothat

of Jak2V617F BM-EC mice (18.5 g/dL, interquartile range 16.5-19.5, vs. 17.6 g/dL

interquartilerange15.7-19.7,respectively;n=5andn=13respectively;p=0.67).Asshown

inFigure3F,thishighnumberofredbloodcellsdidnotreproducetheincreasedresponse

tophenylephrineobservedinJak2V617FBM-ECmice.

Thus,microvesicles derived from Jak2V617F redblood cells are responsible for this

increasedarterialcontraction.

Fig.3.Myeloidcellsderivedmicrovesicles

Cumulative dose-response curves to phenylephrine of aortas from WT mice incubated with

microvesicles isolated from Jak2V617F patients (n=7, red) and controls (n=5, blue) at their circulating

concentration(A),andwithmicrovesiclesgeneratedfromredbloodcells(n=9andn=4,respectively)(B),

platelets(n=5andn=5,respectively)(C),PBMC(n=5andn=6,respectively)(D)andPMNC(n=5andn=5)

(E) from Jak2V617FBM-ECmice (Jak2V617F, red)or littermate controlmice (WT,blue). Cumulativedose-

response curve to phenylephrine of aortas fromWTmice injectedwith vehicle (blue, n=5) or epoietin

(red, n=8) (F). Data are expressed as mean with standard error to the mean. Abbreviations: ns, not

significant; ** p< 0.01;MVs,microvesicles; RBC, Red blood cells; PBMC, peripheral bloodmononuclear

cells;PMNC,polymorphonuclearcells;EPO,epoietin;WT,wildtype.

10-9 10-8 10-7 10-6 10-5 10-40

5

10

15

20

Log (Phenylephrine mol/L)

Co

ntr

acti

on

(m

N)

MVs RBC Jak2WT

MVs RBC Jak2V617F

**

********

**

*

10-9 10-8 10-7 10-6 10-5 10-40

5

10

15

20

Log (Phenylephrine mol/L)

Co

ntr

acti

on

(m

N)

MVs PMNC Jak2WT

MVs PMNC Jak2V617F

ns

10-9 10-8 10-7 10-6 10-5 10-40

5

10

15

20

Log (Phenylephrine mol/L)

Co

ntr

acti

on

(m

N)

MVs PBMC Jak2WT

MVs PBMC Jak2V617F

ns

10-9 10-8 10-7 10-6 10-5 10-40

5

10

15

20

Log (Phenylephrine mol/L)

Co

ntr

acti

on

(m

N)

C57BL/6 Vehicle

C57BL/6 EPO

ns

A B

C D

10-9 10-8 10-7 10-6 10-5 10-40

5

10

15

20

Log (Phenylephrine mol/L)

Co

ntr

acti

on

(m

N)

MVs Platelets Jak2WT

MVs Platelets Jak2V617F

ns

E

F

10-9 10-8 10-7 10-6 10-5 10-40

5

10

15

20

Co

ntr

acti

on

(m

N)

MVs from controls

MVs from patients

Log (Phenylephrine mol/L)

*

*

**

**** **

**

**

NOpathwayinhibitionandendothelialincreasedoxidativestressstatus

We then investigated how microvesicles derived from Jak2V617F red blood cells

increaseresponsetovasoconstrictingagents.Wetestedfirstthenitricoxide(NO)pathway.

We observed that aortas from Jak2V617F BM-ECmice displayed an impaired dilatation to

acetylcholine (Figure 4A). This impaired dilatation capacity was not due to decreased

sensitivity toNOofvascular smoothmuscle cells, sincedilatation in response toadirect

NO-donor(SNAP)wasnotdifferentbetweenJak2V617FBM-ECmiceandlittermatecontrols

(Figure 4B). We also observed that after pre-incubation with the NO synthase (NOS)

inhibitor L-Name, aortas from Jak2V617F BM-EC mice had a similar response to

phenylephrineaslittermatecontrols(Figure4C).Therefore,theseresultsdemonstratethat

the increased arterial contraction observed in Jak2V617F BM-EC mice results from a

dysfunctionalendothelialNOpathway.

AsreactiveoxygenspeciescanregulateNOSactivityandNObioavailability(21),we

assessedoxidativestressusinga fluorogenicprobedesignedtoreliablymeasurereactive

oxygen species in living cells (CellROX®). We observed that reactive oxygen species

generation was 4 times higher in aorta endothelium from Jak2V617F BM-ECmice than in

littermate controls (Figure 4D, 5E). Conversely, reactive oxygen species generation was

normal in the aorta endothelium from Jak2V617F EC mice, expressing Jak2V617F only in

endothelial cells (Figure 4F, G). To ascertain the implication of oxidative stress in the

increased arterial contraction in Jak2V617F BM-ECmice, we treated these mice with N-

Acetyl-Cysteinefor14daysintraperitoneally.Weobservedthatthisanti-oxidativetherapy

hadnoeffectonbloodcellcountandspleenweight(Figure4H-K),butnormalizedarterial

contractiontophenylephrine(Figure4L).

96

Altogether, these results show that the increased arterial contraction in Jak2V617F

BM-ECmice is induced by excessive oxidative stress in endothelial cells leading to a

decreasedavailabilityofNO.

Fig. 4. Nitric oxide pathway and oxidative stress status.

Cumulative dose-response curve of aortas from Jak2V617F Flex/WT

;VE-Cadherin-cre mice (Jak2V617F

BM-EC mice in red) and littermate controls

(Jak2WT

in blue) to acetylcholine (n=11 and n=11, respectively) (A), to S-Nitroso-N-Acetylpenicillamine (SNAP) (n=5 and n=6, respectively) (B) and to

phenylephrine after L-NAME incubation (n=11 and n=7, respectively) (C). Quantification of reactive oxygen species (ROS) generation (Red surface) per

endothelial cell in control mice (Jak2WT

) in blue and Jak2V617F

BM-EC mice in red (D) and from control mice (Jak2WT

in blue) and Jak2V617F Flex/WT

; VE-

Cadherin-cre-ERT2 mice (Jak2V617F

EC in red) (F). Representative images of “en face” endothelial staining with CellRox® (Red fluorogenic probes for ROS

generation) of aortas (E and G). Spleen weight/body weight ratio (H), haemoglobin level (I), platelet count (J) and white blood cell count (K) and

cumulative dose-response curve to phenylephrine of aortas from Jak2WT

mice treated with vehicle (n=6, blue) and NAC (n=5, purple) and from Jak2V617F

BM-EC mice treated with vehicle (n=5, red) and with NAC (n=7, orange) (L). Data are expressed as mean with standard error of the mean for cumulative

curve and median with interquartile range for spleen weight and blood cell count. Abbreviations: ns, not significant; NAC, N-Acetyl-cysteine; * p<0.05, **

p< 0.01, *** p< 0.001.

10-9 10-8 10-7 10-6 10-5 10-4-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Log (Acetylcholine mol/L)

Rela

xati

on

(%

)Jak2

wt

Jak2V617F BM-EC

*

**

**

*

*

10-9 10-8 10-7 10-6 10-5 10-40

5

10

15

20

Log (Phenylephrine mol/L)

L-Name 10-4 mol/L

Co

ntr

acti

on

(m

N)

Jak2wt

Jak2V617F BM-EC ns

10-10 10-9 10-8 10-7 10-6 10-5

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Log (SNAP mol/L)

Rela

xati

on

(%

)

ns

Jak2wt

Jak2V617F BM-EC

Jak2wt

Jak2V617F

BM-EC

0.000

0.001

0.002

0.003

Po

sit

ive s

urf

ace / t

ota

l cells

***

X 4

Jak2wt

Jak2V617F

EC

0.000

0.001

0.002

0.003

Po

sit

ive s

urf

ace / t

ota

l cells

ns

Jak2WT

Jak2V617F

A B C

Jak2WT

EC Jak2V617F

ECJak2V617F

10-9 10-8 10-7 10-6 10-5 10-40

5

10

15

20

Log (Phenylephrine mol/L)

Co

ntr

acti

on

(m

N)

*

***

**ns

Jak2wt Vehicle

Jak2V617F BM-EC Vehicle

Jak2wt

NAC

Jak2V617F

BM-EC NAC

D E F G

H

Jak2wt

VehicleJak2

V617F

BM-ECVehicle

Jak2wt

NACJak2

V617F

BM-ECNAC

0

1000

2000

3000

4000

Pla

tele

ts c

ou

nt

(10

9/u

L)

ns**

ns **

Jak2wt

VehicleJak2

V617F

BM-ECVehicle

Jak2wt

NACJak2

V617F

BM-ECNAC

0

5

10

15

20

25

Haem

og

lob

in level (g

/dL

)

ns**

ns **

Jak2wt

VehicleJak2

V617F

BM-ECVehicle

Jak2wt

NACJak2

V617F

BM-ECNAC

0

10

20

30

40

Wh

ite b

loo

d c

ells c

ou

nt

(10

9/L

) ns**

ns **

Jak2wt

VehicleJak2

V617F

BM-ECVehicle

Jak2wt

NACJak2

V617F

BM-ECNAC

0

2

4

6

8

Sp

leen

weig

ht/

bo

dy w

eig

ht

(%

) ns**

ns **I J K L

Statinsasapotentialnewdruginmyeloproliferativeneoplasms

We then tested if available treatments for MPNs, namely hydroxyurea and

ruxolitinib,affectthisincreasedarterialcontraction.InJak2V617FBM-ECmice,hydroxyurea

for10consecutivedaysdecreasedspleenweight,haemoglobinlevelandwhitebloodcells

(Figure5A,B,D).However,plateletcountwasnotaffectedbythisshorttimehydroxyurea

treatment (Figure 5C). Hydroxyurea significantly improved contraction in response to

phenylephrineascomparedtovehicle(Figure5E).

Wethentreated Jak2V617FBM-ECmicewithruxolitinibfor21consecutivedaysand

observedasignificantdecreaseinthespleenweightandwhitebloodcellcount(Figure5F,

I),butnoeffectonthehaemoglobinlevelandonplateletcount(Figure5G,H).Ruxolitinib

hadnoeffectonarterialresponsetophenylephrine(Figure5J).

Beyond its lowering cholesterol effect, simvastatin also improves endothelial

functionthroughNOpathwayandbypreventingoxidativestressdamage(22,23).Thus,we

tested its effect on arterial response to phenylephrine in Jak2V617FBM-ECmice. Fourteen

days of treatment with simvastatin did not change spleen weight, haemoglobin level or

platelet count (Figure5K, 5L, 5M).Therewasonly a slightdecrease inwhiteblood cells

countfollowingsimvastatintreatment(Figure5N). Interestingly,simvastatinsignificantly

improvedaorticresponsetophenylephrineascomparedtovehicle(Figure5O).

Fig. 5. Statins as a potential new drug in myeloproliferative neoplasms Spleen to body weight ratio (A), haemoglobin level (B), platelet (C) and white blood cell count (D) in Jak2

V617F Flex/WT ;VE-Cadherin-cre mice (Jak2

V617F

BM-EC) treated with vehicle (Jak2V617F

BM-EC vehicle, red, n=4) or with hydroxyurea (Jak2V617F

BM-EC HU, orange, n=7). Spleen to body weight ratio (F),

haemoglobin level (G), platelet (H) and white blood cell count (I) in Jak2V617F

BM-EC mice treated with vehicle (Jak2V617F

BM-EC vehicle, red, n=5) or with

ruxolitinib (Jak2V617F

BM-EC ruxolitinib, orange, n=4). Spleen to body weight ratio (K), haemoglobin level (L), platelet (M) and white blood cell count (O) in

Jak2V617F

BM-EC mice treated with vehicle (red, n=10) or with simvastatin (Jak2V617F

BM-EC simvastatin, orange, n=7).Cumulative dose-response curves to

phenylephrine of aortas from Jak2V617F

BM-EC mice treated with vehicle or hydroxyurea (Jak2V617F

BM-EC vehicle in red, n=4; and Jak2

V617F BM-EC HU, in

orange, n=7) (E), with vehicle or ruxolitinib (Jak2V617F

BM-EC vehicle in red, n= 5; and Jak2V617F

BM-EC Ruxolitinib in orange, n=4) (J), and with vehicle or

simvastatin (Jak2V617F

BM-EC vehicle in red, n=10; and Jak2V617F

BM-EC simvastatin in orange, n=7) (O). Data are expressed as mean with standard error

of the mean for cumulative curve and median with interquartile range for spleen weight and blood cell count. Abbreviations: ns, not significant; * p<0.05, **

p< 0.01, HU hydroxyurea.

10-9 10-8 10-7 10-6 10-5 10-40

5

10

15

20

25

Log (Phenylephrine mol/L)

Co

ntr

acti

on

(m

N)

Jak2V617F BM-EC Vehicule

Jak2V617F BM-EC Hydroxyurea

*

Jak2V617F

BM-ECVehicle

Jak2V617F

BM-ECHU

0

5

10

15

20

25

Haem

og

lob

in level (g

/dL

)

*

Jak2V617F

BM-ECVehicle

Jak2V617F

BM-ECHU

0

1000

2000

3000

4000

Pla

tele

ts c

ou

nt

(10

9/L

)

ns

Jak2V617F

BM-ECVehicle

Jak2V617F

BM-ECHU

0

10

20

30

Wh

ite b

loo

d c

ells c

ou

nt

(10

9/L

) **

10-9 10-8 10-7 10-6 10-5 10-40

5

10

15

20

25

Log (Phenylephrine mol/L)

Co

ntr

acti

on

(m

N)

Jak2V617F

BM-EC Vehicle ns

Jak2V617F

BM-EC Ruxolitinib

Jak2V617F

BM-ECVehicle

Jak2V617F

BM-ECRuxolitinib

0

1

2

3

4

Sp

leen

weig

ht/

bo

dy w

eig

ht

(%

) *

Jak2V617F

BM-ECVehicle

Jak2V617F

BM-ECRuxolitinib

16

18

20

22

24

Haem

og

lob

in level (g

/dL

)

ns

Jak2V617F

BM-ECVehicle

Jak2V617F

BM-ECRuxolitinib

0

1000

2000

3000

4000

Pla

tele

ts c

ou

nt

(10

9/u

L)

ns

Jak2V617F

BM-ECVehicle

Jak2V617F

BM-ECRuxolitinib

0

10

20

30

Wh

ite b

loo

d c

ells c

ou

nt

(10

9/L

) *

Jak2V617F

BM-ECVehicle

Jak2V617F

BM-ECHU

0

1

2

3

4

Sp

leen

weig

ht/

bo

dy w

eig

ht

(%

) **

A B C D E

F G H I J

10-9 10-8 10-7 10-6 10-5 10-40

5

10

15

20

Log (Phenylephrine mol/L)

Co

ntr

acti

on

(m

N) *

*

*

**

*

*

JAK2V617F BM-EC Vehicle

JAK2V617F BM-EC Simvastatin

Jak2V617F

BM-ECVehicule

Jak2V617F

BM-ECSimvastatin

0

5

10

15

20

25

Haem

og

lob

in level (g

/dL

)

ns

Jak2V617F

BM-ECVehicule

Jak2V617F

BM-ECSimvastatin

0

1000

2000

3000

4000

Pla

tele

ts c

ou

nt

(10

9/L

)ns

Jak2V617F

BM-ECVehicule

Jak2V617F

BM-ECSimvastatin

0

10

20

30

Wh

ite b

loo

d c

ells c

ou

nt

(10

9/L

) *

Jak2V617F

BM-ECVehicule

Jak2V617F

BM-ECSimvastatin

2.0

2.5

3.0

3.5

4.0

Sp

leen

weig

ht/

bo

dy w

eig

ht

(%

) ns

K L M N O

Discussion

This study demonstrated that JAK2V617F

red blood cell derived microvesicles strongly

increased arterial contraction in response to vasoconstrictive agents, possibly accounting for

arterial events associated with MPNs. This effect was due to an augmented oxidative stress in

arterial endothelium and a decreased availability of NO. Simvastatin, a drug with anti-oxidant

properties, improved arterial contraction.

The first major finding of our study is the demonstration that JAK2V617F

MPN induces a

considerable increase in arterial contraction. This finding suggests a vasospastic phenomenon

associated with MPN and thus represents a paradigm shift in MPNs where arterial events were

only seen as a result of a thrombotic process (24). Our results obtained ex vivo would explain the

10 times higher incidence of arterial events in patients with polycythaemia vera than in the

general population (25, 26) and the high prevalence of myocardial infarction without significant

coronary stenosis by angiography in patients with MPN (14). Arterial spasm is an

underdiagnosed phenomenon that can happen in patients without atherosclerosis, but is also

favoured by underlying non-stenotic atherosclerotic plaques. This suggests that the effect we

observed might not only account for myocardial infarction without significant coronary stenosis

reported in patients with MPN, but might also more widely favour arterial events in patients with

atherosclerotic plaques and MPN (17, 18). Moreover, arterial spasm not only occurs in coronary

arteries, but also in brain arteries (16, 27–29). The mechanisms underlying arterial spasm are not

completely elucidated, but arterial contraction plays a central role (16, 28–30), which is

concordant with our findings, since we observed a pronounced increase in contraction in

response to different vasoconstrictive agents. We found only a mild impairment in arterial

dilatation, which is in line with the altered endothelial dependant flow mediated vasodilatation

reported in patients with polycythaemia vera, in the absence of overt arterial disease (31).

101

The second major finding of our work is the identification of JAK2V617F

red blood cell

derived microvesicles as responsible for the increased arterial contraction associated with MPN.

Importantly, we observed this effect with JAK2V617F

red blood cell microvesicles from mice, but

also with microvesicles isolated from patients carrying JAK2V617F

. We thus highlight here a

crucial vascular role of microvesicles in MPNs, beyond their so far described implication in

coagulation in this setting (32–36). Although patients with MPNs have higher circulating levels

of microvesicles than healthy individuals, we assessed vascular reactivity using the same

concentrations of microvesicles for both groups, suggesting that microvesicle composition, and

not concentration, accounts for the observed vascular effect (32, 33, 37–40). A specificity of

JAK2V617F

red blood cells derived microvesicles is also supported by our observation that

JAK2V617F

platelets or white blood cells derived microvesicles did not increase arterial

contraction, and that polycythaemia induced by epoietin without JAK2V617F

had no effect on

arterial contraction. These results are reminiscent of epidemiological studies showing that MPN

patients with JAK2V617F

have higher haematocrit level (41, 42) and a higher risk of

cardiovascular events than MPN patients without JAK2V617F

(42–46).

Finally, in our work we demonstrated that NO pathway inhibition and increased

endothelial oxidative stress are implicated in this increased arterial contraction in MPN. Several

groups reported high levels of circulating reactive oxygen species products (47–49) and low

antioxidant status in MPN (48) (50), but endothelial oxidative stress had never been investigated.

Besides explaining how MPN induce this increased arterial contraction, this observation opens

new potential therapeutic perspectives to prevent MPN. Indeed, statins being known to play a

protective role on endothelial function and on oxidative stress, we tested this drug and observed a

strong improvement in arterial response to vasocontricting agent in our MPN mouse model (22,

102

23). Simvastatin being a well-known and easily accessible drug, these results thus pave the way

for testing simvastatin to prevent arterial events in patients with MPN. We also tested available

treatments for MPN and observed that hydroxyurea, but not ruxolitinib, improved arterial

contraction. This difference might be explained by the fact that hydroxyurea decreased red blood

cell count in our mouse model whereas ruxolitinib did not (51, 52). Another explanation could be

that hydroxyurea has been shown to enhance NO release by endothelial cells while such an effect

has not been reported with ruxolitinib (53).

In conclusion, our study showed that red blood cell derived microvesicles are responsible

for an increased arterial contraction in Jak2V617F

MPNs. This effect implicated NO and

endothelial oxidative stress. Simvastatin appears as an original new approach to prevent arterial

events in MPN that warrants further studies.

Materials and Methods

Experimental design

TheobjectiveofourstudywastoanalyseendothelialreactivityinMPN.Wefirstnoticeda

major increase in arterial contraction in Jak2V617F BM-ECmice, a model with Jak2V617F

expressionbothinmyeloidandendothelialcellsthatmimicsthehumandisease.Wethen

created mouse models specifically mutated in endothelial or in myeloid cells. We then

searched for the mediators responsible for the increased response to vasoconstrictors

whenJak2V617Fwaspresentinmyeloidcellsandtestedthehypothesisthatcirculatingblood

might conveybiological information frommyeloid cells to the vascularwall. Sample size

was chosen based on previous works using the same technique (myography) and

microvesicles,publishedbyourteam(54–56).

103

Mouse breeding occurred in our animal facility in accordance with the local

recommendations. Control mice were littermate, appropriate, age-, sex and genetic

background,matchedtoaccountforanyvariationindata.Institutionalanimalcareanduse

committee at INSERM (Descartes university, Paris, France) approved all animal

experiments(CEEA-17053).

Numberofexperimentalreplicatesisprovidedineachfigurelegendandincludedatleast3

independentexperiments.Foreachmyographyexperiment,duplicateswiththesameaorta

were used, averaged and counted as n=1. There was no randomization in these

experiments. We did not exclude any other sample than those not fulfilling the quality

criteria detailed in the corresponding methods section. Only aortas with a viable

endotheliumwereusedformyography(seecorrespondingmethodssectionforcriteria).

For human samples, inclusion and exclusion criteria were defined prior to sample

collection (see corresponding methods section for criteria). No outliers were excluded.

Investigators were not blinded to group allocation during collection and analysis of the

data.Allpatients(carryingJAK2V617Fwithapasthistoryofsplanchnicveinthrombosis,not

receivinganyspecifictreatmentsotherthanvitamin-kantagonists)andhealthyvolunteers

gavewriting consent to the study. Human studywas performed in accordancewith the

ethicalguidelinesofthe1975DeclarationofHelsinkiandwasapprovedbytheinstitutional

reviewboardBichat-Claude-Bernard(Paris;France).

Murinemodels

All mice were on a C57BL/6 background. Mice carrying constitutive JAK2V617F

mutation in endothelial and myeloid cells were obtained by crossing VE-cadherin-Cre

transgenic mice provided by M. Souyri (19) with Jak2V617F Flex/WTmice provided by M.

Villeval (57). Mice carrying inducible JAK2V617Fmutation specifically in endothelial cells

104

were obtained by crossingVE-Cadherin-cre-ERT2 transgenicmice provided by R. Adams

(58) with Jak2V617FFlex/WTmice provided byM. Villeval (57). In all experiments,male and

femalemicewereused.

Fororganchamberexperiments,micewereeuthanizedbetweentheagesof8and

17weeks.ForinductionofCrerecombinaseexpressioninJak2V617FFlex/WT;VE-Cadherin-cre-

ERT2 mice, mice were injected intraperitoneally with tamoxifen (Sigma, T5648), 1

mg/mouse/day for 5 consecutive days over 2 consecutive weeks (10 mg in total per

mouse)between the ages of 5 to7weeks. Experimentswereperformedbetween4 to6

weeksafterthelasttamoxifeninjection.

Experiments were conducted according to the French veterinary guidelines and

those formulated by the European community for experimental animal use (L358-

86/609EEC)andwereapprovedbytheFrenchministryofagriculture(n°A75-15-32).

Patient'sinclusion

All patients fulfilling inclusion criteria were prospectively included at the

Hepatology department, Beaujon Hospital, Clichy, France, between May 2016 and July

2016.OnlypatientscarryingJAK2V617FwithoutspecifictreatmentforMPNswereincluded.

All patients had a past history of Budd-Chiari syndrome or portal vein thrombosis and

werereceivingvitaminKantagonists.Controlswerehealthyvoluntaries.Allpatientsand

controlsgavewrittenconsenttothestudy.Thisstudywasperformedinaccordancewith

the ethical guidelines of the 1975 Declaration of Helsinki and was approved by our

institutionalreviewboard(CPPIledeFranceIV,Paris;France).

OrganChamberExperiments

105

Thoracic aortas from adult mice were isolated after animal sacrifice under 2%

isoflurane anaesthesia. The aortic rings were mounted in organ chambers (Multi

WireMyograph system, model 610 M; Danish Myo Technology, Aarhus, Denmark) filled

with Krebs–Ringer solution (NaCl 118.3 mmol/L, KCl 4.7 mmol/L, MgSO4 1.2 mmol/L,

KH2PO41.2mmol/L,CaCl21.25mmol/L,NaHCO325.0mmol/Landglucose5.0mmol/L).

The presence of functional endothelial cells was confirmed by the relaxation to

acetylcholine chloride (Sigma, A6625) (10-5 mol/L) following a contraction evoked by

phenylephrine(10-7mol/L)andwasdefinedasarelaxation≥70%oftheprecontractionas

previously described (56, 59). After extensive washout and equilibration, contraction to

phenylephrinehydrochloride (concentration-responsecurve,10−9 to10−4mol/L) (Sigma,

P1250000) or angiotensin II (concentration-response curve, 10−9 to 10−6mol/L) (Sigma,

A9525) or KCL (80 mmol/L) and relaxation to acetylcholine chloride (concentration-

responsecurve,10−9to10−4mol/L)orSNAP(S-Nitroso-N-acetyl-DL-penicillamine,Sigma,

N3398) (concentration-response curve, 10−10 to 10−5 mol/L) were studied. For NO

synthase inhibition, aorta ringswere preincubated for 45minwith L-NAME 10-4 mol/L

(Cayman, 80210) prior to concentration-response curve to phenylephrine without

washout. In some experiments, the endotheliumwasmechanically removedby inserting

thetipofapairofforcepswithinthelumenandbygentlyrubbingtheringbackandforth

on a piece of wet tissue. For the N-Acetyl-Cysteine experiment (NAC, commercial

HIDONAC®,Zambon),NACwasaddedtotheKrebs-Ringersolutionatafinalconcentration

of20mmol/L.

Isolationandcharacterizationofpatients’circulatingmicrovesicles

Circulating microvesicles from patients or healthy control were isolated from

platelet-free plasma obtained by successive centrifugations of venous blood, as reported

106

previously(60).Briefly,citratedvenousblood(15mL)wascentrifugedtwiceat2500gfor

15minutes(atroomtemperature) toremovecellsandcelldebrisandtoobtainplatelet-

freeplasma(PFP).AportionofthisPFPwasthenaliquotedandstoredat-80°C.Therest

wascentrifugedat20500gfor2hoursand30minutes(4°C).Supernatantof this20500g

centrifugationwasthendiscardedandtheresultingmicrovesiclespelletwasresuspended

in a minimal volume of supernatant, aliquoted and stored at -80°C. For each patient,

concentrations of annexin V positive microvesicles were analysed in the PFP and the

resuspendedpelletofmicrovesicles.

CirculatinglevelsofannexinV+microvesiclesweredeterminedonaGalliosflowcytometer

(BeckmanCoulter,Villepinte,France)usingatechniquepreviouslydescribedindetail(56,

60). Regions corresponding tomicrovesicleswere identified in forward light scatter and

side-angle light scatter intensity dot plot representation set at logarithmic gain.MVgate

was defined, using calibration beads (Megamix plus FSC, Biocytex, France), as events

havinga0.1-1µmdiameter.Eventswerethenplottedona fluorescence/ forwardlight

scatter dot plot to determineMV counts positively labelled by annexin V in presence of

calcium. Annexin V fluoroisothiocyanate was purchased from Beckman-Coulter.

Microvesicles concentration was assessed by comparison with a known amount of

flowcountcalibratorbeads(AccuCountFluorescentParticles,Spherotech,Chicago,20µL)

addedtoeachsamplejustbeforeperformingflowcytometryanalysis.

Generationofmicrovesiclesfrommice

BloodsampleswerecollectedfromtheinferiorvenacavaofJak2V617FBM-ECmiceor

littermate controlsusinga25gaugex1’needle in a1mL syringepre-coatedwith3.8%

sodiumcitrate.PFPsweregeneratedasdescribedaboveforpatientsandusedtomeasure

plasmaannexinVpositivemicrovesiclesinmice.Thepelletedcellsobtainedfollowingthe

107

first2500gcentrifugationwereresuspendedinPBStoa finalvolumeof5mLforcontrol

miceand15mLforJak2V617FBM-ECmice.PBMC,PMNCandredbloodcellswereseparated

using a double percoll gradient (63% and 72% for control mice and 63% and 66% for

Jak2V617F BM-ECmice) using a 700g centrifugation for 25min,without brake. The slight

differencesbetweentheprotocolsusedforcontrolandJak2V617FBM-ECmicearetheresults

ofthepreliminaryexperimentswedidtoobtainpureisolationofeachcelltypedespitethe

verydifferentbloodcell countbetween the twostrains.Cellsweresubsequentlywashed

with PBS, then incubated with 5 µmol/L ionomycin TBS for 2 hrs at 37°C to induce

microvesicles generation. 5mmol/L EDTAwas then added to chelate free calcium. Cells

were then discarded by centrifugations at 15000g for 1min and the supernatantswere

collected.Microvesicleswere isolated formyography assays, as described above using a

20500g centrifugation. Concentrations of annexin V positivemicrovesicles (as described

above)wereanalysedinthePFPandthe20500gmicrovesiclespelletforeachmouse.

To isolateplatelets, 500µLofwholebloodwerediluted in10mLofPBS.A1.063g/mL

densitybarrierwascreatedbycombining5mLof1.320g/mL60%iodixanolstocksolution

(OptiPrepdensity gradientmedium, Sigma-Aldrich, Saint Louis,MO,USA)with22mLof

diluent(0.85%NaCl,20mMHEPES-NaOH,pH7.4,1mMEDTA).Forplateletseparation,10

mLofeachdilutedbloodwerelayeredover10mLofdensitybarrierandcentrifugedat350

g for 15 minutes at 20°C with the brake turned off. The interface between the density

barrier and the blood contained platelets.Residual contaminating red blood cells were

removedbymagneticsorting.Briefly, thecell suspensionwas labelledwithAnti-Ter-119

MicroBeads (Miltenyi Biotec ref 130-049-901) and red blood cell (Ter-119+) were

negatively sorted using a MACS® Separator. The remaining cells (platelets) were

subsequentlywashedwithPBSandexposedto5μmol/LionomycininTBSfor30minutes

at37°C.5mMEDTAwasthenaddedtochelatefreecalcium.Finally,cellswerediscarded

108

bycentrifugationat15000gfor1minute,thesupernatantwascollectedandmicrovesicles

isolatedaspreviouslydescribed.

Vascularreactivityfollowingexposuretomicrovesicles

Thoracic aortas from adult C57BL/6mice (8 to 10week-old)were isolated after

sacrificeunderisofluraneanaesthesia.Mouseaorticringswereincubatedfor24hrs;37°C

in a 5% CO2 incubator, with filtered DMEM supplemented with antibiotics (100 IU/mL

streptomycin, 100 IU/mL penicillin (Gibco, Invitrogen, Paisley, Scotland), and 10 μg/mL

polymyxin B (Sigma, St Louis, MO) in the presence ofmicrovesicles. Microvesicles from

patients and healthy controls were incubated at their respective individual plasma

concentration(Annexin-Vpositivemicrovesicles).Microvesiclesgeneratedfrommicewere

incubated at the same concentration for Jak2V617F BM-ECmice and controlmice, namely

7000 Annexin V positive microvesicles / μL for red blood cell and platelets derived

microvesiclesand700AnnexinVpositivemicrovesicles/μLforPBMCandPMNCderived

microvesicles.Wechosetheseconcentrationssincewefound inpreliminaryexperiments

thatthemajorityofmicehaveconcentrationsofAnnexinVpositivemicrovesiclesbetween

1000and10000/μL,andbecausePBMCandPMNCderivedmicrovesiclesareconsistently

found less abundant in theblood than redblood cell andplateletsderivedmicrovesicles

(32,37).Aortic ringswere thenmounted inorganchambersandconcentration-response

curvestopharmacologicalagentswereperformed.

Bonemarrowtransplantation

Wesubjected6to8week-oldC57Bl/6Jmicetomedullaraplasiafollowing9.5gray

lethal total body irradiation. We repopulated the mice with an intravenous injection of

bonemarrowcellsisolatedfromfemursandtibiasofagematchedJak2V617FBM-ECandof

109

littermate control mice. Medullar reconstitution was allowed for 8 weeks before

experiments.

Treatments

Hydroxyurea (Sigma, H8627) or the same volume of vehicle (NaCl 0.9%), was

administratedfor10consecutivedays(100mg/kg/dayBID)byintra-peritonealinjections

Ruxolitinib(Novartis)wasadministeredfor21consecutivedays(30mg/kg2times

perday)byoralgavage(61).Ruxolitinibwaspreparedfrom15-mgcommercialtabletsin

PEG300/5%dextrosemixedata1:3ratio,aspreviouslyreported(62).Controlmicewere

administeredthesamevolumeofvehicle(PEG300/dextrose5%).

Simvastatin (Sigma S6196)was administered for 14 days (20mg/kg/day, once a

day) by intra-peritoneal injections. Activation by hydrolysis was first achieved by

dissolving50mgin1mLofpureethanolandadding0.813mlof1mol/LNaOH.pHwas

adjustedto7.2byaddingsmallquantitiesof1mol/LHClanddilutionwasthenperformed

inPBS(63).Controlmicewereinjectedwiththesamevolumeofvehicle.

Human recombinant Epoietin alfa (5000 UI/kg, diluted in 0.2% BSA in PBS) or

vehicle(0.2%BSAinPBS)wasadministeredtowildtypemiceevery2daysfor3weeksby

intraperitonealinjection,aspreviouslydescribed(64).

N-Acetyl-Cysteine (commercial HIDONAC, Zambon) diluted in NaCl 0.9% or the

same volume of vehicle (NaCl 0.9%), was administrated for 14 consecutive days (500

mg/kg/day)byintraperitonealinjections.

BloodCellcountanalysis

110

Bloodwascollectedonthedayofsacrificefromtheinferiorvenacavausinga25gaugex1’

needleina1mLsyringepre-coatedwith3.8%sodiumcitrate.Bloodcountsanalyseswere

performedusingaHemavet950FSanalyser(Drewscientific).

Quantificationofreactiveoxygenspeciesgeneration

Thoracicaortas fromadultmicewere isolatedafteranimalsacrificeunder2%isoflurane

anaesthesia, longitudinally opened and placed directly in HBSS (Hanks' balanced salt

solution, Sigma, 14025-092). For positive and negative controls, 2 pieces of wild type

aortaswereincubatedwithH2O2(100µmol/Lfinalconcentration)for20minat37°C.For

negative controls, N-Acetyl-Cysteine (5 mmol/L final concentration) was incubated

together with H2O2 for 20 min at 37°C. All aortas were then incubated with 5 µmol/L

CellROX®(Fisherscientific,C10422)for30minat37°C.CellROX® DeepRedReagentisa

fluorogenicprobedesignedtoreliablymeasurereactiveoxygenspeciesinlivingcells.The

cell-permeable CellROX® Deep Red dye is nonfluorescentwhile in a reduced state and,

upon oxidation, exhibits excitation/emission maxima at 640/665 nm. After rinsing and

fixation (Paraformaldehyde4%,20min), sampleswere costainedwithDAPI (0.1μg/mL,

Sigma) in order to identify cell nuclei. After staining, aortas were washed with PBS,

mounted “en face” on glass slides and imaged using a bright field Zeiss Axio Imager Z1

(Zeiss) microscope. Images were acquired in the 2 hours following staining at 400 X

magnification.CellROX®positivesurface(inred)andthenumberofcellswerequantified

usingImageJSoftware.

Statistics

Forcumulativedoseresponsecurves,datawereexpressedasmeanwithstandard

errorofthemeanandcomparedusingananalysisofvarianceforrepeatedmeasures.Other

111

data were expressed as median with interquartile range (blood cell count and spleen

weight)andcomparedusing theMann-WhitneyU-test.All testswere2sidedanduseda

significance level of 0.05. Data handling and analysis were performed with GraphPad

Softwar,Inc.

112

Supplementary Materials

Materials and Methods

Verificationoftheefficientendothelialrecombinationinmousemodels

All mice were on a C57BL/6 background. Mice with themTmG reporter provided by C.

James (Inserm1034)werecrossedwithVE-cadherin-Cre transgenicmiceprovidedbyM.

Souyri (49) or VE-Cadherin-cre-ERT2 transgenic mice provided by R. Adams (58). For

inductionofmTmG;VE-Cadherin-cre-ERT2model,micewereinjectedintraperitoneallywith

tamoxifen (Sigma, T5648), 1 mg/mice/day for 5 consecutive days over 2 consecutive

weeks(10mgintotalpermice)betweentheagesof5to7weeks,andexperimentswere

performed 2 weeks after the last injection of tamoxifen. Aortas were harvested under

isoflurane anaesthesia, mounted “en face” on glass slides and imaged using a Leica SP5

confocalmicroscope(Leica)at400Xmagnification.

Fig. S1. Endothelial recombination.

Mechanism of mTmG reporter strategy (A). Representative “en face” images of the endothelium of aortas from inducible mTmG;VE-

Cadherin-Cre-ERT2 (n=5) mice (B) and from constitutive mTmG;VE-Cadherin-Cre (n=3) mice (C). Quantification (D).

Abbreviations:VECreERT2, mTmG;VE-Cadherin-Cre-ERT2; VECre, mTmG;VE-Cadherin-Cre,.

VECre ERT2

VECre0

50

100

En

do

thelial re

co

mb

inati

on

(%

)

Active

VE-Cadherin-Cre

or

Cadherin5-Cre-ERT2

Nonactive

VE-Cadherin-Cre

or

Cadherin5-Cre-ERT2

Greenfluorescence

=Recombination

Redfluorescence

=Norecombination

R26R Gfp R26R td-tomato Gfp

✗stop

R26R td-tomato Gfp

✗stop

10μm10μm

VE-Cadherin-Cre-ERT2 VE-Cadherin-CreA B C D

References and Notes:

1. J. L. Spivak, D. L. Longo, Ed. Myeloproliferative Neoplasms, N. Engl. J. Med. 376, 2168–2181 (2017).

2. W. Vainchenker, R. Kralovics, Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms, Blood 129, 667–679 (2017).

3. P. J. Campbell, A. R. Green, The myeloproliferative disorders, N. Engl. J. Med. 355, 2452–2466 (2006).

4. S. Sozer, M. I. Fiel, T. Schiano, M. Xu, J. Mascarenhas, R. Hoffman, The presence of JAK2V617F mutation in the liver endothelial cells of patients with Budd-Chiari syndrome, Blood 113, 5246–5249 (2009).

5. V. Rosti, L. Villani, R. Riboni, V. Poletto, E. Bonetti, L. Tozzi, G. Bergamaschi, P. Catarsi, E. Dallera, F. Novara, M. Massa, R. Campanelli, G. Fois, B. Peruzzi, M. Lucioni, P. Guglielmelli, A. Pancrazzi, G. Fiandrino, O. Zuffardi, U. Magrini, M. Paulli, A. M. Vannucchi, G. Barosi, Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative (AGIMM) investigators, Spleen endothelial cells from patients with myelofibrosis harbor the JAK2V617F mutation, Blood 121, 360–368 (2013).

6. V. Rosti, E. Bonetti, G. Bergamaschi, R. Campanelli, P. Guglielmelli, M. Maestri, U. Magrini, M. Massa, C. Tinelli, G. Viarengo, L. Villani, M. Primignani, A. M. Vannucchi, F. Frassoni, G. Barosi, on behalf of the A. Investigators, High Frequency of Endothelial Colony Forming Cells Marks a Non-Active Myeloproliferative Neoplasm with High Risk of Splanchnic Vein Thrombosis, PLOS ONE 5, e15277 (2010).

7. Helman Ricardo, Pereira Welbert de O., Marti Luciana C., Campregher Paulo V., Puga Renato Davi, Hamerschlak Nelson, Chiattone Carlos S., Santos Fabio Pires de S., Granulocyte whole exome sequencing and endothelial JAK2V617F in patients with JAK2V617F positive Budd‐Chiari Syndrome without myeloproliferative neoplasm, Br. J. Haematol. 180, 443–445 (2018).

8. L. Teofili, M. Martini, M. G. Iachininoto, S. Capodimonti, E. R. Nuzzolo, L. Torti, T. Cenci, L. M. Larocca, G. Leone, Endothelial progenitor cells are clonal and exhibit the JAK2(V617F) mutation in a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms, Blood 117, 2700–2707 (2011).

9. R. Marchioli, G. Finazzi, R. Landolfi, J. Kutti, H. Gisslinger, C. Patrono, R. Marilus, A. Villegas, G. Tognoni, T. Barbui, Vascular and Neoplastic Risk in a Large Cohort of Patients With Polycythemia Vera, J. Clin. Oncol. 23, 2224–2232 (2005).

10. P. J. Campbell, L. M. Scott, G. Buck, K. Wheatley, C. L. East, J. T. Marsden, A. Duffy, E. M. Boyd, A. J. Bench, M. A. Scott, G. S. Vassiliou, D. W. Milligan, S. R. Smith, W. N. Erber, D. Bareford, B. S. Wilkins, J. T. Reilly, C. N. Harrison, A. R. Green, Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study, The Lancet 366, 1945–1953 (2005).

31

11. Buxhofer‐Ausch Veronika, Gisslinger Heinz, Thiele Jürgen, Gisslinger Bettina, Kvasnicka Hans‐Michael, Müllauer Leonhard, Frantal Sophie, Carobbio Alessandra, Passamonti Francesco, Rumi Elisa, Ruggeri Marco, Rodeghiero Francesco, Randi Maria L., Bertozzi Irene, Vannucchi Alessandro M., Antonioli Elisabetta, Finazzi Guido, Gangat Naseema, Tefferi Ayalew, Barbui Tiziano, Leukocytosis as an important risk factor for arterial thrombosis in WHO‐defined early/prefibrotic myelofibrosis: An international study of 264 patients, Am. J. Hematol. 87, 669–672 (2012).

12. Montanaro Marco, Latagliata Roberto, Cedrone Michele, Spadea Antonio, Rago Angela, Giandomenico Jonny, Spirito Francesca, Porrini Raffaele, Muro Marianna, Leonetti Sabrina Crescenzi, Villivà Nicoletta, Gregoris Cinzia, Breccia Massimo, Montefusco Enrico, Santoro Cristina, Cimino Giuseppe, Majolino Ignazio, Mazzucconi Maria Gabriella, Alimena Giuliana, Andriani Alesssandro, Thrombosis and survival in essential thrombocythemia: A regional study of 1,144 patients, Am. J. Hematol. 89, 542–546 (2014).

13. V. D. Stefano, I. Martinelli, Splanchnic vein thrombosis: clinical presentation, risk factors and treatment, Intern. Emerg. Med. 5, 487–494 (2010).

14. É. Pósfai, I. Marton, Z. Borbényi, A. Nemes, Myocardial infarction as a thrombotic complication of essential thrombocythemia and polycythemia vera, Anatol. J. Cardiol. 16, 397–402 (2016).

15. A. I. Larsen, P. D. Galbraith, W. A. Ghali, C. M. Norris, M. M. Graham, M. L. Knudtson, Characteristics and outcomes of patients with acute myocardial infarction and angiographically normal coronary arteries, Am. J. Cardiol. 95, 261–263 (2005).

16. S. Agewall, J. F. Beltrame, H. R. Reynolds, A. Niessner, G. Rosano, A. L. P. Caforio, R. De Caterina, M. Zimarino, M. Roffi, K. Kjeldsen, D. Atar, J. C. Kaski, U. Sechtem, P. Tornvall, ESC working group position paper on myocardial infarction with non-obstructive coronary arteries, Eur. Heart J. 38, 143–153 (2017).

17. M. J. Davies, The pathophysiology of acute coronary syndromes, Heart 83, 361–366 (2000).

18. F. Crea, P. Libby, Acute Coronary Syndromes: The Way Forward From Mechanisms to Precision Treatment, Circulation 136, 1155–1166 (2017).

19. E. Oberlin, B. El Hafny, L. Petit-Cocault, M. Souyri, Definitive human and mouse hematopoiesis originates from the embryonic endothelium: a new class of HSCs based on VE-cadherin expression, Int. J. Dev. Biol. 54, 1165–1173 (2010).

20. C. M. Boulanger, X. Loyer, P.-E. Rautou, N. Amabile, Extracellular vesicles in coronary artery disease, Nat. Rev. Cardiol. 14, 259–272 (2017).

21. P. M. Vanhoutte, Y. Zhao, A. Xu, S. W. S. Leung, Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator, Circ. Res. 119, 375–396 (2016).

22. S. Sen-Banerjee, S. Mir, Z. Lin, A. Hamik, G. B. Atkins, H. Das, P. Banerjee, A. Kumar, M. K. Jain, Kruppel-Like Factor 2 as a Novel Mediator of Statin Effects in Endothelial Cells, Circulation 112, 720–726 (2005).

32

23. R. P. Mason, M. F. Walter, R. F. Jacob, Effects of HMG-CoA reductase inhibitors on endothelial function: role of microdomains and oxidative stress, Circulation 109, II34-41 (2004).

24. T. Barbui, G. Finazzi, A. Falanga, Myeloproliferative neoplasms and thrombosis, Blood 122, 2176–2184 (2013).

25. R. Landolfi, L. Di Gennaro, T. Barbui, V. De Stefano, G. Finazzi, R. Marfisi, G. Tognoni, R. Marchioli, European Collaboration on Low-Dose Aspirin in Polycythemia Vera (ECLAP), Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera, Blood 109, 2446–2452 (2007).

26. B. M. Kaess, S. R. Preis, A. Beiser, D. B. Sawyer, T. C. Chen, S. Seshadri, R. S. Vasan, Circulating vascular endothelial growth factor and the risk of cardiovascular events, Heart Br.

Card. Soc. 102, 1898–1901 (2016).

27. O. Y. Bang, K. Toyoda, J. F. Arenillas, L. Liu, J. S. Kim, Intracranial Large Artery Disease of Non-Atherosclerotic Origin: Recent Progress and Clinical Implications, J. Stroke 20, 208–217 (2018).

28. C. N. Bairey Merz, C. J. Pepine, M. N. Walsh, J. L. Fleg, Ischemia and No Obstructive Coronary Artery Disease (INOCA): Developing Evidence-Based Therapies and Research Agenda for the Next Decade, Circulation 135, 1075–1092 (2017).

29. J. F. Beltrame, F. Crea, J. C. Kaski, H. Ogawa, P. Ong, U. Sechtem, H. Shimokawa, C. N. Bairey Merz, Coronary Vasomotion Disorders International Study Group (COVADIS), The Who, What, Why, When, How and Where of Vasospastic Angina, Circ. J. Off. J. Jpn. Circ. Soc. 80, 289–298 (2016).

30. P. Ong, A. Aziz, H. S. Hansen, E. Prescott, A. Athanasiadis, U. Sechtem, Structural and Functional Coronary Artery Abnormalities in Patients With Vasospastic Angina Pectoris, Circ. J.

Off. J. Jpn. Circ. Soc. 79, 1431–1438 (2015).

31. T. Neunteufl, S. Heher, T. Stefenelli, I. Pabinger, H. Gisslinger, Endothelial dysfunction in patients with polycythaemia vera, Br. J. Haematol. 115, 354–359 (2001).

32. A. Charpentier, A. Lebreton, A. Rauch, A. Bauters, N. Trillot, O. Nibourel, V. Tintillier, M. Wemeau, J.-L. Demory, C. Preudhomme, B. Jude, T. Lecompte, N. Cambier, S. Susen, Microparticle phenotypes are associated with driver mutations and distinct thrombotic risks in essential thrombocythemia, Haematologica 101, e365-368 (2016).

33. X. Tan, J. Shi, Y. Fu, C. Gao, X. Yang, J. Li, W. Wang, J. Hou, H. Li, J. Zhou, Role of erythrocytes and platelets in the hypercoagulable status in polycythemia vera through phosphatidylserine exposure and microparticle generation, Thromb. Haemost. 109, 1025–1032 (2013).

34. H. Baccouche, M. Ben Jemaa, A. Chakroun, S. Chadi, S. Mahjoub, I. Sfar, Y. Gorgi, N. Ben Romdhane, The evaluation of the relevance of thrombin generation and procoagulant activity in thrombotic risk assessment in BCR-ABL-negative myeloproliferative neoplasm patients, Int. J.

Lab. Hematol. 39, 502–507 (2017).

33

35. J. Duchemin, V. Ugo, J.-C. Ianotto, L. Lecucq, B. Mercier, J.-F. Abgrall, Increased circulating procoagulant activity and thrombin generation in patients with myeloproliferative neoplasms, Thromb. Res. 126, 238–242 (2010).

36. M. Marchetti, C. J. Tartari, L. Russo, M. Panova-Noeva, A. Leuzzi, A. Rambaldi, G. Finazzi, B. Woodhams, A. Falanga, Phospholipid-dependent procoagulant activity is highly expressed by circulating microparticles in patients with essential thrombocythemia, Am. J. Hematol. 89, 68–73 (2014).

37. M. C. Trappenburg, M. van Schilfgaarde, M. Marchetti, H. M. Spronk, H. ten Cate, A. Leyte, W. E. Terpstra, A. Falanga, Elevated procoagulant microparticles expressing endothelial and platelet markers in essential thrombocythemia, Haematologica 94, 911–918 (2009).

38. W. Zhang, J. Qi, S. Zhao, W. Shen, L. Dai, W. Han, M. Huang, Z. Wang, C. Ruan, D. Wu, Y. Han, Clinical significance of circulating microparticles in Ph− myeloproliferative neoplasms, Oncol. Lett. 14, 2531–2536 (2017).

39. M.-P. Moles-Moreau, C. Ternisien, A. Tanguy-Schmidt, F. Boyer, M. Gardembas, M. Dib, A. Ponthieux, P. Guardiola, N. Ifrah, M. Hunault-Berger, Flow cytometry-evaluated platelet CD36 expression, reticulated platelets and platelet microparticles in essential thrombocythaemia and secondary thrombocytosis, Thromb. Res. 126, e394-396 (2010).

40. J. Kissova, P. Ovesna, A. Bulikova, J. Zavřelova, M. Penka, Increasing procoagulant activity of circulating microparticles in patients with Philadelphia-negative myeloproliferative neoplasms: a single-centre experience, Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 26, 448–453 (2015).

41. E. Rumi, D. Pietra, V. Ferretti, T. Klampfl, A. S. Harutyunyan, J. D. Milosevic, N. C. Them, T. Berg, C. Elena, I. C. Casetti, JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes, Blood 123, 1544–1551 (2014).

42. A. Tefferi, E. A. Wassie, T. L. Lasho, C. Finke, A. A. Belachew, R. P. Ketterling, C. A. Hanson, A. Pardanani, N. Gangat, A. P. Wolanskyj, Calreticulin mutations and long-term survival in essential thrombocythemia, Leukemia 28, 2300–2303 (2014).

43. Y. C. Elala, T. L. Lasho, N. Gangat, C. Finke, D. Barraco, M. Haider, A. K. A. Hussein, C. A. Hanson, R. P. Ketterling, A. Pardanani, A. Tefferi, Calreticulin variant stratified driver mutational status and prognosis in essential thrombocythemia, Am. J. Hematol. 91, 503–506 (2016).

44. A. Carobbio, J. Thiele, F. Passamonti, E. Rumi, M. Ruggeri, F. Rodeghiero, M. L. Randi, I. Bertozzi, A. M. Vannucchi, E. Antonioli, H. Gisslinger, V. Buxhofer-Ausch, G. Finazzi, N. Gangat, A. Tefferi, T. Barbui, Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: an international study of 891 patients, Blood 117, 5857–5859 (2011).

45. G. Finazzi, A. Carobbio, P. Guglielmelli, C. Cavalloni, S. Salmoiraghi, A. M. Vannucchi, M. Cazzola, F. Passamonti, A. Rambaldi, T. Barbui, Calreticulin mutation does not modify the IPSET score for predicting the risk of thrombosis among 1150 patients with essential thrombocythemia, Blood 124, 2611–2612 (2014).

34

46. G. Rotunno, C. Mannarelli, P. Guglielmelli, A. Pacilli, A. Pancrazzi, L. Pieri, T. Fanelli, A. Bosi, A. M. Vannucchi, Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia, Blood 123, 1552–1555 (2014).

47. C. Musolino, A. Allegra, A. Saija, A. Alonci, S. Russo, G. Spatari, G. Penna, D. Gerace, M. Cristani, A. David, S. Saitta, S. Gangemi, Changes in advanced oxidation protein products, advanced glycation end products, and s-nitrosylated proteins, in patients affected by polycythemia vera and essential thrombocythemia, Clin. Biochem. 45, 1439–1443 (2012).

48. A. Durmus, A. Mentese, M. Yilmaz, A. Sumer, I. Akalin, C. Topal, A. Alver, Increased oxidative stress in patients with essential thrombocythemia, Eur. Rev. Med. Pharmacol. Sci. 17, 2860–2866 (2013).

49. C. Vener, C. Novembrino, F. B. Catena, N. S. Fracchiolla, U. Gianelli, F. Savi, F. Radaelli, E. Fermo, A. Cortelezzi, S. Lonati, M. Menegatti, G. L. Deliliers, Oxidative stress is increased in primary and post-polycythemia vera myelofibrosis, Exp. Hematol. 38, 1058–1065 (2010).

50. H. C. Hasselbalch, M. Thomassen, C. H. Riley, L. Kjær, T. S. Larsen, M. K. Jensen, O. W. Bjerrum, T. A. Kruse, V. Skov, Whole blood transcriptional profiling reveals deregulation of oxidative and antioxidative defence genes in myelofibrosis and related neoplasms. Potential implications of downregulation of Nrf2 for genomic instability and disease progression, PloS

One 9, e112786 (2014).

51. A. Angona, A. Alvarez-Larrán, B. Bellosillo, R. Longarón, C. Fernández-Rodríguez, C. Besses, Dynamics of JAK2 V617F allele burden of CD34+ haematopoietic progenitor cells in patients treated with ruxolitinib, Br. J. Haematol. 172, 639–642 (2016).

52. W. Vainchenker, E. Leroy, L. Gilles, C. Marty, I. Plo, S. N. Constantinescu, JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders, F1000Research 7, 82 (2018).

53. V. P. Cokic, B. B. Beleslin-Cokic, M. Tomic, S. S. Stojilkovic, C. T. Noguchi, A. N. Schechter, Hydroxyurea induces the eNOS-cGMP pathway in endothelial cells, Blood 108, 184–191 (2006).

54. C. M. Boulanger, A. Scoazec, T. Ebrahimian, P. Henry, E. Mathieu, A. Tedgui, Z. Mallat, Circulating Microparticles From Patients With Myocardial Infarction Cause Endothelial Dysfunction, Circulation 104, 2649–2652 (2001).

55. N. Amabile, Circulating Endothelial Microparticles Are Associated with Vascular Dysfunction in Patients with End-Stage Renal Failure, J. Am. Soc. Nephrol. 16, 3381–3388 (2005).

56. P.-E. Rautou, J. Bresson, Y. Sainte-Marie, A.-C. Vion, V. Paradis, J.-M. Renard, C. Devue, C. Heymes, P. Letteron, L. Elkrief, D. Lebrec, D. Valla, A. Tedgui, R. Moreau, C. M. Boulanger, Abnormal plasma microparticles impair vasoconstrictor responses in patients with cirrhosis, Gastroenterology 143, 166-176.e6 (2012).

57. C. Marty, C. Lacout, N. Droin, J.-P. Le Couédic, V. Ribrag, E. Solary, W. Vainchenker, J.-L. Villeval, I. Plo, A role for reactive oxygen species in JAK2

V617F myeloproliferative neoplasm progression, Leukemia 27, 2187–2195 (2013).

35

58. Y. Wang, M. Nakayama, M. E. Pitulescu, T. S. Schmidt, M. L. Bochenek, A. Sakakibara, S. Adams, A. Davy, U. Deutsch, U. Lüthi, A. Barberis, L. E. Benjamin, T. Mäkinen, C. D. Nobes, R. H. Adams, Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis, Nature 465, 483–486 (2010).

59. C. Heymes, A. Habib, D. Yang, E. Mathieu, F. Marotte, J. Samuel, C. M. Boulanger, Cyclo-oxygenase-1 and -2 contribution to endothelial dysfunction in ageing, Br. J. Pharmacol. 131, 804–810 (2000).

60. A. Payancé, G. Silva-Junior, J. Bissonnette, M. Tanguy, B. Pasquet, C. Levi, O. Roux, O. Nekachtali, A. Baiges, V. Hernández-Gea, C. Laouénan, D. Lebrec, M. Albuquerque, V. Paradis, R. Moreau, D. Valla, F. Durand, C. M. Boulanger, J.-C. Garcia-Pagan, P.-E. Rautou, Hepatocyte microvesicle levels improve prediction of mortality in patients with cirrhosis, Hepatol. Baltim.

Md (2018), doi:10.1002/hep.29903.

61. L. Kubovcakova, P. Lundberg, J. Grisouard, H. Hao-Shen, V. Romanet, R. Andraos, M. Murakami, S. Dirnhofer, K.-U. Wagner, T. Radimerski, others, Differential effects of hydroxyurea and INC424 on mutant allele burden and myeloproliferative phenotype in a JAK2-V617F polycythemia vera mouse model, Blood 121, 1188–1199 (2013).

62. S. Maschalidi, F. E. Sepulveda, A. Garrigue, A. Fischer, G. de Saint Basile, Therapeutic effect of JAK1/2 blockade on the manifestations of hemophagocytic lymphohistiocytosis in mice, Blood 128, 60–71 (2016).

63. R. Kou, T. Shiroto, J. L. Sartoretto, T. Michel, Suppression of Gαs synthesis by simvastatin treatment of vascular endothelial cells, J. Biol. Chem. 287, 2643–2651 (2012).

64. L. Lamrani, C. Lacout, V. Ollivier, C. V. Denis, E. Gardiner, B. Ho Tin Noe, W. Vainchenker, J.-L. Villeval, M. Jandrot-Perrus, Hemostatic disorders in a JAK2V617F-driven mouse model of myeloproliferative neoplasm, Blood 124, 1136–1145 (2014).

36

Acknowledgment: We thank members of the INSERM UMR-970 animal facility (ERI) for

animal handling and breeding. We thank R. Adams for having provided Cadherin5Cre-ERT2

mice.

We also thank A. Payancé, K. Zekrini and D. Rezigue for their help in identifying the patients

and M. Salama for his help with myography experiments.

Author Contributions: J.P., and P-E.R. designed the experiments and wrote the manuscript.

J.P., H.D., F.C. performed myography experiments. J.P. performed oxidative stress experiments,

M.T. generated microvesicles. J-L.V., C.J. and M.S. provided transgenic mice. M-B.E-M., C.D.

and S.H. characterized the first mouse model. J.L. managed the mouse colony. M.K. performed

mTmG experiments. A.P. included the patients and healthy controls. P-E.R. obtained funding for

the project. All authors discussed and critically revised the manuscript.

Financial support: This work was supported by the Agence Nationale pour la Recherche (ANR

14 CE35 0022 03/ JAK-POT) and J.P by the “poste accueil INSERM”.

Conflict-of-interest disclosure: The authors declare no competing financial interest.

120

C. JAK2V617Finsplanchnicveinthrombosis

1. EndothelialJAK2V617FandBudd-Chiarisyndrome

a) Backgroundandaims

Budd-Chiarisyndrome(BCS)isdefinedashepaticvenousoutflowobstructionintheabsenceof

congestive or restrictive heartdisease. The obstacle causing BCS can be located in hepatic

veins,orinthesuprahepaticportionofinferiorvenacava.PrimaryBCSisrelatedtothrombosis

as opposed to secondary BCS caused by invasion or compression by atumour [465]. The

clinicalmanifestations of BCS include abdominal pain, ascites, liverand spleen enlargement,

andportalhypertension.About15%ofthepatientsdisplayanasymptomaticform.

Myeloproliferative neoplasms are the leading causeof BCS, diagnosed in 25–50% of

suchpatients [287]. In most patients with BCS andmyeloproliferative neoplasms, JAK2V617F

mutationisfoundinmyeloidcells.JAK2V617Fhasalsobeendetectedinliverendothelialcells

of patients withBCS [45]. The consequences of JAK2V617F in liver endothelial cells are still

unknown. InBCS, JAK2V617F is associatedwithpoorerprognostic features atpresentation and

earlierneedforhepaticdecompressionprocedures[287].

This observation leads to thehypothesis that JAK2V617F enhances liver injury and

fibrosisinducedbyhepaticvenousoutflowobstruction,thusworseningBCS.

b) Materialsandmethods

Murinemodel

All mice were on a C57BL/6 background. Mice carrying inducible JAK2V617Fmutation

specificallyinendothelialcellswereobtainedbycrossingCadherin5-Cre-ERT2transgenicmice

provided by R. Adams [466] with Jak2V617F Flox/WTmice provided by M. Villeval [467]. For

induction of Jak2V617FFlox/WT;Cadherin5-Cre-ERT2model, mice were injected intraperitoneally

121

with tamoxifen (Sigma, T5648), 1mg/mice/day for 5 consecutive days over 2 consecutive

weeks (10mg in total per mice) between 5 to 7 weeks old. Experiments were conducted

according to the French veterinary guidelines and those formulated by the European

communityforexperimentalanimaluse(L358-86/609EEC)andwereapprovedbytheFrench

agricultureminister(n°A75-15-32).

Budd-Chiarimousemodelbypartialinferiorvenacavaligation

Thepartial inferiorvenacava ligationwasdone incollaborationwith the teamofVijayShah

andthetechnichasbeendescribedpreviously[468].Briefly,underanesthesiathesuprahepatic

IVCwascircumferentiallyisolated(A)andasterilesteelwireof0.6mmindiameterwasplaced

ontheanteriorsurfaceoftheIVC(B).Thena6.0silkthreadwastightlytiedaroundboththe

IVC and the wire (C), which was subsequently gently removed (D). The sham operation

included all the steps above except for the ligation. Mice were sacrificed 6 weeks

postoperatively.

0 5 7 12 18Age

(weeks)

Birth Begining

of tamoxifen

End

of tamoxifen

Surgery Sacrifice

Tamoxifen

injections (IP)

2x 5 days

A

122

Portalpressuremeasurements

Portal pressurewas directlymeasured as previously described [468] just before euthanasia

usinga16-gaugecatheterattached toapressure transducer (digitalbloodpressureanalyzer

(Digi-Med)) that was inserted into the portal vein and sutured in place. The pressure was

continuouslymonitored,andtheaverageportalpressurewasrecorded.

Euthanasiaandorganspreparations

Prior to sacrifice, the liverwasperfusedwith10mLof 1XPBS through theportal vein. The

spleenandliverwereharvestedandpartsoftheorgansweresnapfrozeninliquidnitrogenfor

mRNAextractionandotherpartsfixedin10%formaldehydeforhistology.

Serumanalyses

Serumwascollectedfromwholebloodofeachanimalattimeofsacrifice.Specimensweresend

for serum transaminases measurement in Bichat, Hospital (clinical chemistry laboratory,

Paris),usingachemicalchemistryanalyser“OlympusAU400.

QuantitativeReal-TimePolymeraseChainReaction

Total RNAwas extracted from snap frozenmouse liver sampleswith Trizol reagent using a

polytron(T25basic,IKA,Labortechnik).Chloroformwasthenadded,beforecentrifugation.The

123

hydrous phase containing RNAs was then recuperate and washed with 70% ethanol. RNAs

concentrationsweremeasured by nanodrop and then stored at -80°C. Reverse transcription

wasdonefollowingmanufacturerinstruction(kitQuantiTectReverseTranscription(Qiagen)).

Real-timefluorescencemonitoringwasperformedwiththeAppliedBiosystems,StepOnePlus

Real-TimePCRSystemwithPowerSYBRGreenPCRMasterMix(Eurogentec).Collagen1α1,α-

SMA and TNFα mRNA were normalized to Gapdh, Hprt and Ppia as recommended [469].

Relative expressionwas calculatedusing the2-delta-deltaCTmethod followedby geometric

average,asrecommended[469].

Liverfibrosisstainingandquantification

Livers were fixed in 10% phosphate buffered formalin for 48 h at 4°C, washed twice with

water,storedin70%ethanolat4°C,andthenembeddedinparaffin.Afterdeparaffinizationand

hydration, sections (5 μM) were stained with picro-sirius red (Sigma). Sirius red was

quantitated in sections (X30; 12 fields each from sample) using Archimed software, around

centro-lobularveins.Imageswerethenanalysedusing«ImageJ»software.Twoindependent

Gene Amorce Sequence T

(°C)

Gapdh Sens 5’CGTCCCGTAGACAAAATGGTGAA3’ 60,9

Anti-sens 5’GCCGTGAGTGGAGTCATACTGGAACA3’

HPRT Sens 5’TGTGCTCAAGGGGGGCTATAAGTT3’ 57,4

Anti-sens 5’ACTTTTATGTCCCCCGTTGACTGA3’

PPIA Sens 5’CAC-CGT-GTT-CTT-CGA-CAT-CA3’ 60

Anti-sens 5’CAG-TGC-TCA-GAG-CTC-GAA-AGT3’

αSMA Sens 5’GAACCCTAAGGCCAACCGGGAGAAA3’ 59.3

Anti-sens 5’CCACATACATGGCGGGGACATTGA3’

Collagen1α1 Sens 5’TGACCGATGCATTCCCGTTCGAGTA3’ 64.5

Anti-sens 5’CCCCAAGTTGCGGTGTGACTC3’

TNFα Sens 5’GATGGGGGGCTTCCAGAACT3’ 62.6

Anti-sens 5’CGTGGGCTACAGGCTTGTCAC3’

124

examinatorswhowereblindforgenotypeatthetimedidthequantifications.

Statistics

Data are expressed asmedian (interquartile range) for quantitative data (blood cell count,

bodyandspleenweight)andcomparisonsbetweengroupswereperformedusing theMann-

WhitneyU-test.Alltestswere2sidedandusedasignificancelevelof0.05.Datahandlingand

analysiswereperformedwithGraphPadSoftwar,Inc.

125

c) Article2:EndothelialJAK2V617Fdoesnotenhanceliverlesionsin

micewithBudd-Chiarisyndrome

EndothelialJAK2V617Fdoesnotenhanceliverlesions

inmicewithBudd-Chiarisyndrome

JohannePoisson1,2,yMoiraB.Hilscher3,yMarionTanguy1,2AdelHammoutene1,2ChantalM.

Boulanger1,2Jean-LucVilleval4,5DouglasA.Simonetto3DominiqueValla6,7VijayH.Shah3

Pierre-EmmanuelRautou1,2,6,7

1INSERM,UMR-970,ParisCardiovascularResearchCenter–PARCC,Paris,France2UniversitéParisDescartes,SorbonneParisCité,Paris,France3GastroenterologyResearchUnit,DivisionofGastroenterologyandHepatology,MayoClinic,Rochester,MN,USA4INSERM,InstitutGustaveRoussy,INSERMU1170,Villejuif,France5UniversityParisXI,Villejuif,France6Serviced’hépatologie,DHUUnityHôpitalBeaujon,APHP,Clichy,France7UniversitéDenisDiderot-Paris7,SorbonneParisCité,75018Paris,France

LetterpublishedinJHepatol.2018May;68(5):1086-1087

Endothelial JAK2V617F does not enhance liver lesions in mice withBudd-Chiari syndrome

To the Editor:

Budd-Chiari syndrome is defined as hepatic venous outflow

obstruction in the absence of congestive or restrictive heart

disease. Myeloproliferative neoplasms are the leading cause

of Budd-Chiari syndrome, diagnosed in 25–50% of such

patients.1,2 In most patients with Budd-Chiari syndrome and

myeloproliferative neoplasms, Janus kinase 2 gene (JAK2)

V617F mutation is found in myeloid cells. JAK2V617F has also

been detected in liver endothelial cells of patients with

Budd-Chiari syndrome, attributed to a common cell of origin

for myeloid and endothelial cells, called hemangioblast.3–5 In

Budd-Chiari syndrome, JAK2V617F is associated with poorer

prognostic features at presentation and earlier need for hepatic

decompression procedures.1 This observation leads to the

hypothesis that JAK2V617F enhances liver injury and fibrosis

induced by hepatic venous outflow obstruction, thus worsen-

ing Budd-Chiari syndrome.

In order to test this hypothesis, we applied a recently

described surgical model of Budd-Chiari syndrome to mice

expressing JAK2V617F.6 JAK2V617F expression in myeloid cells

promotes major vasodilation and hemostasis impairment,

making surgery extremely challenging in these animals.7

Accordingly, we analyzed the endothelial component using mice

expressing JAK2V617F specifically in endothelial cells. We gener-

ated these transgenic mice by crossing conditional Jak2V617F

knock-inmicewith inducible Cadherin5Cre-ERT2mice. Recombina-

tion was induced in Jak2V617F knock-in – Cadherin5Cre-ERT2 (here-

after referred to as JAKV617F) mice by tamoxifen injection

(1 mg/day/mice intraperitoneously for five consecutive days,

two consecutive weeks) at the age of five weeks. Littermate

controls (hereafter referred to as JAK2WT) received the same

treatment. Partial inferior vena cava ligation (pIVCL), or sham

surgeries were performed at the age of 12 weeks and mice were

sacrificed six weeks postoperatively (Fig. 1).6 Based on previous

experiments using this surgical model, we included 8 to 10 mice

per group.6 All experiments were performed in accordance with

the European Community guidelines for the care and use of

laboratory animals (N!07,430) and were approved by our insti-

tutional ethical committee (17-053).

As expected, JAK2WT mice undergoing pIVCL had higher

portal pressure, liver expression of profibrogenic genes and liver

TN

mR

NA

(fo

ldch

an

ge

)

Co

llag

en

1 m

RN

A

(fo

ldch

an

ge

)

Se

rum

AL

T(I

U/L

)

Siriu

sre

dp

ositiv

ea

rea

(%)

8

6

4

2

0

Port

al pre

ssure

(m

mH

g)

n.s.

JAK2WT

Sham pIVCL

JAK2WT JAK2V617F

***

***800

600

400

200

0

n.s.n.s. n.s.

JAK2WT

Sham pIVCL

JAK2WT JAK2V617F JAK2WT

Sham pIVCL

JAK2WT JAK2V617F

JAK2WT

Sham pIVCL

JAK2WT JAK2V617F JAK2WT

Sham pIVCL

JAK2WT JAK2V617F

JAK2WT

Sham pIVCL

JAK2WT JAK2V617F

n.s.

n.s.n.s.

n.s.n.s.

n.s.

n.s.n.s.

**

****

***

10

8

6

4

2

0

20

15

10

5

0

αS

MA

mR

NA

(fo

ld c

hange)

15

10

5

0

3

2

1

0

0 5 7 12 18Age

(weeks)

Birth Begining

of tamoxifen

End

of tamoxifen

Surgery Sacrifice

Tamoxifen

injections (IP)

2x 5 days

A

B C

D

E

F

G

Fig. 1. Endothelial JAK2V617F does not enhance liver injury in mice after partial inferior vena cava ligation. Partial inferior vena cava ligation was

performed in 12-week aged male and female Jak2V617F knock-in - Cadherin5Cre-ERT2 (JAKV617F) mice and in littermate controls (JAK2WT). Sham surgery was also

performed. All mice were on a C57BL/6 background. (A) Mice were sacrificed 6 weeks postoperatively. (B) Portal pressure, (C) serum ALT level, (D) liver TNFa,

(E) aSMA and (F) collagen1a1 gene expressions were determined (supplementary CTAT Table) and (G) liver fibrosis was quantified (Sirius red positive areas).

Data are given as median (horizontal bar) and interquartile range (error bar). Comparisons between groups of mice were performed using the Mann–Whitney U

test. *p <0.05; **p <0.01; and ***p <0.001. ALT, alanine aminotransferase; JAK2, Janus kinase 2; pIVCL, partial inferior vena cava ligation; n.s., no significant

difference.

Journal of Hepatology 2018 vol. 68 j 1086–1106

Keywords: Myeloproliferative neoplasm; Liver fibrosis; Portal hypertension; Hepatic

venous outflow obstruction; Splanchnic thrombosis.

JOURNAL

OF HEPATOLOGYLetters to the Editor

fibrosis than sham mice, while showing no change in serum

aminotransferases or in liver expression of proinflammatory

genes (Fig. 1).6 However, as shown (Fig. 1), the expression of

JAKV617F in liver endothelial cells did not affect any of these

parameters.

In conclusion, we found no evidence in an animal model

that endothelial JAK2V617F can explain the more severe pre-

sentation of patients with Budd-Chiari syndrome and

JAK2V617F. The explanation for increased severity of these

patients should therefore be sought mostly in myeloid

JAK2V617F. Thus, future therapeutic strategies to improve the

management of patients with Budd-Chiari syndrome and

myeloproliferative neoplasms might focus on myeloid cells

rather than on endothelial cells. Beside the cytoreductive

agent hydroxyurea, treatments for myeloproliferative neo-

plasms now also include the JAK2/1 inhibitor ruxolitinib.

One phase II trial recently reported that ruxolitinib is safe

in patients with splanchnic vein thrombosis.8 Whether ruxoli-

tinib is useful in this setting to improve patient outcomes

should be evaluated in larger studies.

Financial supportThis work was supported by the Agence Nationale pour la

Recherche (ANR-14-CE12-0011 and ANR-14-CE35-0022) and

J.P by the ‘‘poste d’accueil INSERM”.

Conflict of interestThe authors declare no conflicts of interest that pertain to this

work.

Please refer to the accompanying ICMJE disclosure forms for

further details.

Authors’ contributionsJ.P. and M.B.H contributed equally to the work. M.B.H. and D.A.S.

performed mouse surgeries. J.P., A.H. and M.T. analyzed liver

samples. J-L.V. generated Jak2V617F knock-in mice. J.P. and P-E.

R. wrote the manuscript. C.M.B, D.V. and V.H.S discussed and

analyzed the results. All authors critically revised the

manuscript.

AcknowledgementsWe thank the members of the INSERM UMR-970 animal facility

(ERI), Fatoumata Camara for superb technical assistance, and the

Hôpital Bichat biochemistry core facility. We also thank R. Adams

for having provided Cadherin5Cre-ERT2 mice.

Supplementary dataSupplementary data associated with this article can be found, in

the online version, at https://doi.org/10.1016/j.jhep.2018.01.

010.

ReferencesAuthor names in bold designate shared co-first authorship

[1] Kiladjian J-J, Cervantes F, Leebeek FW, Marzac C, Cassinat B, Chevret S,

et al. The impact of JAK2 and MPL mutations on diagnosis and prognosis

of splanchnic vein thrombosis: a report on 241 cases. Blood

2008;111:4922–4929.

[2] European Association for the Study of the Liver. EASL clinical practice

guidelines: vascular diseases of the liver. J Hepatol 2016;64:179–202.

[3] Sozer S, Fiel MI, Schiano T, Xu M, Mascarenhas J, Hoffman R. The presence

of JAK2V617F mutation in the liver endothelial cells of patients with

Budd-Chiari syndrome. Blood 2009;113:5246–5249.

[4] Rosti V, Villani L, Riboni R, Poletto V, Bonetti E, Tozzi L, et al. Spleen

endothelial cells from patients with myelofibrosis harbor the JAK2V617F

mutation. Blood 2013;121:360–368.

[5] Teofili L, Martini M, Iachininoto MG, Capodimonti S, Nuzzolo ER, Torti L,

et al. Endothelial progenitor cells are clonal and exhibit the JAK2(V617F)

mutation in a subset of thrombotic patients with Ph-negative myelopro-

liferative neoplasms. Blood 2011;117:2700–2707.

[6] Simonetto DA, Yang H, Yin M, de Assuncao TM, Kwon JH, Hilscher M, et al.

Chronic passive venous congestion drives hepatic fibrogenesis via

sinusoidal thrombosis and mechanical forces. Hepatology 2015;61:

648–659.

[7] Lamrani L, Lacout C, Ollivier V, Denis CV, Gardiner E, Ho Tin Noe B, et al.

Hemostatic disorders in a JAK2V617F-driven mouse model of myelopro-

liferative neoplasm. Blood 2014;124:1136–1145.

[8] Pieri L, Paoli C, Arena U, Marra F, Mori F, Zucchini M, et al. Safety and

efficacy of ruxolitinib in splanchnic vein thrombosis associated with

myeloproliferative neoplasms. Am J Hematol 2017;92:187–195.

Johanne Poisson1,2,y

Moira B. Hilscher3,y

Marion Tanguy1,2

Adel Hammoutene1,2

Chantal M. Boulanger1,2

Jean-Luc Villeval4,5

Douglas A. Simonetto3

Dominique Valla6,7

Vijay H. Shah3

Pierre-Emmanuel Rautou1,2,6,7,⇑

1INSERM, UMR-970, Paris Cardiovascular Research Center – PARCC,

Paris, France2Université Paris Descartes, Sorbonne Paris Cité, Paris, France

3Gastroenterology Research Unit, Division of Gastroenterology and

Hepatology, Mayo Clinic, Rochester, MN, USA4INSERM, Institut Gustave Roussy, INSERM U1170, Villejuif, France

5University Paris XI, Villejuif, France6Service d’hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy,

France7Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris,

France⇑Corresponding author. Address: Service d’Hépatologie, Hôpital

Beaujon, 100 boulevard du Général Leclerc, 92110 Clichy, France.

Tel.: +33 1 40 87 52 83; fax: +33 1 40 87 54 87.

E-mail address: [email protected]

y J.P. and M.B.H. contributed equally to this study.

JOURNAL

OF HEPATOLOGY

Journal of Hepatology 2018 vol. 68 j 1086–1106 1087

128

2. Calreticulinmutationsandsplanchnicveinthrombosis

a) Article3:Selectivetestingforcalreticulingenemutationsin

patientswithsplanchnicveinthrombosis:Aprospectivecohortstudy

Selectivetestingforcalreticulingenemutationsin

patientswithsplanchnicveinthrombosis:Aprospectivecohortstudy

JohannePoisson1,AuréliePlessier2,Jean-JacquesKiladjian3,FannyTuron4,BrunoCassinat3,

AnnalisaAndreoli3,EmmanuelleDeRaucourt5,OdileGoria6,KamalZekrini3,Christophe

Bureau7,FlorenceLorre8,9,FranciscoCervantes13,DolorsColomer14,FrançoisDurand2,10,11,

Juan-CarlosGarcia-Pagan4,12,NicoleCasadevall8,9,Dominique-CharlesValla2,10,11,Pierre-

EmmanuelRautou1,2,11,ChristopheMarzac8,9,fortheFrenchnationalnetworkforvascularliver

diseases

1 Inserm,U970,ParisCardiovascularResearchCenter -PARCC,UniversitéParisDescartes,SorbonneParisCité,Paris,France;2DHUUnity,PôledesMaladiesdel’AppareilDigestif,Serviced’Hépatologie,CentredeRéférencedesMaladiesVasculairesduFoie,HôpitalBeaujon,AP-HP,Clichy,France;3Centred’InvestigationsCliniques,HôpitalStLouis,AP-HP,Clichy,France;4BarcelonaHepaticHemodynamicLaboratory,LiverUnit,HospitalClínic,IDIBAPS,Barcelona,Spain;5Serviced’HématologieBiologique,HôpitalBeaujon,AP-HP,Clichy,France;6Serviced’Hépato-gastroentérologie,CHURouen,Rouen,France;7Liver-GastroenterologyDepartment,UniversityHospitalandPaulSabatierUniversity,Toulouse,France;8 UPMC, Univ Paris 06, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et ChroniquesMYPAC,Paris,France;9Laboratoired’ImmunologieetHématologieBiologique,HôpitalSaint-Antoine,AP-HP,Paris,France;10InsermU1149,CentredeRecherche sur l’Inflammation (CRI), Paris, Université Paris 7-Denis-Diderot, Clichy, UFR de Médecine, Paris,France;11UniversitéParisDiderot,SorbonnePariscité,Paris,France;12CentrodeInvestigaciónBiomédicaenReddeEnfermedadesHepáticasyDigestivas(CIBERehd),Spain;13HematologyDepartment,HospitalClínic,IDIBAPS,UniversityofBarcelona,Spain;14HematopathologyUnit,HospitalClínic,IDIBAPS,CIBERONC,Spain

OriginalarticlepublishedinJHepatol.2017Sep;67(3):501-507

129

Selective testing for calreticulin gene mutations inpatients with splanchnic vein thrombosis:

A prospective cohort study

Graphical Abstract Authors

Highlights! CALR mutations are detected in 2% of patients with splanch-

nic vein thrombosis.

! CALR mutations should not be tested in patients with

JAK2V617F.

! CALR mutations should be tested in patients with spleno-

megaly & platelets >200"109/L.

! This strategy avoids 96% of unnecessary CALR mutations

testing.

Johanne Poisson, Aurélie Plessier,

Jean-Jacques Kiladjian, ...,

Dominique-Charles Valla,

Pierre-Emmanuel Rautou,

ChristopheMarzac

Correspondence

[email protected]

(P.-E. Rautou)

Lay summaryMutations of the CALR gene are detected

in 0 to 2% of patients with SVT, thus the

utility of systematic CALR mutation test-

ing to diagnose MPN is questionable. This

study demonstrates that CALR mutations

testing can be restricted to patients with

SVT, a spleen height #16 cm, a platelet

count >200"109/L, and no JAK2V617F. This

strategy avoids 96% of unnecessary CALR

mutations testing.

http://dx.doi.org/10.1016/j.jhep.2017.04.021! 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved. J. Hepatol. 2017, 67, 501–507

Research Article

Selective testing for calreticulin gene mutations in patientswith splanchnic vein thrombosis: A prospective cohort study

Johanne Poisson1, Aurélie Plessier2, Jean-Jacques Kiladjian3, Fanny Turon4, Bruno Cassinat3,Annalisa Andreoli3, Emmanuelle De Raucourt5, Odile Goria6, Kamal Zekrini3, Christophe Bureau7,

Florence Lorre8,9, Francisco Cervantes13, Dolors Colomer14, François Durand2,10,11,Juan-Carlos Garcia-Pagan4,12, Nicole Casadevall8,9, Dominique-Charles Valla2,10,11,Pierre-Emmanuel Rautou1,2,11,⇑,y, Christophe Marzac8,9,y, for the French national

network for vascular liver diseases

1Inserm, U970, Paris Cardiovascular Research Center - PARCC, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; 2DHU Unity, Pôledes Maladies de l’Appareil Digestif, Service d’Hépatologie, Centre de Référence des Maladies Vasculaires du Foie, Hôpital Beaujon, AP-HP, Clichy,France; 3Centre d’Investigations Cliniques, Hôpital St Louis, AP-HP, Clichy, France; 4Barcelona Hepatic Hemodynamic Laboratory, Liver Unit,

Hospital Clínic, IDIBAPS, Barcelona, Spain; 5Service d’Hématologie Biologique, Hôpital Beaujon, AP-HP, Clichy, France; 6Serviced’Hépato-gastroentérologie, CHU Rouen, Rouen, France; 7Liver-Gastroenterology Department, University Hospital and Paul Sabatier University,Toulouse, France; 8UPMC, Univ Paris 06, GRC n!7, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MYPAC,

Paris, France; 9Laboratoire d’Immunologie et Hématologie Biologique, Hôpital Saint-Antoine, AP-HP, Paris, France; 10Inserm U1149, Centre deRecherche sur l’Inflammation (CRI), Paris, Université Paris 7-Denis-Diderot, Clichy, UFR de Médecine, Paris, France; 11Université Paris Diderot,Sorbonne Paris cité, Paris, France; 12Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain;

13Hematology Department, Hospital Clínic, IDIBAPS, University of Barcelona, Spain; 14Hematopathology Unit, Hospital Clínic, IDIBAPS,CIBERONC, Spain

Background and Aims:Myeloproliferative neoplasms (MPN) arethe leading cause of splanchnic vein thrombosis (SVT). Januskinase 2 gene (JAK2)V617F mutations are found in 80 to 90% ofpatients with SVT and MPN. Mutations of the calreticulin (CALR)gene have also been reported. However, as their prevalenceranges from 0 to 2%, the utility of routine testing is questionable.This study aimed to identify a group of patients with SVT at highrisk of harboring CALR mutations and thus requiring this genetictesting.Methods: CALR, JAK2V617F and thrombopoietin receptor gene(MPL) mutations were analysed in a test cohort that included312 patients with SVT. Criteria to identify patients at high riskof CALR mutations in this test cohort was used and evaluated ina validation cohort that included 209 patients with SVT.Results: In the test cohort, 59 patients had JAK2V617F, five hadCALR and none had MPL mutations. Patients with CALR mutationshad higher spleen height and platelet count than patients with-out these mutations. All patients with CALR mutations had aspleen height P16 cm and platelet count [200!109/L. These

criteria had a positive predictive value of 56% (5/9) and a negativepredictive value of 100% (0/233) for the identification of CALR

mutations. In the validation cohort, these criteria had a positivepredictive value of 33% (2/6) and a negative predictive value of99% (1/96).Conclusion: CALR mutations should be tested in patients withSVT, a spleen height P16 cm, platelet count [200!109/L, andno JAK2V617F. This strategy avoids 96% of unnecessary CALR muta-tions testing.Lay summary:Mutations of the CALR gene are detected in 0 to 2%of patients with SVT, thus the utility of systematic CALR mutationtesting to diagnose MPN is questionable. This study demonstratesthat CALR mutations testing can be restricted to patients withSVT, a spleen height P16 cm, a platelet count[200!109/L, andno JAK2V617F. This strategy avoids 96% of unnecessary CALR

mutations testing." 2017 European Association for the Study of the Liver. Publishedby Elsevier B.V. All rights reserved.

Introduction

Splanchnic vein thrombosis (SVT) indicates Budd-Chiari syndrome(BCS) and portal venous system thrombosis (PVT). Primary BCS is arare disorder defined as a blocked hepatic venous outflow tract atvarious levels from small hepatic veins to the terminal portion ofthe inferior vena cava.1 Non-malignant non-cirrhotic extrahepaticPVT is characterized by thrombus development in the main portal

Journal of Hepatology 2017 vol. 67 j 501–507

Keywords: Myeloproliferative neoplasms; Budd-Chiari syndrome; Portal vein

thrombosis; JAK2V617F; MPL mutation; CALR mutations; Platelets count;

Splenomegaly; DNA mutational analysis; Genetic testing.

Received 14 February 2017; received in revised form 19 April 2017; accepted 22 April

2017; available online 5 May 2017⇑ Corresponding author. Address: Service d’Hépatologie, Hôpital Beaujon, Assis-

tance Publique-Hôpitaux de Paris, Clichy, France. Tel.: +33 171114679; fax: +33

140875530.

E-mail address: [email protected] (P.-E. Rautou).y These authors contributed equally to this work.

Research Article

vein and/or its right or left branches and/or splenic or mesentericveins, or by the permanent obliteration that results from a priorthrombus.1 The pathogenesis of SVT is largely dependent on thepresence of systemic prothrombotic conditions that promotethrombus formation in the respective splanchnic veins.2,3

Myeloproliferative neoplasms (MPNs) are the leading cause ofSVT and are diagnosed in 25 to 50% of patients with SVT.4 In mostpatients with SVT and MPN, Janus kinase 2 gene (JAK2)V617F muta-tion is found. In 10% to 20% of patients with SVT this specificmutation is absent, whereas bone marrow biopsy or assessmentof endogenous erythroid colonies formation provide evidencefor MPN.5 Mutations across JAK2 exon 12 or the thrombopoietinreceptor gene (MPL) are rarely identified in patients with SVT.5

Two independent groups described heterozygous calreticulin(CALR) mutations as the second most prevalent acquired geneticalteration in essential thrombocythemia and primary myelofibro-sis.6,7 CALR mutations are mutually exclusive of JAK2 and MPL

mutations. Thereafter, CALR mutations have been found in 0 to2% of patients with SVT.8–17 Although CALR mutations appear tobe rare in patients with SVT and their detection not readily acces-sible to all centers, their identification influences patients’ clinicalmanagement. This prompted us to take advantage of a largeprospective cohort of SVT patients to identify the subgroup atthe highest risk of harboring CALR mutations and thus requiringthis genetic testing.

Patients and methods

Inclusion criteria

This study prospectively included patients with BCS or PVT seen between 2005

and 2013 at the French Reference Center for Vascular Disorders of the Liver

(Clichy, France) and for whom peripheral blood DNA was available for mutation

screening (Supplementary CTAT Table). The protocol was performed in accor-

dance with the ethical guidelines of the 1975 Declaration of Helsinki and was

approved by the institutional review board (CPP Ile de France IV, Paris; France).

Informed consent was obtained from all patients included in the study.

We looked for criteria characterizing patients at high risk of having CALR

mutations in this French cohort, thereafter referred to as ‘‘test cohort” and then

tested these criteria for validation in a previously reported cohort from Hospital

Clinic, Barcelona, thereafter referred to as ‘‘validation cohort”.8

Definitions

BCS was defined as hepatic outflow obstruction regardless of the cause or level of

obstruction, from the small hepatic veins to the entrance of the inferior vena cava

into the right atrium. BCS was confirmed by ultrasonography and/or multidetec-

tor computed tomography and/or magnetic resonance imaging, and/or

venography. Sinusoidal obstruction syndrome, as well as outflow obstruction

occurring in the setting of heart failure, orthotopic liver transplantation and hep-

atobiliary cancer were excluded from this definition. Diagnostic criteria for PVT

included recent portal, and/or splenic and/or mesenteric venous thrombosis or

portal cavernoma. PVT patients with cirrhosis or abdominal malignancies were

excluded.

Hematologic studies

JAK2V617F, MPL and CALR mutations were tested in all patients. JAK2V617F and MPL

mutation analyses were performed as previously described.5

For CALR mutations, we used DNA extracted by an automated standardized

procedure (Qiasymphony, Qiagen) from blood samples collected by venipuncture

in tubes containing 0.11 mol/L trisodium citrate and stored at "80 !C until anal-

ysis. The mutational status of CALR was determined using previously described

high-resolution sizing of fluorescent dye-labeled PCR amplification of exon 9,

with Sanger sequencing controls.7

Bone marrow biopsy and/or endogenous erythroid colonies formation were

performed when considered relevant by the physician according to French

recommendations.18

Investigations for other thrombotic risk factors

Patients were tested according to previously reported methods for the following

thrombotic risk factors:19 factor V R506Q mutation (factor V Leiden); G20210A

factor II gene mutation; deficiencies in protein C, protein S, or antithrombin

(regarded as primary deficiencies only in conjunction with a prothrombin index

P80%); paroxysmal nocturnal hemoglobinuria; and anti-phospholipid antibod-

ies.1 Oral contraceptive use was considered a thrombotic risk factor when taken

within the three months preceding diagnosis of SVT.20

Imaging analyses

All abdominal multidetector computed tomography or magnetic resonance imag-

ing performed within six months of SVT diagnosis were reviewed to measure the

greatest spleen height in coronal view.

Statistical analysis

Quantitative variables were expressed as median (interquartile range), and cate-

gorical variables as absolute and relative frequencies. Comparisons between

groups of quantitative and qualitative variables were performed using Mann

Whitney and the Fisher exact tests, respectively. All tests were two-sided and

used a significance level of 0.05. Data handling and analysis were performed with

SPSS 17.0 (SPSS Inc., Chicago, IL).

For further details regarding the materials used, please refer to the CTAT

table.

Results

Patient characteristics

Three hundred twelve patients were enrolled, including 99 (32%)with BCS and 213 (68%) with PVT. Patients’ characteristics areshown in Table 1.

In patients with BCS, hepatic venous outflow obstruction wasdue to occlusion of one, two and three hepatic veins in 10, 19 and67 patients, respectively, and due to obstruction of the suprahep-atic segment of the inferior vena cava in two patients. The lastpatient had small hepatic veins BCS. Thirteen out of the 99patients with BCS also had a PVT. Out of the 213 patients withPVT without BCS, 39% had a portal cavernoma and 61% an acutePVT. Portal, splenic and mesenteric veins were involved in 199(93%), 79 (37%) and 118 (55%) of these 213 patients, respectively.

Risk factors for thrombosis are detailed in Table 1. The mostcommon cause was MPN. JAK2V617F was detected in 81% of theMPN patients. No MPL mutation was found.

CALR mutation

CALR mutations were detected in five patients (1.6%), a propor-tion in agreement with previous studies. Their individual charac-teristics are presented in Table 2. None of the patients with CALR

mutations had JAK2V617F or MPL mutations. Out of the patientswithout CALR mutations, 59 had JAK2V617F, nine had a triple neg-ative MPN (absence of JAK2V617F, CALR or MPL mutations but pos-itive bone marrow biopsy in eight patients, or endogenouserythroid colonies formation in one patient) and 57 did not haveMPN after bone marrow biopsy and/or endogenous erythroidcolonies formation examination. We compared the clinical andlaboratory features of patients with CALR mutations with those

Research Article

502 Journal of Hepatology 2017 vol. 67 j 501–507

of patients with JAK2V617F, triple negative MPN and without MPNs(Table 3). Patients with CALR mutations had significantly higherplatelet counts than patients with triple negative MPNs andpatients without MPNs. Patients with CALR mutations also hada higher spleen height than patients with JAK2V617F, with triplenegative MPNs and patients without MPNs (p = 0.05, p = 0.05,p = 0.001, respectively). Patients with CALR mutations also hadsignificantly lower haemoglobin and haematocrit levels thanpatients with JAK2V617F. There was no difference between patientswith CALR mutations and other groups regarding other clinicalcharacteristics, frequency of inherited and other acquired riskfactors for thrombosis or laboratory features.

Given the high platelet count and spleen height observed inpatients with CALR mutations, we tested the hypothesis that cri-teria derived from those proposed in 2005, before JAK2 and CALR

mutations discovery, namely spleen height P16 cm and plateletcount [200!109/L, could identify a group at high risk of CALR

mutation among patients with SVT.18 As shown in Fig. 1, all fivepatients with CALR mutations fulfilled these criteria. These crite-ria thus had a positive predictive value of 56% (5/9) and a nega-tive predictive value of 100% (0/233) for the identification ofCALR mutations. Out of the other four patients with a spleenheightP16 cm and platelet count[200!109/L, two had a histo-logically proven MPN, one had a histiocytosis and one had anantiphospholipid antibody syndrome.

Validation cohort

We then tested the criteria ‘‘spleen height P16 cm and plateletcount [200!109/L” in an independent cohort of patients with

SVT previously reported.8 As shown in Fig. 2, two out of the threepatients with CALR mutation fulfilled these criteria. The thirdpatient with CALR mutations had a platelet count of 477!109/L,but spleen height of 11 cm. A fourth patient with a CALRmutationin this cohort had a platelet count[200!109/L and an enlargedspleen based on the radiology report. However, images couldnot be retrieved so that precise spleen size could not bemeasured. Patients’ features are detailed in Table 2. In the valida-tion cohort, the criteria ‘‘spleen heightP16 cm and platelet count[200!109/L” thus had a positive predictive value of 33% (2/6)and negative predictive value of 99% (1/96) for the identificationof CALR mutations.

Discussion

This study of more than 500 patients with SVT has allowed forthe characterization of patients in whom CALR mutations shouldbe tested.

Indeed, the main finding of this study was that CALR muta-tions were almost exclusively found in patients with SVT, with-out JAK2V617F, when spleen height was P16 cm and plateletcount[200!109/L. CALR mutations are driving essential throm-bocythemia and primary myelofibrosis, but not polycythemiavera.21 Indeed, these mutations induce activation of the throm-bopoietin receptor, MPL, resulting in the proliferation of themegakaryocytic lineage. Clinical manifestations of CALR mutatedMPNs include high platelet count and enlarged spleen.21 Thus,identification in our study of these two parameters as markersof the presence of CALR mutations is not surprising. Because of

Table 1. Characteristics and risk factors for thrombosis in patients with BCS or PVT.

BCS

(n = 99)

PVT

(n = 213)

Age, years 35 (25–45) 43 (32–56)

Males 28 (28%) 119 (56%)

Inherited thrombophilia

Protein C deficiency 4/81 (5%) 14/185 (8%)

Protein S deficiency 4/78 (5%) 19/188 (10%)

Antithrombin deficiency 1/84 (1%) 4/197 (2%)

Factor V gene mutation 11/96 (11%) 9/210 (4%)

Factor II gene mutation 4/99 (4%) 15/213 (7%)

Acquired thrombophilia

Myeloproliferative neoplasms 30/99 (30%) 44/213 (21%)

Polycythemia vera 13 (13%) 19 (9%)

Essential thrombocythemia 10 (10%) 13 (6%)

Primary myelofibrosis 3 (3%) 3 (1%)

Unclassifiable 4 (4%) 9 (4%)

JAK2V617F 28/99 (28%) 31/213 (15%)

MPL mutation 0/99 0/213

CALR mutation 1/99 (1%) 4/213 (2%)

Antiphospholipid antibody syndrome 9/96 (9%) 23/210 (11%)

Paroxysmal nocturnal haemoglobinuria 4/83 (5%) 1/167 (0.5%)

Hormonal (OC and/or pregnancy) 33/96 (34%) 45/212 (21%)

Systemic disordery 7/99 (7%) 11/213 (5%)

Local risk factor! 3 (3%) 16 (8%)

Single risk factor 44 (44%) 91 (43%)

Multiple risk factors 26 (26%) 49 (23%)

No risk factor 29 (29%) 73 (34%)

Values are n (%) or median (interquartile range).

BCS, Budd-Chiari syndrome; OC, oral contraception; PVT, portal venous system thrombosis.y Behçet disease, sarcoidosis, vasculitis, connective tissue disease or lymphoide hemopathy.! Intra-abdominal inflammation, infection, or abscess.

JOURNAL OF HEPATOLOGY

Journal of Hepatology 2017 vol. 67 j 501–507 503

Table 2. Characteristics of patients with SVT and CALR mutations.

Patient Cohort Age

(yr)

Gender JAK2V617F

status

Haematologic

diseases

Type of

SVT

Other risk factor for

thrombosis

Spleen height

(cm)

Platelet count

(109/L)

1 Test 24 Female Negative PMF BCS OC and Gastroenteritis 20.0 417

2 Test 30 Female Negative ET PVT Sarcoidosis 16.6 436

3 Test 39 Male Negative PMF PVT None 19.0 453

4 Test 32 Female Negative PMF PVT None 17.0 476

5 Test 36 Male Negative PMF PVT None 18.0 477

6 Validation 34 Male Negative ET BCS None 18.0 300

7 Validation 57 Female Negative PMF PVT None 18.0 607

8 Validation 57 Female Negative ET BCS None 11.0 477

9 Validation 73 Male Negative ET PVT None n.a.* 337

BCS, Budd-Chiari syndrome; ET, essential thrombocythemia; PMF, primary myelofibrosis; n.a., not available; OC, oral contraception; PVT, Portal venous system thrombosis;

yr, years.* No spleen height available but the patient was known to have an enlarged spleen.

Table 3. Characteristics associated with the CALR mutations in patients with SVT from the test cohort.

With CALR mutations

(n = 5)

JAK2V617F

(n = 59)

Triple negative MPN

(n = 9)

No MPN

(n = 57)

Age, years 32 (27–37) 42 (31–49) 47 (30–55) 35 (26–47)

Males 2 (40%) 15 (25%) 4 (44%) 20 (35%)

Liver disease

BCS 1 (20%) 28 (48%) 1 (11%) 25 (44%)

PVT 4 (80%) 31 (52%) 8 (89%) 32 (56%)

Inherited thrombophilia

Protein C deficiency 0/5 3/43 (7%) 1/9 (11%) 2/50 (4%)

Protein S deficiency 0/5 6/43 (14%) 0/9 7/51 (14%)

Antithrombin deficiency 0/5 1/45 (2%) 0/9 0/57

Factor V gene mutation 0/5 7/58 (12%) 0/9 1/55 (2%)

Factor II gene mutation 0/5 5/59 (8%) 0/9 4/55 (7%)

Acquired thrombophilia

MPNs 5 (100%) 59 (100%) 9 (100%) 0***

Antiphospholipid antibody syndrome 0/5 5/56 (9%) 1/9 (11%) 5/57 (10%)

Paroxysmal nocturnal haemoglobinuria 0/5 0/46 0/7 1/42 (2%)

Hormonal (OC and/or pregnancy) 1/5 (20%) 15/56(25%) 2/9 (22%) 20/56 35%)

Systemic disordery 1/5 (20%) 0/59 0/9 2/57 (3%)

Local risk factor! 1/5 (20%) 1/55 (2%) 2/9 (22%) 1/54 (2%)

Single risk factor 3/5 (60%) 30/59 (51%) 5/9 (56%) 23/57 40%)

Multiple risk factors 2/5 (20%) 29/59 (49%) 4/9 (44%) 9/57 (16%)

No risk factor 0/5 0/59 0/9 25/57 (44%)

Haemoglobin, g/dl 11.9 (10.0–13.0) 14.2 (12.7–15.5)* 13.2 (12.1–15.4) 12.7 (11.6–14.6)

Haematocrit, % 36.5 (31.3–40.4) 42.8 (38.8–48.0)* 40.0 (35.5–45.5) 38.5 (35.5–43.1)

WBC count, !109/L 7 (5.3–12.1) 10 (7.6–13.5) 7.2 (6.3–8.7) 6.8 (4.9–8.1)

ANC, !109/L 5.2 (3.4–10) 7.2 (5.3–10.8) 4.7 (3.9–5.3) 3.9(2.6–5.5)

Platelet count, !109/L 453 (427–477) 377 (286–500) 234 (225–431)* 227 (142–314)**

Spleen height, cm 18.0 (16.8–19.5) 15.0 (13.2–18.0) 14.2 (7–18) 11.0 (9.0–14.0)**

AST, U/L 71 (21–114) 44 (28–91) 37 (21–53) 28 (22–42)

ALT, U/L 73 (33–169) 56 (32–90) 51 (32–100) 35 (21–49)

Serum bilirubin, mmol/L 16 (11–31) 16 (10–33) 11 (8–24) 13 (7–20)

Serum creatinine, mmol/L 54 (51–86) 68 (58–77) 71 (68–84) 71 (64–84)

Serum albumin, g/L 34 (29–43) 38 (33–43) 41 (33–42) 38 (33–45)

Factor V, % 86 (53–111) 62 (52–82) 88 (43–117) 90 (71–106)

Values are n (%) or median (interquartile range). Triple negative correspond to patient without JAK2V617F, CALR andMPLmutation and with confirmed MPN. All patients from

the group confirmed MPN had a BM biopsy and/or a EEC.

*p\0.05, **p\0.01, ***p\0.001 vs. patients with CALR mutations (only differences with the CALR mutated group are indicated). Comparisons between groups of quan-

titative and qualitative variables were performed using Mann Whitney and the Fisher exact tests, respectively.

ALT, alanine transaminase; ANC, absolute neutrophil count; AST, aspartate transaminase; BCS, Budd-Chiari syndrome; BM, bone marrow; EEC, endogenous erythroid

colonies formation; MPN, myeloproliferative neoplasm; OC, oral contraception; PVT, portal venous system thrombosis; vs., versus; WBC, white blood cell.y Behçet disease, sarcoidosis, vasculitis, connective tissue disease or lymphoide hemopathy.! Intra-abdominal inflammation, infection, or abscess.

Research Article

504 Journal of Hepatology 2017 vol. 67 j 501–507

hypersplenism and haemodilution related to portal hypertension,we chose a lower threshold for platelet count (200!109/L plate-lets) than in patients without SVT (450!109/L).18,21

When combining the test and validation cohorts together, thecriteria ‘‘spleen height P16 cm and platelet count[200!109/L”had a negative predictive value of 99.7%. Out of the 344 patientswithout JAK2V617F, these criteria would have avoided 329 unnec-essary CALR mutations tests with only one false negative result.Combining the two cohorts, four out of the eight patients withspleen height P16 cm and a platelet count[200!109/L and noCALR mutation had a triple negative MPN. These results suggestthat a bone marrow biopsy should be performed in patients withboth a spleen height P16 cm and a platelet count[200!109/L

when CALR mutations are absent. Six patients with SVT and CALR

mutations have been reported so far in the literature, in additionto those included in the present study.9,10,12,15 Spleen size andplatelet count were mentioned for three of them: all had enlargedspleens and a platelet count[200!109/L, which provide furtherevidence supporting the relevance of our findings.9,12

Due to the rarity of CALR mutations in patients with SVT, wewere not able to determine whether these mutations are associ-ated with a specific pattern of splanchnic vessels involvement ora particular outcome.

Our results have several implications. Firstly, identification ofCALR mutations allows the diagnosis of an underlying MPN and,in some cases, can remove the need for bone marrow biopsy,

312 patients with splanchnic vein thrombosis

(99 Budd-Chiari syndrome; 213 portal venous system thrombosis)

With JAK2V617F

(n = 59)

Without JAK2V617F

(n = 253)

CALR mutation

(n = 5)

Spleen height ≥16 cm and

platelet count >200x109/L

(n = 9)

Spleen height <16 cm or

platelet count ≤200x109/L

(n = 233)

Without JAK2V617F

or CALR

or MPL mutation

(n = 4)

Triple negative

MPN (n = 7)

No MPN

(n = 54)

Unavailable data

(n = 11)

Triple negative

MPN (n = 2)

No MPN

(n = 1)

BM

(n = 3)No BM

(n = 1)

BM and/or

EEC

(n = 61)

No BM

and/or

EEC

(n = 172)

No MPN

(n = 2)

BM and/or EEC

(n = 2)

No BM and/or

EEC (n = 9) CALR mutation

(n = 0)

Without JAK2V617F

or CALR or

MPL mutation

(n = 233)

Fig. 1. Flow chart for the test cohort. Unavailable data correspond to patients with platelet count[200!109/L but without spleen height available. Triple negative MPN

patients are patients without JAK2V617F, CALR and MPL mutation, but with a MPN proven by a BM biopsy and/or an EEC. BM, bone marrow; EEC, endogenous erythroid

colonies formation; MPN, myeloproliferative neoplasm.

209 patients with splanchnic vein thrombosis

(69 Budd-Chiari syndrome; 140 portal venous system thrombosis)

CALR mutation

(n = 2)

Spleen height ≥16 cm and

platelet count >200x109/L

(n = 6)

Spleen height <16 cm or

platelet count ≤200x109/L

(n = 96)

Without JAK2V617F

or CALR or

MPL mutation

(n = 4)

Unavailable data

(n = 46)

CALR mutation

(n = 1)

With JAK2V617F

(n = 61)

Without JAK2V617F

(n = 148)

CALR mutation

(n = 1)

Without JAK2V617F

or CALR or

MPL mutation

(n = 95)

Fig. 2. Flow chart for the validation cohort. Unavailable data correspond to patients with platelet count [200!109/L but without spleen height available. MPN,

Myeloproliferative neoplasm.

JOURNAL OF HEPATOLOGY

Journal of Hepatology 2017 vol. 67 j 501–507 505

an invasive procedure. Secondly, the criteria we proposed here(spleen height was P16 cm and platelet count[200!109/L) arereadily accessible and identify a patient population at high riskof having a MPN (with or without CALR mutations). Thesepatients should undergo rapid haematological investigations, toconsider cytoreductive therapy. Indeed, data from the Frenchnetwork on vascular liver diseases suggest that early introductionof cytoreductive therapy in patients with SVT and MPN reducessevere liver-related complications and improves event free sur-vival.22 Thirdly, by avoiding 96% of unnecessary CALR mutationstesting, this strategy will have economic consequences. Forinstance, in France, based on an incidence of primary SVT of 22per million inhabitants (around 2 per million for BCS and 2 per100, 000 for PVT23), on a population of 67 million inhabitantsand on a cost of CALR of 124 euros/test, this strategy would saveapproximately 200,000 euros per year.

In conclusion, this study provides the rationale for a new algo-rithm to diagnose MPNs in patients with SVT (Fig. 3). Given itshigh frequency in this setting, JAK2V617F must be tested first.Thereafter, patients without JAK2V617F but with spleen heightP16 cm and platelet count [200!109/L should be tested forCALR mutations. A bone marrow biopsy should be proposed inpatients without CALR mutations when the spleen is enlargedand platelets counts are normal or increased. In the remainingpatients, namely those without JAK2V617F, when spleen height is\16 cm and platelet count 6200!109/L, MPNs are extremelyuncommon and further studies are needed to identify thoserequiring a bone marrow biopsy.

Financial support

This work was supported by the Agence Nationale pour la

Recherche (ANR 14 CE35 0022 03/JAK-POT) and J.P by the ‘‘poste

accueil INSERM”.

Conflict of interest

The authors who have taken part in this study declared that theydo not have anything to disclose regarding funding or conflict ofinterest with respect to this manuscript.

Authors’ contributions

J.P., and P-E.R. wrote the paper. C.M., and N.C. performed themutational screening. A.P., O.G., C.B. and K.Z. collected the clinicaldata. F.T., F.C., D.C., and J.C.G.P., collected and analysed the datafrom the Spanish cohort. All authors discussed and criticallyrevised the manuscript.

Supplementary data

Supplementary data associated with this article can be found, inthe online version, at http://dx.doi.org/10.1016/j.jhep.2017.04.021.

References

Author names in bold designate shared co-first authorship

[1] Plessier A, Rautou P-E, Valla D-C. Management of hepatic vascular diseases. J

Hepatol 2012;56:S25–S38.

[2] Plessier A, Darwish-Murad S, Hernandez-Guerra M, Consigny Y, Fabris F,

Trebicka J, et al. Acute portal vein thrombosis unrelated to cirrhosis: a

prospective multicenter follow-up study. Hepatology 2010;51:210–218.

[3] Darwish Murad S, Plessier A, Hernandez-Guerra M, Fabris F, Eapen CE, Bahr

MJ, et al. Etiology, management, and outcome of the Budd-Chiari syndrome.

Ann Intern Med 2009;151:167–175.

20-30%

55-65%

3%

Absent

CALR mutations

testing

2%

Spleen height ≥16 cm

and platelets >200x109/L

Absent

Bone marrow

biopsy

Spleen height <16 cm

or platelets ≤200x109/L

Consider bone marrow biopsy

and/or endogenous erythroid

colonies formation

JAK2V617F testing

Present

MPN

No

MPN

Present

Fig. 3. Proposed algorithm for the identification of myeloproliferative neoplasms (MPNs) in patients with primary splanchnic vein thrombosis (SVT). The first step

consists of JAK2V617F testing. Patients without JAK2V617F but with spleen height P16 cm and platelet count [200!109/L should be tested for CALR mutations; if CALR

mutations are absent, a bone marrow biopsy should be performed. In the remaining patients, MPNs are extremely uncommon and a bone marrow biopsy and/or

endogenous erythroid colonies formation can be considered on a case by case basis.

Research Article

506 Journal of Hepatology 2017 vol. 67 j 501–507

[4] Smalberg JH, Arends LR, Valla DC, Kiladjian J-J, Janssen HL, Leebeek FW.

Myeloproliferative neoplasms in Budd-Chiari syndrome and portal vein

thrombosis: a meta-analysis. Blood 2012;120:4921–4928.

[5] Kiladjian J-J, Cervantes F, Leebeek FW, Marzac C, Cassinat B, Chevret S, et al.

The impact of JAK2 and MPL mutations on diagnosis and prognosis of

splanchnic vein thrombosis: a report on 241 cases. Blood

2008;111:4922–4929.

[6] Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic

CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N

Engl J Med 2013;369:2391–2405.

[7] Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD,

et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N

Engl J Med 2013;369:2379–2390.

[8] Turon F, Cervantes F, Colomer D, Baiges A, Hernández-Gea V, Garcia-Pagán

JC. Role of calreticulin mutations in the aetiological diagnosis of splanchnic

vein thrombosis. J Hepatol 2015;62:72–74.

[9] Plompen EPC, Valk PJM, Chu I, Murad SD, Plessier A, Turon F, et al. Somatic

calreticulin mutations in patients with Budd-Chiari syndrome and portal

vein thrombosis. Haematologica 2015;100:e226–e228.

[10] Ho WK, Hong FS. CALR exon 9 mutations in idiopathic splanchnic vein

thrombosis in an Australian cohort. Thromb Res 2016;150:51–52.

[11] Zhang X, Zhou M, Chao H, Lu X, Cen L. CALR gene mutation detection and

clinical observation of 150 essential thrombocythemia patients. Zhonghua

Xue Ye Xue Za Zhi 2015;36:378–382.

[12] Sekhar M, Patch D, Austen B, Howard J, Hart S. Calreticulin mutations and

their importance in splanchnic vein thrombosis. Br J Haematol

2016;174:158–160. http://dx.doi.org/10.1111/bjh.13756.

[13] Colaizzo D, Amitrano L, Guardascione MA, Favuzzi G, Tiscia GL, D’Andrea G,

et al. Clinical utility of screening for CALR gene exon 9 mutations in patients

with splanchnic venous thrombosis. Thromb Haemost

2015;113:1381–1382.

[14] Castro N, Rapado I, Ayala R, Martinez-Lopez J. CALR mutations screening

should not be studied in splanchnic vein thrombosis. Br J Haematol

2015;170:588–589.

[15] Roques M, Park J-H, Minello A, Bastie JN, Girodon F. Detection of the CALR

mutation in the diagnosis of splanchnic vein thrombosis. Br J Haematol

2015;169:601–603.

[16] Iurlo A, Cattaneo D, Gianelli U, Fermo E, Augello C, Cortelezzi A. Molecular

analyses in the diagnosis of myeloproliferative neoplasm-related splanchnic

vein thrombosis. Ann Hematol 2015;94:881–882.

[17] Haslam K, Langabeer SE. To screen for CALR mutations in patients with

splanchnic vein thrombosis? Clin Lab 2015;61:441–442.

[18] Chait Y, Condat B, Cazals-Hatem D, Rufat P, Atmani S, Chaoui D, et al.

Relevance of the criteria commonly used to diagnose myeloproliferative

disorder in patients with splanchnic vein thrombosis. Br J Haematol

2005;129:553–560.

[19] Denninger MH, Chaït Y, Casadevall N, Hillaire S, Guillin MC, Bezeaud A, et al.

Cause of portal or hepatic venous thrombosis in adults: the role of multiple

concurrent factors. Hepatology 2000;31:587–591.

[20] Valla D, Le MG, Poynard T, Zucman N, Rueff B, Benhamou JP. Risk of hepatic

vein thrombosis in relation to recent use of oral contraceptives. A case-

control study. Gastroenterology 1986;90:807–811.

[21] Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in

classical myeloproliferative neoplasms. Blood 2017;129:680–692.

[22] Chagneau-Derrode C, Roy L, Guilhot J, Gloria O, Ollivier-Hourmand I, Bureau

C. Impact of cytoreductive therapy on the outcome of patients with

myeloproliferative neoplasms and hepatosplanchnic vein thrombosis. Hepa-

tology 2013;58:857A.

[23] Ageno W, Dentali F, Pomero F, Fenoglio L, Squizzato A, Pagani G, et al.

Incidence rates and case fatality rates of portal vein thrombosis and Budd-

Chiari Syndrome. Thromb Haemost 2017;117:794–800.

JOURNAL OF HEPATOLOGY

Journal of Hepatology 2017 vol. 67 j 501–507 507

137

IV. DISCUSSIONANDPROSPECTS

A. JAK2V617Finarterialevents

The incidence of arterial cardiovascular events are 10 times higher in patients with

polycythaemiaverathan inthegeneralpopulation[402,470].Asdetailed inthe introduction,

other mechanisms beyond atherosclerosis can be suspected. Indeed, patients with MPNs

displayahighfrequencyofmyocardialinfarctionwithnormalcoronaryangiography[404].The

mechanism underlying the link betweenmyocardial infarctionwithout obstructive coronary

diseaseandMPNsisunknown,butvasoactivephenomenon(localintensevasoconstriction)can

be suspected [393,394]. Therefore, the purpose of the first study was to examine the

consequencesofJAK2V617Fonarterialvascularreactivity.

Thefirstmajorfindingofourstudyisthedemonstrationthat JAK2V617FMPNinducesa

considerableincreaseinarterialcontraction.Thisfindingsuggestsavasospasticphenomenon

associatedwithMPNandthusrepresentsaparadigmshiftinMPNswherearterialeventswere

only seenas a result of a thromboticprocess [243].Thismechanism is relevantnotonly for

coronaryarteries,butalsoforbrainarteries[400,401,406,408]andingeneralinanysitewith

non-stenoticatheroscleroticplaques,which isknownto favourarterialspasm[393,394].The

mechanismsunderlyingarterialspasmarenotcompletelyelucidated,butarterialcontraction

plays a central role [400,401,406,407], which is concordant with our findings, since we

observedapronouncedincreaseincontractioninresponsetodifferentvasoconstrictiveagents.

The secondmajor finding of our work is the identification of JAK2V617F RBCs derived

microvesicles as responsible for the increased arterial contraction associated with MPNs.

Importantly,weobservedthiseffectwithJAK2V617FRBCsmicrovesiclesfrommice,butalsowith

microvesiclesisolatedfrompatientscarryingJAK2V617F.Wewantedtofocusonthequalitative

138

effect of microvesicles. Therefore we assessed vascular reactivity using the same

concentrationsofmicrovesiclesforbothgroups,suggestingthatmicrovesiclecomposition,and

notconcentration,accounts for theobservedvasculareffect.Theseresultsarereminiscentof

epidemiological studies showing that MPN patients with JAK2V617F have higher haematocrit

level [49,69] andahigher riskof cardiovascular events thanMPNpatientswithout JAK2V617F

[69,119–122]. Inaddition,asdescribed in the introductionredbloodcellshavealreadybeen

implicatedincardiovasculareventsinsicklecelldisease[250]andmorerecentlyinPVpatients

[255]. Indeed, under venous flow condition, RBCs from JAK2V617F PV patients display an

increasedadhesiontoendothelialcellsinvitro[255],whichismediatedbyJAK2V617Fmutation

[256]. A recent study conducted by Zhao et al [471], demonstrated that the deletion of

pleckstrin-2,whichplaysanimportantroleinerythroidsurvivalandproliferation,inamouse

model of MPNs (VavCre/Jak2V617F), prevents venous thrombosis, mainly by a reduction of

Jak2V617FRBCsmass.These resultsprove thatRBCsaremajoractors inMPNscardiovascular

eventsandthat JAK2V617F inRBCs isresponsible forphenotypicmodifications,whichsupport

our findings. However, their role has been study only in venous thrombosis and never in

arterialeventsinthecontextofMPNs.Inthismatter,ourworksupportsforthefirsttimethe

importanceofRBCsinarterialcardiovasculareventsinthecontextofJAK2V617FMPNs.

Finally, in our work we demonstrated that NO pathway inhibition and increased

endothelial oxidative stress are implicated in this increased arterial contraction in MPN.

Severalgroupsreportedhighlevelsofcirculatingreactiveoxygenspeciesproducts[452–454]

andlowantioxidantstatusinMPN[453][455],butendothelialoxidativestresshadneverbeen

investigated.

Our work opens new potential therapeutic perspectives to prevent MPNs’

cardiovascular events. Indeed, statins being known to play a protective role on endothelial

functionandonoxidative stress,we tested thisdrugandobserveda strong improvement in

139

arterialresponsetovasocontrictingagentinourMPNmousemodel[472,473].Wealsotested

available treatments forMPN and observed that hydroxyurea, but not ruxolitinib, improved

arterialcontraction.Thisdifferencemightbeexplainedbythefactthathydroxyureadecreased

red blood cell count in our mouse model whereas ruxolitinib did not [474,475]. Another

explanationcouldbethathydroxyureahasbeenshowntoenhanceNOreleasebyendothelial

cellswhilesuchaneffecthasnotbeenreportedwithruxolitinib[476].

Additionalworkswould be useful to further elucidate the pathophysiology of arterial

cardiovasculareventsinMPNs.First,arterialvasospasmshouldbeproveninvivoinourmouse

modelofMPNs.Wecoulduseapreviouslydescribedmodelofprovokedcoronaryvasospam

usingmethylergometrine[477].Secondly,theexactmechanismofhowtheRBCs’microvesicles

from MPNs increased ROS generation in endothelial cells remains not clearly elucidated.

Dysfunctional mitochondria carried by microvesicles could be an interesting hypothesis.

Indeed, dysfunctional mitochondria are well known ROS inducers [478], ROS have been

implicated in cardiovascular disease and endothelial dysfunction for a long time [479] and

microvesicles can carry organelles, such as mitochondria [480]. Mature RBCs do not carry

mitochondria, but immature RBCs do. An other hypothesis, supported by previous work on

sickle cell disease [481–483], could be a NO scavenging by RBCs’ microvesicles containing

heme. Finally, Simvastatin is awell-knownand easily accessibledrug, thus our results could

pavethewayfortestingsimvastatintopreventarterialeventsinpatientswithMPNs.

B. JAK2V617FinBudd-Chiarisyndrome

Myeloproliferative neoplasms are the leading causeof BCS, diagnosed in 25–50% of

suchpatients [287]. In most patients with BCS andmyeloproliferative neoplasms, JAK2V617F

mutationisfoundinmyeloidcells.JAK2V617Fhasalsobeendetectedinliverendothelialcellsof

patients withBCS [45]. InBCS, JAK2V617F is associated with poorerprognostic features at

140

presentation and earlier need for hepaticdecompression procedures [287]. Therefore, the

secondstudyfocusedontheconsequencesofendothelialJAK2V617FinamousemodelofBCS,by

partialinferiorvenacavaligation.

Inourwork,theoperatedmicedevelopedasexpectedportalhypertensionsecondaryto

thestenosisoftheinferiorvenacavainitssupra-hepaticportion.ThepresenceoftheJAK2V617F

mutation in endothelial cells did not have an impact on the development of this portal

hypertension. In addition, the partial inferior vena cava ligation was responsible for an

increased hepatic fibrosis, quantified by Collagen 1α1 mRNA expression, αSMA mRNA

expressionandsiriusredstainingincomparisonwithshammice.Theseresultsareconsistent

withtheoriginalarticledescribingthismodelbySimonettoetal[468]andwiththehistologyof

Budd-Chiari syndrome in humans. However, endothelial JAK2V617F did not influence liver

fibrosis.Serummarkersofhepaticinjury(ASTandALT)andliverinflammation(TNFαmRNA

expression)showednosignificantincreasesecondarytosurgery,whichisalsoconsistentwith

theoriginaldescriptionofthemodel.EndothelialJAK2V617Fhadnotinfluenceonhepaticinjury.

Efficientendothelialrecombinationinliverendothelialcellswasverifiedinourmiceusingan

mTmGapproachincollaborationwiththegroupofCJames(Bordeaux,INSERM1034).

In conclusion,we foundnoevidence in ananimalmodelthat endothelial JAK2V617Fcan

explainthemoreseverepresentationofpatientswithBudd-ChiarisyndromeandJAK2V617F.The

explanation for increased severity of thesepatients should therefore be sought mostly in

myeloid JAK2V617F.Thus, future therapeuticstrategies to improvethemanagementofpatients

with Budd-Chiari syndrome andmyeloproliferative neoplasms might focus on myeloid cells

rather than on endothelial cells. The role of circulating myeloid cells JAK2V617F in the

complications of BCS should be assessed in a mouse model of MPNs. However, because of

bleeding tendency, the surgery in this model could be difficult. The question remaining

141

unanswered is the implication of endothelial JAK2V617F in the initial development of BCS.

However,nomousemodelofspontaneousBCShasyetbeendescribed.

C. CALRandsplanchnicveinthrombosis

TheaimofthelaststudywastoidentifythesubgroupofpatientswithSVTatthehighest

riskofharbouringCALRmutationsandthusrequiringthisgenetictesting.

Our work showed that patients without JAK2V617F mutation and SVT, who display a

spleenheight ≥16 cmandplatelet count > 200x109/L should be tested for CALRmutations.

Thisalgorithmhadanegativepredictivevalueof99.7%andavoided96%ofunnecessarytest

inourstudy.Inthisgroupofpatients,abonemarrowbiopsyshouldbeproposedwhenCALR

mutationsarenegative.Intheremainingpatients,namelythosewithoutJAK2V617F,whenspleen

height is<16cmorplateletcount≤200x109/L,MPNsareextremelyuncommonand further

studiesareneededtoidentifythoserequiringabonemarrowbiopsy.

Interestingly,JainetalpublishedalettertotheeditorinresponsetoourstudyinJournal

ofHepatology.Theysuggested that the typeofCALRmutationcould influence thevalidityof

ourfindings(seeappendix2).Theybasedtheirresponseonthefactthatintheircohortof210

patients with Budd-Chiari syndrome, one patient, with a 3-bp deletion, had a low platelets

countandaspleenheight<16cm.However,mutationsinvolvingindelsoccurringasmultiples

of3-bppreservetheoriginalreadingframeandarenotknowntobepathogenic(3-6).Thus,the

onlyotherpatientrepresentingaCALRmutationintheircohortconfirmedouralgorithm.Our

responsewaspublishedinthejournal(seeAppendix2).

Currently, still 2 to 5% of patientswith SVT suffer fromMPNwithout JAK2 or CALR

mutations.Theoretically,BMbiopsyshouldbeperformedtomore than50%ofpatientswith

SVT, meaning those without JAK2 or CALR mutations. However, it is not easily feasible and

142

actuallyneverdone inreal life.Weareplanning for futureworktocreateacompositescore,

withmorpho-biologicalparametersthatcouldidentifymorepreciselypatientswithSVT,who

haveahighriskofMPNswithoutJAK2orCALRmutationstoavoidunnecessaryBMbiopsy.

V. CONCLUSION

In conclusion this thesis work provides new insights in the pathophysiology of

cardiovasculareventsinpatientswithmyeloproliferativeneoplasms.

Onthearterialside,thisworkopensanewparadigminarterialeventsinthecontextof

MPNs with possible vasospastic phenomenons. Indeed, JAK2V617F red blood cell derived

microvesicles induceamajor increase inarterialcontraction thatcouldcontribute toarterial

eventsassociatedwithMPNsandsimvastatinimprovesthisarterialcontraction.

On thevenousside, thiswork focusesonsplanchnicvein thrombosis in thecontextof

endothelial JAK2V617F and CALR mutations. Endothelial JAK2V617F does not seem to modify

presentationofBudd-Chiarisyndromeinamousemodelofpartialinferiorvenacavaligation.

Inaddition,thisworkprovidesanewalgorithmtodetectCALRmutatedpatientsinthecontext

ofsplanchnicveinthrombosis.

143

VI. REFERENCES[1] DameshekW.Editorial:SomeSpeculationsontheMyeloproliferativeSyndromes.Blood1951;6:372–5.[2] Thiele J, Kvasnicka HM. [Chronic myeloproliferative disorders. The new WHOclassification].Pathol2001;22:429–43.[3] Tefferi A, Vardiman JW. Classification and diagnosis ofmyeloproliferative neoplasms:the2008WorldHealthOrganizationcriteriaandpoint-of-carediagnosticalgorithms.Leukemia2008;22:14–22.[4] Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic humanleukocytes.JNatlCancerInst1960;25:85–109.[5] Groffen J, Stephenson JR, Heisterkamp N, Klein A de, Bartram CR, Grosveld G.Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, onchromosome22.Cell1984;36:93–9.[6] Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Beau MML, et al. The 2016revision to the World Health Organization classification of myeloid neoplasms and acuteleukemia.Blood2016;127:2391–405.[7] MoulardOdile,MehtaJyotsna,FryzekJon,OlivaresRobert,IqbalUsman,MesaRubenA.Epidemiology of myelofibrosis, essential thrombocythemia, and polycythemia vera in theEuropeanUnion.EurJHaematol2014;92:289–97.[8] TitmarshGlenJ.,DuncombeAndrewS.,McMullinMaryFrances,O’RorkeMichael,MesaRuben, Vocht Frank, et al. How common are myeloproliferative neoplasms? A systematicreviewandmeta-analysis.AmJHematol2014;89:581–7.[9] VaquezH.Suruneformespécialedecyanoses’accompagnantd’hyperglobulieexcessiveetpersistante.CRSocBiolParis1892:vol.44,384-388.[10] OslerW.Osler,W. (1903).Chronic cyanosiswithpolycythemiaandenlargedspleen:anewclinicalentity.TransAmerPhycns1903:vol.18,299.[11] Epstein E, Goedel A. Hämorrhagische thrombocythämie bei vasculärer schrumpfmilz.VirchowsArchFürPatholAnatPhysiolFürKlinMed1934.[12] Heuck G. Zwei Fälle von Leukämie mit eigenthümlichem Blut- resp.Knochenmarksbefund.ArchFürPatholAnatPhysiolFürKlinMed1879;78:475–96.[13] TefferiA.MyelofibrosiswithMyeloidMetaplasia.NEnglJMed2000;342:1255–65.[14] Barbui T, Thiele J, Vannucchi AM, Tefferi A. Problems and pitfalls regarding WHO-defined diagnosis of early/prefibrotic primary myelofibrosis versus essentialthrombocythemia.Leukemia2013;27:1953–8.[15] Guglielmelli P, Pacilli A,RotunnoG,RumiE,Rosti V,Delaini F, et al. Presentation andoutcomeofpatientswith2016WHOdiagnosisofprefibroticandovertprimarymyelofibrosis.Blood2017;129:3227–36.[16] Mudireddy Mythri, Shah Sahrish, Lasho Terra, Barraco Daniela, Hanson Curtis A.,Ketterling Rhett P., et al. Prefibrotic versus overtly fibrotic primary myelofibrosis: clinical,cytogenetic,molecularandprognosticcomparisons.BrJHaematol2017;0.[17] BarbuiT,ThieleJ,PassamontiF,RumiE,BoveriE,RuggeriM,etal.SurvivalandDiseaseProgression in Essential Thrombocythemia Are Significantly Influenced by AccurateMorphologicDiagnosis:AnInternationalStudy.JClinOncol2011;29:3179–84.[18] Thiele J, Kvasnicka HM, Müllauer L, Buxhofer-Ausch V, Gisslinger B, Gisslinger H.Essentialthrombocythemiaversusearlyprimarymyelofibrosis:amulticenterstudytovalidatetheWHOclassification.Blood2011;117:5710–8.

144

[19] Barbui T, Thiele J, Carobbio A, Passamonti F, Rumi E, Randi ML, et al. Diseasecharacteristics and clinical outcome in young adults with essential thrombocythemia versusearly/prefibroticprimarymyelofibrosis.Blood2012;120:569–71.[20] RupoliS,GoteriG,PicardiP,MicucciG,CanafogliaL,ScortechiniAR,etal.Thrombosisinessential thrombocytemia and early/prefibrotic primarymyelofibrosis: the role of theWHOhistologicaldiagnosis.DiagnPathol2015;10.[21] KishimotoT,TagaT,AkiraS.Cytokinesignaltransduction.Cell1994;76:253–62.[22] O’SheaJJ,HollandSM,StaudtLM.JAKsandSTATsinImmunity,Immunodeficiency,andCancer.NEnglJMed2013;368:161–70.[23] VainchenkerW, Kralovics R. Genetic basis andmolecular pathophysiology of classicalmyeloproliferativeneoplasms.Blood2017;129:667–679.[24] SpringuelL,RenauldJ-C,KnoopsL.JAKkinasetargetinginhematologicmalignancies:asinuous pathway from identification of genetic alterations towards clinical indications.Haematologica2015;100:1240–53.[25] Carter-Su C, Schwartz J, Argetsinger LS. Growth hormone signaling pathways. GrowthHormIGFRes2016;28:11–5.[26] Shuai K, Liu B. Regulation of JAK–STAT signalling in the immune system. Nat RevImmunol2003;3:900–11.[27] Babon JJ, Lucet IS, Murphy JM, Nicola NA, Varghese LN. The molecular regulation ofJanuskinase(JAK)activation.BiochemJ2014;462:1–13.[28] CleyratCédric,DarehshouriAnza, SteinkampMaraP.,VilaineMathias,BoassaDaniela,Ellisman Mark H., et al. Mpl Traffics to the Cell Surface Through Conventional andUnconventionalRoutes.Traffic2014;15:961–82.[29] Walker JG, Smith MD. The Jak-STAT pathway in rheumatoid arthritis. J Rheumatol2005;32:1650–3.[30] AnanthakrishnanR,HallamK,LiQ,RamasamyR.JAK-STATpathwayincardiacischemicstress.VasculPharmacol2005;43:353–6.[31] KleinS,RickJ,LehmannJ,SchierwagenR,SchierwagenIG,VerbekeL,etal.Janus-kinase-2relatesdirectlytoportalhypertensionandtocomplications inrodentandhumancirrhosis.Gut2017;66:145–55.[32] Bose P, Gotlib J, Harrison CN, Verstovsek S. SOHO State-of-the-Art Update and NextQuestions:MPN.ClinLymphomaMyelomaLeuk2018;18:1–12.[33] LiJ,KentDG,GodfreyAL,ManningH,NangaliaJ,AzizA,etal.JAK2V617Fhomozygositydrives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustaindisease.Blood2014;123:3139–3151.[34] Godfrey AL, Chen E, Pagano F, Ortmann CA, Silber Y, Bellosillo B, et al. JAK2V617Fhomozygosity arises commonly and recurrently in PV and ET, but PV is characterized byexpansionofadominanthomozygoussubclone.Blood2012;120:2704–7.[35] SpivakJL.MyeloproliferativeNeoplasms.NEnglJMed2017;376:2168–81.[36] JamesC,UgoV,LeCouédicJ-P,StaerkJ,DelhommeauF,LacoutC,etal.AuniqueclonalJAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature2005;434:1144–1148.[37] Kralovics R, Passamonti F, Buser AS, Teo S-S, Tiedt R, Passweg JR, et al. A Gain-of-FunctionMutationofJAK2inMyeloproliferativeDisorders.NEnglJMed2005;352:1779–90.[38] LevineRL,WadleighM,CoolsJ,EbertBL,WernigG,HuntlyBJP,etal.Activatingmutationin the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloidmetaplasiawithmyelofibrosis.CancerCell2005;7:387–97.[39] Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquiredmutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. The Lancet

145

2005;365:1054–61.[40] Silvennoinen O, Hubbard SR. Molecular insights into regulation of JAK2 inmyeloproliferativeneoplasms.Blood2015;125:3388–92.[41] LeroyE,DusaA,ColauD,MotamediA,CahuX,MoutonC,etal.UncouplingJAK2V617Factivation from cytokine-induced signalling by modulation of JH2 αC helix. Biochem J2016;473:1579–91.[42] Grinfeld J, Nangalia J, Green AR. Molecular determinants of pathogenesis and clinicalphenotypeinmyeloproliferativeneoplasms.Haematologica2017;102:7–17.[43] Hookham MB, Elliott J, Suessmuth Y, Staerk J, Ward AC, Vainchenker W, et al. Themyeloproliferative disorder–associated JAK2 V617F mutant escapes negative regulation bysuppressorofcytokinesignaling3.Blood2007;109:4924–9.[44] CampbellPJ,GreenAR.Themyeloproliferativedisorders.NEnglJMed2006;355:2452–66.[45] SozerS,FielMI,SchianoT,XuM,MascarenhasJ,HoffmanR.ThepresenceofJAK2V617Fmutation in the liver endothelial cells of patients with Budd-Chiari syndrome. Blood2009;113:5246–9.[46] RostiV,VillaniL,RiboniR,PolettoV,BonettiE,TozziL, et al. Spleenendothelial cellsfrompatientswithmyelofibrosisharbortheJAK2V617Fmutation.Blood2013;121:360–8.[47] Teofili L, Martini M, Iachininoto MG, Capodimonti S, Nuzzolo ER, Torti L, et al.Endothelial progenitor cells are clonal and exhibit the JAK2(V617F)mutation in a subset ofthromboticpatientswithPh-negativemyeloproliferativeneoplasms.Blood2011;117:2700–7.[48] Kralovics R, Guan Y, Prchal JT. Acquired uniparental disomy of chromosome 9p is afrequentstemcelldefectinpolycythemiavera.ExpHematol2002;30:229–36.[49] RumiE,PietraD,FerrettiV,KlampflT,HarutyunyanAS,MilosevicJD,etal.JAK2orCALRmutation status defines subtypes of essential thrombocythemia with substantially differentclinicalcourseandoutcomes.Blood2014;123:1544–1551.[50] Spivak JL, Considine M, Williams DM, Talbot CC, Rogers O, Moliterno AR, et al. TwoClinicalPhenotypesinPolycythemiaVera.NEnglJMed2014;371:808–17.[51] Dawson MA, Bannister AJ, Göttgens B, Foster SD, Bartke T, Green AR, et al. JAK2phosphorylateshistoneH3Y41andexcludesHP1αfromchromatin.Nature2009;461:819–22.[52] LiuF,ZhaoX,PernaF,WangL,KoppikarP,Abdel-WahabO,etal.JAK2V617F-MediatedPhosphorylation of PRMT5 Downregulates Its Methyltransferase Activity and PromotesMyeloproliferation.CancerCell2011;19:283–94.[53] Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 Exon 12MutationsinPolycythemiaVeraandIdiopathicErythrocytosis.NEnglJMed2007;356:459–68.[54] PassamontiF,ElenaC,SchnittgerS,SkodaRC,GreenAR,GirodonF,etal.Molecularandclinical featuresof themyeloproliferativeneoplasmassociatedwith JAK2exon12mutations.Blood2011;117:2813–6.[55] Li S, Kralovics R, Libero GD, Theocharides A, Gisslinger H, Skoda RC. Clonalheterogeneity in polycythemia vera patients with JAK2 exon12 and JAK2-V617F mutations.Blood2008;111:3863–6.[56] Marty C, Pecquet C, NivarthiH, El-KhouryM, Chachoua I, TulliezM, et al. Calreticulinmutants in mice induce an MPL-dependent thrombocytosis with frequent progression tomyelofibrosis.Blood2016;127:1317–24.[57] Cazzola M. Mutant calreticulin: when a chaperone becomes intrusive. Blood2016;127:1219–21.[58] KlampflT,GisslingerH,HarutyunyanAS,NivarthiH,RumiE,MilosevicJD,etal.SomaticMutationsofCalreticulininMyeloproliferativeNeoplasms.NEnglJMed2013;369:2379–90.[59] Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G,Wedge DC, et al. Somatic CALR

146

Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2. N Engl J Med2013;369:2391–405.[60] VainchenkerW, Delhommeau F, Constantinescu SN, Bernard OA. Newmutations andpathogenesisofmyeloproliferativeneoplasms.Blood2011;118:1723–35..[61] Pietra D, Rumi E, Ferretti VV, Buduo CAD, Milanesi C, Cavalloni C, et al. Differentialclinical effects of differentmutation subtypes in CALR-mutantmyeloproliferative neoplasms.Leukemia2016;30:431–8.[62] SzuberN,LamontagneB,BusqueL.Novelgermlinemutations in thecalreticulingene:implications for the diagnosis of myeloproliferative neoplasms. J Clin Pathol 2016:jclinpath-2016-203940.[63] ArakiM,YangY,MasubuchiN,HironakaY,TakeiH,MorishitaS,etal.ActivationofthethrombopoietinreceptorbymutantcalreticulininCALR-mutantmyeloproliferativeneoplasms.Blood2016;127:1307–1316.[64] ChachouaI,PecquetC,El-KhouryM,NivarthiH,AlbuR-I,MartyC,etal.Thrombopoietinreceptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood2016;127:1325–35.[65] ElfS,AbdelfattahNS,ChenE,Perales-PatónJ,RosenEA,KoA,etal.MutantCalreticulinRequires Both Its Mutant C-terminus and the Thrombopoietin Receptor for OncogenicTransformation.CancerDiscov2016;6:368–81.[66] Cabagnols X, Defour JP, Ugo V, Ianotto JC, Mossuz P, Mondet J, et al. Differentialassociation of calreticulin type 1 and type 2 mutations with myelofibrosis and essentialthrombocytemia:relevancefordiseaseevolution.Leukemia2015;29:249–52.[67] Cavalloni C, Rumi E, Ferretti VV, Pietra D, Roncoroni E, Bellini M, et al. SequentialevaluationofCALRmutantburdeninpatientswithmyeloproliferativeneoplasms.Oncotarget2017;8:33416–21.[68] TheocharidesAPA,LundbergP,LakkarajuAKK,LysenkoV,MyburghR,AguzziA,etal.Homozygous calreticulin mutations in patients with myelofibrosis lead to acquiredmyeloperoxidasedeficiency.Blood2016;127:3253–9.[69] TefferiA,WassieEA,LashoTL,FinkeC,BelachewAA,KetterlingRP,etal.Calreticulinmutationsandlong-termsurvivalinessentialthrombocythemia.Leukemia2014;28:2300–3.[70] AssafCA,ObberghFV,BillietJ,LiermanE,DevosT,GrauxC,etal.Analysisofphenotypeand outcome in essential thrombocythemia with CALR or JAK2 mutations. Haematologica2015;100:893–7.[71] Villeval J-L, Cohen-Solal K, TulliezM, Giraudier S, Guichard J, Burstein SA, et al. HighThrombopoietin Production by Hematopoietic Cells Induces a Fatal MyeloproliferativeSyndromeinMice.Blood1997;90:4369–83.[72] RumiE, PietraD,Guglielmelli P,BordoniR, Casetti I,Milanesi C, et al.Acquired copy-neutrallossofheterozygosityofchromosome1pasamoleculareventassociatedwithmarrowfibrosisinMPL-mutatedmyeloproliferativeneoplasms.Blood2013;121:4388–95.[73] ChalignéR,JamesC,TonettiC,BesancenotR,CouédicJPL,FavaF,etal.EvidenceforMPLW515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood2007;110:3735–43.[74] BeerPA,CampbellPJ,ScottLM,BenchAJ,ErberWN,BarefordD,etal.MPLmutationsinmyeloproliferativedisorders:analysisofthePT-1cohort.Blood2008;112:141–9.[75] PikmanY,LeeBH,MercherT,McDowellE,EbertBL,GozoM,etal.MPLW515LIsaNovelSomaticActivatingMutationinMyelofibrosiswithMyeloidMetaplasia.PLOSMed2006;3:e270.[76] VargheseLN,DefourJ-P,PecquetC,ConstantinescuSN.TheThrombopoietinReceptor:Structural Basis of Traffic and Activation by Ligand, Mutations, Agonists, and MutatedCalreticulin.FrontEndocrinol2017;8.

147

[77] Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. Blood2017;130:2475–83.[78] YaoH,MaY,HongZ,ZhaoL,MonaghanSA,HuM-C,etal.ActivatingJAK2mutantsrevealcytokine receptor couplingdifferences that impactoutcomes inmyeloproliferativeneoplasm.Leukemia2017;31:2122–31.[79] TiedtR,Hao-ShenH,SobasMA,LooserR,DirnhoferS,SchwallerJ,etal.RatioofmutantJAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood2008;111:3931–40.[80] AkadaH,AkadaS,HutchisonRE,MohiG.Lossofwild-typeJak2alleleenhancesmyeloidcell expansion and accelerates myelofibrosis in Jak2V617F knock-in mice. Leukemia2014;28:1627–35.[81] Rumi Elisa, Cazzola Mario. Advances in understanding the pathogenesis of familialmyeloproliferativeneoplasms.BrJHaematol2017;178:689–98.[82] Saliba J, Saint-Martin C, Di Stefano A, Lenglet G, Marty C, Keren B, et al. Germlineduplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat Genet2015;47:1131–40.[83] HarutyunyanAS,GiambrunoR,KrendlC,StukalovA,KlampflT,BergT,etal.GermlineRBBP6mutationsinfamilialmyeloproliferativeneoplasms.Blood2016;127:362–5.[84] Loscocco Giuseppe Gaetano, Mannarelli Carmela, Pacilli Annalisa, Fanelli Tiziana,Rotunno Giada, Gesullo Francesca, et al. Germline transmission of LNKE208Q variant in afamilywithmyeloproliferativeneoplasms.AmJHematol2016;91:E356–E356.[85] RumiE,HarutyunyanAS, PietraD, Feenstra JDM, Cavalloni C, Roncoroni E, et al. LNKmutationsinfamilialmyeloproliferativeneoplasms.Blood2016;128:144–5.[86] Tapper W, Jones AV, Kralovics R, Harutyunyan AS, Zoi K, Leung W, et al. GeneticvariationatMECOM,TERT,JAK2andHBS1L-MYBpredisposestomyeloproliferativeneoplasms.NatCommun2015;6:6691.[87] HindsDA,BarnholtKE,MesaRA,KieferAK,DoCB,ErikssonN,etal.GermlinevariantspredisposetobothJAK2V617Fclonalhematopoiesisandmyeloproliferativeneoplasms.Blood2016;128:1121–8.[88] Delic Sabit, Rose Dominic, Kern Wolfgang, Nadarajah Niroshan, Haferlach Claudia,Haferlach Torsten, et al. Application of an NGS-based 28-gene panel in myeloproliferativeneoplasms reveals distinct mutation patterns in essential thrombocythaemia, primarymyelofibrosisandpolycythaemiavera.BrJHaematol2016;175:419–26.[89] OrtmannCA,KentDG,NangaliaJ,SilberY,WedgeDC,GrinfeldJ,etal.EffectofMutationOrderonMyeloproliferativeNeoplasms.NEnglJMed2015;372:601–12.[90] TefferiA,GuglielmelliP,LarsonDR,FinkeC,WassieEA,PieriL,etal.Long-termsurvivaland blast transformation inmolecularly annotated essential thrombocythemia, polycythemiavera,andmyelofibrosis.Blood2014;124:2507–13.[91] Barosi G, Mesa RA, Thiele J, Cervantes F, Campbell PJ, Verstovsek S, et al. Proposedcriteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemiamyelofibrosis:aconsensusstatement fromthe internationalworkinggroupformyelofibrosisresearchandtreatment.Leukemia2008;22:437–8.[92] CzaderM,OraziA.AcuteMyeloidLeukemiaandOtherTypesofDiseaseProgressioninMyeloproliferativeNeoplasms.AmJClinPathol2015;144:188–206.[93] BoiocchiL,MathewS,GianelliU,IurloA,RadiceT,Barouk-FoxS,etal.Morphologicandcytogeneticdifferencesbetweenpost-polycythemicmyelofibrosisandprimarymyelofibrosisinfibroticstage.ModPathol2013;26:1577–85.[94] LundbergP,KarowA,NienholdR,LooserR,Hao-ShenH,NissenI,etal.Clonalevolutionand clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood

148

2014;123:2220–8.[95] CervantesF,TassiesD,SalgadoC,RoviraM,PereiraA,RozmanC.AcuteTransformationin Nonleukemic Chronic Myeloproliferative Disorders: Actuarial Probability and MainCharacteristicsinaSeriesof218Patients.ActaHaematol1991;85:124–7.[96] Björkholm M, Derolf ÅR, Hultcrantz M, Kristinsson SY, Ekstrand C, Goldin LR, et al.Treatment-Related Risk Factors for Transformation to Acute Myeloid Leukemia andMyelodysplasticSyndromesinMyeloproliferativeNeoplasms.JClinOncol2011;29:2410–5.[97] AbdulkarimKhadija,GirodonFrançois,JohanssonPeter,MaynadiéMarc,KuttiJack,CarliPaule-Marie, et al. AML transformation in 56 patients with Ph− MPD in two well definedpopulations.EurJHaematol2008;82:106–11.[98] Heaney ML, Soriano G. Acute Myeloid Leukemia Following a MyeloproliferativeNeoplasm:ClinicalCharacteristics,GeneticFeaturesandEffectsofTherapy.CurrHematolMaligRep2013;8:116–22.d[99] BerkPD,GoldbergJD,SilversteinMN,WeinfeldA,DonovanPB,EllisJT,etal.Increasedincidenceofacuteleukemiainpolycythemiaveraassociatedwithchlorambuciltherapy.NEnglJMed1981;304:441–7.[100] Najean Y, Rain JD. Treatment of polycythemia vera: the use of hydroxyurea andpipobromanin292patientsundertheageof65years.Blood1997;90:3370–7.[101] TefferiAyalew,BarbuiTiziano.Polycythemiaveraandessentialthrombocythemia:2015updateondiagnosis,risk-stratificationandmanagement.AmJHematol2015;90:162–73.[102] TefferiA,VannucchiAM,BarbuiT.Polycythemiaveratreatmentalgorithm2018.BloodCancerJ2018;8:3.[103] VannucchiAM.HowItreatpolycythemiavera.Blood2014;124:3212–20.[104] Hernández-Boluda J-C, Arellano-Rodrigo E, Cervantes F, Alvarez-Larrán A, Gómez M,BarbaP,etal.Oralanticoagulationtopreventthrombosisrecurrenceinpolycythemiaveraandessentialthrombocythemia.AnnHematol2015;94:911–8.[105] FruchtmanSM,MackK,KaplanME,PetersonP,BerkPD,WassermanLR.Fromefficacyto safety: a Polycythemia Vera Study group report on hydroxyurea in patients withpolycythemiavera.SeminHematol1997;34:17–23.[106] FinazziG,CarusoV,MarchioliR,CapnistG,ChisesiT,FinelliC,etal.Acuteleukemiainpolycythemiavera:ananalysisof1638patientsenrolledinaprospectiveobservationalstudy.Blood2005;105:2664–70.[107] Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V, Thaler J, Schloegl E, Gastl GA, et al.Ropeginterferon alfa-2b, a novel IFNα-2b, induces high response rates with low toxicity inpatientswithpolycythemiavera.Blood2015;126:1762–9.[108] Larsen TS, Bjerrum OW, Pallisgaard N, Andersen MT, Møller MB, Hasselbalch HC.Sustainedmajormolecularresponseoninterferonalpha-2bintwopatientswithpolycythemiavera.AnnHematol2008;87:847–50.[109] Kiladjian J-J, Cassinat B, Chevret S, Turlure P, Cambier N, Roussel M, et al. Pegylatedinterferon-alfa-2ainducescompletehematologicandmolecularresponseswithlowtoxicityinpolycythemiavera.Blood2008;112:3065–72.[110] Mascarenhas JO,Prchal JT,RambaldiA,MesaRA,BerenzonD,YacoubA,etal. InterimAnalysisoftheMyeloproliferativeDisordersResearchConsortium(MPD-RC)112GlobalPhaseIII Trial of Front Line Pegylated Interferon Alpha-2a Vs. Hydroxyurea in High RiskPolycythemiaVeraandEssentialThrombocythemia.Blood2016;128:479–479.[111] KuriakoseET,GjoniS,WangYL,BaumannR,JonesAV,CrossNCP,etal.JAK2V617Falleleburden is reducedbybusulfan therapy:anewobservationusinganolddrug.Haematologica2013;98:e135–7.[112] DouglasG,HarrisonC,ForsythC,BennettM,StevensonW,HounsellJ,etal.Busulfanis

149

effectivesecond-line therapy forolderpatientswithPhiladelphia-negativemyeloproliferativeneoplasmsintolerantoforunresponsivetohydroxyurea.LeukLymphoma2017;58:89–95.[113] Begna K, Abdelatif A, Schwager S, Hanson C, Pardanani A, Tefferi A. Busulfan for thetreatment of myeloproliferative neoplasms: the Mayo Clinic experience. Blood Cancer J2016;6:e427.[114] Barosi G, BirgegardG, Finazzi G, GriesshammerM,Harrison C,HasselbalchH, et al. Aunifieddefinitionofclinicalresistanceandintolerancetohydroxycarbamideinpolycythaemiaveraandprimarymyelofibrosis:resultsofaEuropeanLeukemiaNet(ELN)consensusprocess.BrJHaematol2010;148:961–3.[115] VannucchiAM,Kiladjian JJ,GriesshammerM,MassziT,Durrant S, Passamonti F, et al.Ruxolitinib versus Standard Therapy for the Treatment of Polycythemia Vera. N Engl J Med2015;372:426–35.[116] Passamonti F, Griesshammer M, Palandri F, Egyed M, Benevolo G, Devos T, et al.Ruxolitinib for the treatment of inadequately controlled polycythaemia vera withoutsplenomegaly (RESPONSE-2): a randomised, open-label, phase 3b study. Lancet Oncol2017;18:88–99.[117] Vannucchi AM, Barbui T, Cervantes F, Harrison C, Kiladjian J-J, Kröger N, et al.Philadelphia chromosome-negative chronic myeloproliferative neoplasms: ESMO ClinicalPracticeGuidelinesfordiagnosis,treatmentandfollow-up.AnnOncol2015;26:v85–99.[118] Tefferi A, Vannucchi AM, Barbui T. Essential thrombocythemia treatment algorithm2018.BloodCancerJ2018;8:2.[119] Elala YC, Lasho TL, GangatN, Finke C, BarracoD,HaiderM, et al. Calreticulin variantstratifieddrivermutationalstatusandprognosisinessentialthrombocythemia.AmJHematol2016;91:503–6.[120] CarobbioA,ThieleJ,PassamontiF,RumiE,RuggeriM,RodeghieroF,etal.Riskfactorsfor arterial and venous thrombosis in WHO-defined essential thrombocythemia: aninternationalstudyof891patients.Blood2011;117:5857–9.[121] Finazzi G, Carobbio A, Guglielmelli P, Cavalloni C, Salmoiraghi S, Vannucchi AM, et al.Calreticulinmutation does notmodify the IPSET score for predicting the risk of thrombosisamong1150patientswithessentialthrombocythemia.Blood2014;124:2611–2.[122] RotunnoG,Mannarelli C,Guglielmelli P, PacilliA, PancrazziA, Pieri L, et al. Impact ofcalreticulin mutations on clinical and hematological phenotype and outcome in essentialthrombocythemia.Blood2014;123:1552–5.[123] Barbui T, Vannucchi AM, Buxhofer-Ausch V, De Stefano V, Betti S, Rambaldi A, et al.Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-definedessentialthrombocythemia.BloodCancerJ2015;5:e369–e369.[124] HaiderM,GangatN,LashoT,HusseinAKA,ElalaYC,HansonC,etal.Validationof therevised international prognostic score of thrombosis for essential thrombocythemia (IPSET-thrombosis)in585Mayoclinicpatients.AmJHematol2016;91:390–4.[125] BarbuiT,FinazziG,CarobbioA,ThieleJ,PassamontiF,RumiE,etal.Developmentandvalidation of an International Prognostic Score of thrombosis inWorldHealth Organization-essentialthrombocythemia(IPSET-thrombosis).Blood2012;120:5128–33;quiz5252.[126] CortelazzoS,VieroP,FinazziG,D’EmilioA,RodeghieroF,BarbuiT. Incidenceandriskfactors for thrombotic complications in a historical cohort of 100 patients with essentialthrombocythemia.JClinOncol1990;8:556–62.[127] LatagliataR,MontanaroM,CedroneM,VeroliAD,SpiritoF,SantoroC,etal.Highplateletcount at diagnosis is a protective factor for thrombosis in patients with essentialthrombocythemia.ThrombRes2017;156:168–71.[128] Collaborative overview of randomised trials of antiplatelet therapy--III: Reduction in

150

venous thrombosisandpulmonaryembolismbyantiplateletprophylaxis amongsurgical andmedicalpatients.AntiplateletTrialists’Collaboration.BMJ1994;308:235–46.[129] BecattiniC,AgnelliG,SchenoneA,EichingerS,BucheriniE,SilingardiM,etal.Aspirinforpreventingtherecurrenceofvenousthromboembolism.NEnglJMed2012;366:1959–67.[130] BarosiG,BessesC,BirgegardG,BriereJ,CervantesF,FinazziG,etal.Aunifieddefinitionof clinical resistance/intolerance to hydroxyurea in essential thrombocythemia: results of aconsensusprocessbyaninternationalworkinggroup.Leukemia2007;21:277–80.[131] VergerE,CassinatB,ChauveauA,DosquetC,GiraudierS,SchlageterM-H,etal.Clinicalandmolecular response to interferon-α therapy in essential thrombocythemia patientswithCALRmutations.Blood2015;126:2585–91.[132] Cassinat B, Verger E, Kiladjian J-J. Interferon alfa therapy in CALR-mutated essentialthrombocythemia.NEnglJMed2014;371:188–9.[133] Quintás-CardamaA,Abdel-WahabO,ManshouriT,KilpivaaraO,CortesJ,RoupieA-L,etal. Molecular analysis of patients with polycythemia vera or essential thrombocythemiareceivingpegylatedinterferonα-2a.Blood2013;122:893–901.[134] GisslingerH,GoticM,Holowiecki J,PenkaM,Thiele J,KvasnickaH-M,etal.Anagrelidecomparedwith hydroxyurea inWHO-classified essential thrombocythemia: the ANAHYDRETStudy,arandomizedcontrolledtrial.Blood2013;121:1720–8.[135] HarrisonCN,CampbellPJ,BuckG,WheatleyK,EastCL,BarefordD,etal.HydroxyureaCompared with Anagrelide in High-Risk Essential Thrombocythemia. N Engl J Med2005;353:33–45.[136] Birgegård G, Besses C, Griesshammer M, Gugliotta L, Harrison CN, Hamdani M, et al.Treatment of essential thrombocythemia in Europe: a prospective long-term observationalstudyof3649high-riskpatientsintheEvaluationofAnagrelideEfficacyandLong-termSafetystudy.Haematologica2018;103:51–60.[137] TefferiA,RumiE,FinazziG,GisslingerH,VannucchiAM,RodeghieroF,etal.Survivalandprognosisamong1545patientswithcontemporarypolycythemiavera:aninternationalstudy.Leukemia2013;27:1874–81.[138] VerstovsekS,PassamontiF,RambaldiA,BarosiG,RumiE,GattoniE,etal.Ruxolitinibforessentialthrombocythemiarefractorytoorintolerantofhydroxyurea:long-termphase2studyresults.Blood2017;130:1768–71.[139] Bose P, Verstovsek S. Ruxolitinib for essential thrombocythemia? Oncoscience2017;4:148–9.[140] Harrison CN, Mead AJ, Panchal A, Fox S, Yap C, Gbandi E, et al. Ruxolitinib vs bestavailable therapy forET intolerantor resistant tohydroxycarbamide.Blood2017;130:1889–97.[141] CervantesF,DupriezB,PereiraA,PassamontiF,ReillyJT,MorraE,etal.NewprognosticscoringsystemforprimarymyelofibrosisbasedonastudyoftheInternationalWorkingGroupforMyelofibrosisResearchandTreatment.Blood2009;113:2895–901.[142] Barbui T, Barosi G, Birgegard G, Cervantes F, Finazzi G, Griesshammer M, et al.Philadelphia-Negative Classical Myeloproliferative Neoplasms: Critical Concepts andManagementRecommendationsFromEuropeanLeukemiaNet.JClinOncol2011;29:761–70.[143] BallenKK,ShresthaS,SobocinskiKA,ZhangM-J,BasheyA,BolwellBJ,etal.Outcomeoftransplantation for myelofibrosis. Biol Blood Marrow Transplant J Am Soc Blood MarrowTransplant2010;16:358–67[144] Kröger N, Holler E, Kobbe G, Bornhäuser M, Schwerdtfeger R, Baurmann H, et al.Allogeneic stem cell transplantation after reduced-intensity conditioning in patients withmyelofibrosis:aprospective,multicenterstudyoftheChronicLeukemiaWorkingPartyoftheEuropeanGroupforBloodandMarrowTransplantation.Blood2009;114:5264–70.

151

[145] HarrisonC,KiladjianJ-J,Al-AliHK,GisslingerH,WaltzmanR,StalbovskayaV,etal. JAKInhibition with Ruxolitinib versus Best Available Therapy for Myelofibrosis. N Engl J Med2012;366:787–98.[146] Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A Double-Blind,Placebo-ControlledTrialofRuxolitinibforMyelofibrosis.NEnglJMed2012;366:799–807.[147] HarrisonCN,VannucchiAM,KiladjianJ-J,Al-AliHK,GisslingerH,KnoopsL,etal.Long-term findings fromCOMFORT-II, a phase 3 study of ruxolitinib vs best available therapy formyelofibrosis.Leukemia2016;30:1701–7.[148] Verstovsek S, Mesa RA, Gotlib J, Gupta V, DiPersio JF, Catalano JV, et al. Long-termtreatmentwithruxolitinibforpatientswithmyelofibrosis:5-yearupdatefromtherandomized,double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol OncolJ Hematol Oncol2017;10:55.[149] VerstovsekS,GotlibJ,MesaRA,VannucchiAM,KiladjianJ-J,CervantesF,etal.Long-termsurvival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooledanalyses.JHematolOncolJHematolOncol2017;10:156[150] Marchioli R, Finazzi G, Landolfi R, Kutti J, Gisslinger H, Patrono C, et al. Vascular andNeoplastic Risk in a Large Cohort of Patients With Polycythemia Vera. J Clin Oncol2005;23:2224–32.[151] TefferiA,ElliottM.ThrombosisinMyeloproliferativeDisorders:Prevalence,PrognosticFactors,andtheRoleofLeukocytesandJAK2V617F.SeminThrombHemost2007;33:313–20.[152] Campbell PJ, Scott LM, Buck G, Wheatley K, East CL, Marsden JT, et al. Definition ofsubtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2V617Fmutationstatus:aprospectivestudy.TheLancet2005;366:1945–53.[153] Buxhofer-AuschVeronika,GisslingerHeinz,ThieleJürgen,GisslingerBettina,KvasnickaHans-Michael,Müllauer Leonhard, et al. Leukocytosis as an important risk factor for arterialthrombosis in WHO-defined early/prefibrotic myelofibrosis: An international study of 264patients.AmJHematol2012;87:669–72.[154] MontanaroMarco, LatagliataRoberto, CedroneMichele, SpadeaAntonio, RagoAngela,GiandomenicoJonny,etal.Thrombosisandsurvivalinessentialthrombocythemia:Aregionalstudyof1,144patients.AmJHematol2014;89:542–6.[155] Barbui T, Carobbio A, Cervantes F, Vannucchi AM, Guglielmelli P, Antonioli E, et al.Thrombosisinprimarymyelofibrosis:incidenceandriskfactors.Blood2010;115:778–82.[156] StefanoVD,Martinelli I. Splanchnic vein thrombosis: clinical presentation, risk factorsandtreatment.InternEmergMed2010;5:487–94.[157] LippiG,FranchiniM,TargherG.Arterialthrombusformationincardiovasculardisease.NatRevCardiol2011;8:502–12.[158] FranchiniM,MannucciPM.Venousandarterialthrombosis:Differentsidesofthesamecoin?EurJInternMed2008;19:476–81.[159] Jerjes-Sanchez C. Venous and arterial thrombosis: a continuous spectrumof the samedisease?EurHeartJ2005;26:3–4.[160] De Stefano Valerio, Rossi Elena, Za Tommaso, Ciminello Angela, Betti Silvia, LuzziClaudia,etal.JAK2V617Fmutationalfrequencyinessentialthrombocythemiaassociatedwithsplanchnicorcerebralveinthrombosis.AmJHematol2011;86:526–8.[161] Carobbio A, Finazzi G, Antonioli E, Guglielmelli P, Vannucchi AM, Dellacasa CM, et al.JAK2V617Falleleburdenandthrombosis:Adirectcomparison inessential thrombocythemiaandpolycythemiavera.ExpHematol2009;37:1016–21.[162] Ziakas PD. Effect of JAK2 V617F on thrombotic risk in patients with essentialthrombocythemia:measuringtheuncertain.Haematologica2008;93:1412–4.[163] Dahabreh IJ, Zoi K, Giannouli S, Zoi C, Loukopoulos D, Voulgarelis M. Is JAK2 V617F

152

mutationmorethanadiagnosticindex?LeukRes2009;33:67–73.[164] LussanaF,CaberlonS,PaganiC,KamphuisenPW,BüllerHR,CattaneoM.AssociationofV617F Jak2 mutation with the risk of thrombosis among patients with essentialthrombocythaemia or idiopathic myelofibrosis: A systematic review. Thromb Res2009;124:409–17.[165] Alvarez-Larran A, Pereira A, Guglielmelli P, Hernandez-Boluda JC, Arellano-Rodrigo E,Ferrer-Marin F, et al. Antiplatelet therapy versus observation in low-risk essentialthrombocythemiawithaCALRmutation.Haematologica2016;101:926–31.[166] PeiY-Q,WuY,WangF,CuiW.Prognostic valueofCALRvs. JAK2V617Fmutationsonsplenomegaly, leukemic transformation, thrombosis, and overall survival in patients withprimaryfibrosis:ameta-analysis.AnnHematol2016;95:1391–8.[167] LandolfiR,DiGennaroL,BarbuiT,DeStefanoV,FinazziG,MarfisiR,etal.Leukocytosisasamajorthromboticriskfactorinpatientswithpolycythemiavera.Blood2007;109:2446–52.[168] DeStefanoValerio,ZaTommaso,RossiElena,VannucchiAlessandroM.,RuggeriMarco,ElliElena,etal.Leukocytosisisariskfactorforrecurrentarterialthrombosisinyoungpatientswith polycythemia vera and essential thrombocythemia. Am J Hematol 2009;85:97–100.doi:10.1002/ajh.21593.[169] BarbuiT,MasciulliA,MarfisiMR,TognoniG,FinazziG,RambaldiA,etal.Whitebloodcell counts and thrombosis inpolycythemia vera: a subanalysis of theCYTO-PV study.Blood2015;126:560–1.[170] GangatNaseema, Strand Jacob,LiChin-Yang,WuWenting,PardananiAnimesh,TefferiAyalew. Leucocytosis in polycythaemia vera predicts both inferior survival and leukaemictransformation.BrJHaematol2007;138:354–8.[171] PassamontiF,RumiE,PascuttoC,CazzolaM,LazzarinoM.Increase in leukocytecountovertimepredictsthrombosisinpatientswithlow-riskessentialthrombocythemia.JThrombHaemostJTH2009;7:1587–9.[172] PassamontiF,Thiele J,GirodonF,RumiE,CarobbioA,GisslingerH,etal.Aprognosticmodel to predict survival in 867 World Health Organization–defined essentialthrombocythemiaatdiagnosis: a studyby the InternationalWorkingGrouponMyelofibrosisResearchandTreatment.Blood2012;120:1197–201.[173] Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classicalmyeloproliferativeneoplasms.Blood2017;129:680–92.[174] TefferiA,BarbuiT.Polycythemiaveraandessentialthrombocythemia:2017updateondiagnosis,risk-stratification,andmanagement.AmJHematol2017;92:94–108.[175] Caramazza D, Caracciolo C, Barone R,Malato A, Saccullo G, Cigna V, et al. Correlationbetween leukocytosis and thrombosis in Philadelphia-negative chronic myeloproliferativeneoplasms.AnnHematol2009;88:967–71.[176] Buxhofer-AuschVeronika,GisslingerBettina,SchallingMartin,GleissAndreas,SchieferAna-Iris,MüllauerLeonhard, et al. Impactofwhiteblood cell counts atdiagnosis andduringfollow-upinpatientswithessentialthrombocythaemiaandprefibroticprimarymyelofibrosis.BrJHaematol2016;179:166–9.[177] CampbellPJ,MacLeanC,BeerPA,BuckG,WheatleyK,KiladjianJ-J,etal.Correlationofblood counts with vascular complications in essential thrombocythemia: analysis of theprospectivePT1cohort.Blood2012;120:1409–11.[178] Carobbio A, Antonioli E, Guglielmelli P, Vannucchi AM, Delaini F, Guerini V, et al.Leukocytosis and Risk Stratification Assessment in Essential Thrombocythemia. J Clin Oncol2008;26:2732–6.[179] TefferiA,GangatN,WolanskyjAP.Managementofextremethrombocytosisinotherwiselow-riskessentialthrombocythemia;doesnumbermatter?Blood2006;108:2493–4.

153

[180] Di Nisio Marcello, Barbui Tiziano, Di Gennaro Leonardo, Borrelli Giovanna, FinazziGuido,LandolfiRaffaele, et al.Thehaematocrit andplatelet target inpolycythemiavera.Br JHaematol2006;136:249–59.[181] Gugliotta L, Iurlo A, Gugliotta G, Tieghi A, Specchia G, GaidanoG, et al. Unbiased pro-thromboticfeaturesatdiagnosisin977thrombocythemicpatientswithPhiladelphia-negativechronicmyeloproliferativeneoplasms.LeukRes2016;46:18–25.[182] MichielsJJ,BernemanZ,SchroyensW,FinazziG,BuddeU,VlietHHDMvan.TheParadoxofPlateletActivationandImpairedFunction:Platelet-vonWillebrandFactorInteractions,andtheEtiologyofThromboticandHemorrhagicManifestationsinEssentialThrombocythemiaandPolycythemiaVera.SeminThrombHemost2006;32:589–604.[183] Regev Arie, Stark Pinhas, Blickstein Dorit, Lahav Meir. Thrombotic complications inessentialthrombocythemiawithrelativelylowplateletcounts.AmJHematol1998;56:168–72.[184] Falchi Lorenzo, Bose Prithviraj, Newberry Kate J., Verstovsek Srdan. Approach topatientswithessentialthrombocythaemiaandveryhighplateletcounts:whatistheevidencefortreatment?BrJHaematol2017;176:352–64.[185] CastamanG,LattuadaA,RuggeriM,TosettoA,MannucciPM,RodeghieroF.PlateletvonWillebrandfactorabnormalitiesinmyeloproliferativesyndromes.AmJHematol1995;49:289–93.[186] Turitto VT,Weiss HJ. Red blood cells: their dual role in thrombus formation. Science1980;207:541–3[187] Adams BD, Baker R, Lopez JA, Spencer S. Myeloproliferative disorders and thehyperviscositysyndrome.HematolOncolClinNorthAm2010;24:585–602.[188] ByrnesJR,WolbergAS.Redbloodcellsinthrombosis.Blood2017;130:1795–9.[189] MarchioliR,FinazziG,SpecchiaG,CacciolaR,CavazzinaR,CilloniD,etal.Cardiovasculareventsandintensityoftreatmentinpolycythemiavera.NEnglJMed2013;368:22–33.[190] FélétouM.Introduction.Morgan&ClaypoolLifeSciences;2011.[191] Verhamme P, Hoylaerts MF. The pivotal role of the endothelium in haemostasis andthrombosis.ActaClinBelg2006;61:213–9.[192] FélétouM.TheEndothelium.Morgan&ClaypoolLifeSciencesPublisher;2011.[193] JaffeEA,HoyerLW,NachmanRL.SynthesisofvonWillebrandfactorbyculturedhumanendothelialcells.ProcNatlAcadSciUSA1974;71:1906–9.[194] SavageB,SaldívarE,RuggeriZM.InitiationofplateletadhesionbyarrestontofibrinogenortranslocationonvonWillebrandfactor.Cell1996;84:289–97.[195] CarlosTM,HarlanJM.Leukocyte-endothelialadhesionmolecules.Blood1994;84:2068–101.[196] SpielAO,Gilbert JC, JilmaB. vonWillebrand factor in cardiovasculardisease: focusonacutecoronarysyndromes.Circulation2008;117:1449–59.[197] LipGY,BlannA.vonWillebrandfactor:amarkerofendothelialdysfunctioninvasculardisorders?CardiovascRes1997;34:255–65.[198] CellaG,MarchettiM,VianelloF,Panova-NoevaM,VignoliA,RussoL,etal.Nitricoxidederivatives and soluble plasma selectins in patients with myeloproliferative neoplasms.ThrombHaemost2010;104:151–6.[199] Piccin A, Steurer M, Feistritzer C, Murphy C, Eakins E, Van Schilfgaarde M, et al.Observationalretrospectivestudyofvascularmodulatorchangesduringtreatmentinessentialthrombocythemia.TranslRes2017;184:21–34.[200] KarakantzaM,GiannakoulasNC,ZikosP,SakellaropoulosG,KouraklisA,AktypiA,etal.Markers of Endothelial and In Vivo Platelet Activation in Patients with EssentialThrombocythemiaandPolycythemiaVera.IntJHematol2004;79:253–9.[201] BelottiAngelo,ElliElena,SperanzaTiziana,LanziEraldo,PioltelliPietro,PoglianiEnrico.

154

Circulatingendothelial cellsandendothelial activation inessential thrombocythemia:ResultsfromCD146+immunomagneticenrichment—flowcytometryandsolubleE-selectindetection.AmJHematol2012;87:319–20.[202] Jensen MK, de Nully Brown P, Thorsen S, Hasselbalch HC. Frequent occurrence ofanticardiolipin antibodies, Factor V Leiden mutation, and perturbed endothelial function inchronicmyeloproliferativedisorders.AmJHematol2002;69:185–91.[203] Falanga A, Marchetti M, Evangelista V, Vignoli A, Licini M, Balicco M, et al.Polymorphonuclear leukocyte activation and hemostasis in patients with essentialthrombocythemiaandpolycythemiavera.Blood2000;96:4261–6.[204] Santilli F, Romano M, Recchiuti A, Dragani A, Falco A, Lessiani G, et al. Circulatingendothelialprogenitorcellsandresidualinvivothromboxanebiosynthesisinlow-doseaspirin-treatedpolycythemiaverapatients.Blood2008;112:1085–90.[205] LancellottiS,DraganiA,RanalliP,PetrucciG,BassoM,TartaglioneR,etal.Qualitativeand quantitative modifications of von Willebrand factor in patients with essentialthrombocythemiaandcontrolledplateletcount.JThrombHaemostJTH2015;13:1226–37.[206] Prater DN, Case J, Ingram DA, YoderMC.Working hypothesis to redefine endothelialprogenitorcells.Leukemia2007;21:1141–9.[207] AlonciA,AllegraA,BellomoG,PennaG,D’AngeloA,QuartaroneE,etal.Evaluationofcirculating endothelial cells, VEGF and VEGFR2 serum levels in patients with chronicmyeloproliferativediseases.HematolOncol2008;26:235–9.[208] OppligerLeibundgutE,HornMP,BrunoldC,Pfanner-MeyerB,MartiD,HirsigerH,etal.Hematopoietic and endothelial progenitor cell trafficking in patientswithmyeloproliferativediseases.Haematologica2006;91:1465–72.[209] MassaM,RostiV,RamajoliI,CampanelliR,PecciA,ViarengoG,etal.CirculatingCD34+,CD133+, andVascularEndothelialGrowthFactorReceptor2–PositiveEndothelialProgenitorCellsinMyelofibrosisWithMyeloidMetaplasia.JClinOncol2005;23:5688–95.[210] Torres C, Fonseca AM, Leander M, Matos R, Morais S, Campos M, et al. CirculatingEndothelial Cells in Patients with Venous Thromboembolism and MyeloproliferativeNeoplasms.PLOSONE2013;8:e81574.[211] Rosti V, Bonetti E, BergamaschiG, Campanelli R, Guglielmelli P,MaestriM, et al.HighFrequency of Endothelial Colony Forming Cells Marks a Non-Active MyeloproliferativeNeoplasmwithHighRiskofSplanchnicVeinThrombosis.PLOSONE2010;5:e15277.[212] Helman Ricardo, PereiraWelbert de O., Marti Luciana C., Campregher Paulo V., PugaRenatoDavi,HamerschlakNelson,etal.GranulocytewholeexomesequencingandendothelialJAK2V617F in patients with JAK2V617F positive Budd-Chiari Syndrome withoutmyeloproliferativeneoplasm.BrJHaematol2018;180:443–5.[213] Guy A, Gourdou-Latyszenok V, Le Lay N, Vieira Dias J, Kilani B, Peghaire C, et al.Endothelial cells are important in the pathogenesis of thrombosis in myeloproliferativeneoplasms2017.[214] Etheridge SL, Roh ME, Cosgrove ME, Sangkhae V, Fox NE, Chen J, et al. JAK2V617F-positiveendothelialcellscontributetoclottingabnormalitiesinmyeloproliferativeneoplasms.ProcNatlAcadSciUSA2014;111:2295–300.[215] JensenMK,deNullyBrownP,LundBV,NielsenOJ,HasselbalchHC. Increasedplateletactivation and abnormal membrane glycoprotein content and redistribution inmyeloproliferativedisorders.BrJHaematol2000;110:116–24.[216] BlannA, CaineG, BarefordD. Abnormal vascular, platelet and coagulationmarkers inprimary thrombocythaemia are not reversed by treatments that reduce the platelet count.Platelets2004;15:447–9.[217] Arellano-RodrigoE,Alvarez-LarránA,ReverterJC,VillamorN,ColomerD,CervantesF.

155

Increased platelet and leukocyte activation as contributing mechanisms for thrombosis inessential thrombocythemia and correlation with the JAK2 mutational status. Haematologica2006;91:169–75.[218] RobertsonB,UrquhartC,FordI,TownendJ,WatsonHG,VickersMA,etal.Plateletandcoagulationactivationmarkersinmyeloproliferativediseases:relationshipswithJAK2V6I7Fstatus,clonality,andantiphospholipidantibodies.JThrombHaemostJTH2007;5:1679–85.[219] Panova-NoevaM,MarchettiM, SpronkHM, Russo L, Diani E, Finazzi G, et al. Platelet-inducedthrombingenerationbythecalibratedautomatedthrombogramassayisincreasedinpatientswithessentialthrombocythemiaandpolycythemiavera.AmJHematol2011;86:337–42.[220] Falanga A, Marchetti M, Vignoli A, Balducci D, Russo L, Guerini V, et al. V617F JAK-2mutation in patients with essential thrombocythemia: relation to platelet, granulocyte, andplasmahemostaticandinflammatorymolecules.ExpHematol2007;35:702–11.[221] VillmowT,Kemkes-MatthesB,MatzdorffAC.Markersofplateletactivationandplatelet-leukocyte interaction in patients with myeloproliferative syndromes. Thromb Res2002;108:139–45.[222] YaoH-X,HuangL,WuC-M,LinL-E,HuangZ-Q,WuJ-F,etal.[Effectsofsodiumozagrelinprimary thrombocytosis combined with thrombosis]. Zhongguo Shi Yan Xue Ye Xue Za Zhi2009;17:1360–2.[223] FalangaA,MarchettiM, Barbui T, Smith CW. Pathogenesis of Thrombosis in EssentialThrombocythemia and Polycythemia Vera: The Role of Neutrophils. Semin Hematol2005;42:239–47.[224] JensenMK,deNullyBrownP,LundBV,NielsenOJ,HasselbalchHC.Increasedcirculatingplatelet-leukocyte aggregates in myeloproliferative disorders is correlated to previousthrombosis,plateletactivationandplateletcount.EurJHaematol2001;66:143–51.[225] Arellano-RodrigoE,Alvarez-LarránA,ReverterJ-C,ColomerD,VillamorN,BellosilloB,et al. Platelet turnover, coagulation factors, and soluble markers of platelet and endothelialactivation in essential thrombocythemia: Relationshipwith thrombosis occurrence and JAK2V617Falleleburden.AmJHematol2009;84:102–8.[226] LandolfiR,RoccaB,PatronoC.Bleedingandthrombosisinmyeloproliferativedisorders:mechanismsandtreatment.CritRevOncolHematol1995;20:203–22.[227] WehmeierA, SüdhoffT,MeierkordF.Relationof platelet abnormalities to thrombosisandhemorrhageinchronicmyeloproliferativedisorders.SeminThrombHemost1997;23:391–402.[228] Le Blanc K, Berg A, Palmblad J, Samuelsson J. Stimulus-specific defect in plateletaggregationinpolycythemiavera.EurJHaematol1994;53:145–9.[229] Hosseini E, Ghasemzadeh M, Nassaji F, Jamaat ZP. GPVI modulation during plateletactivationandstorage:itsexpressionlevelsandectodomainsheddingcomparedtomarkersofplateletstoragelesion.Platelets2017;28:498–508.[230] Ghasemzadeh M, Hosseini E, Roudsari ZO, Zadkhak P. Intraplatelet reactive oxygenspecies(ROS)correlatewiththesheddingofadhesivereceptors,microvesiculationandplateletadhesion tocollagenduringstorage:DoesendogenousROSgenerationdownregulateplateletadhesivefunction?ThrombRes2018;163:153–61.[231] HobbsCM,ManningH,BennettC,VasquezL,SeverinS,BrainL,etal.JAK2V617Fleadstointrinsic changes inplatelet formation and reactivity in a knock-inmousemodel of essentialthrombocythemia.Blood2013;122:3787–97.[232] Lamrani L, Lacout C,OllivierV,Denis CV,GardinerE,HoTinNoeB, et al.Hemostaticdisorders in a JAK2V617F-driven mouse model of myeloproliferative neoplasm. Blood2014;124:1136–45.

156

[233] CalaminusSDJ,GuitartA,SinclairA,SchachtnerH,WatsonSP,HolyoakeTL,etal.LineageTracingofPf4-CreMarksHematopoieticStemCellsandTheirProgeny.PLoSONE2012;7.[234] PertuyF,AguilarA,StrasselC,EcklyA,FreundJ-N,DulucI,etal.Broaderexpressionofthe mouse platelet factor 4-cre transgene beyond the megakaryocyte lineage. J ThrombHaemostn.d.;13:115–25.[235] Strassel C, Kubovcakova L, Mangin PH, Ravanat C, Freund M, Skoda RC, et al.Haemorrhagic and thrombotic diatheses in mouse models with thrombocytosis. ThrombHaemost2015;113:414–25.[236] MusolinoC,AlonciA,BellomoG,TringaliO, SpatariG,QuartaroneC, et al.MarkersofEndothelialandPlateletStatusinPatientswithEssentialThrombocythemiaandPolycythemiaVera.Hematology1999;4:397–402.[237] GrignaniC,NorisP,TinelliC,BarosiG,BalduiniCL.Invitroplateletaggregationdefectsin patients with myeloproliferative disorders and high platelet counts: are they laboratoryartefacts?Platelets2009;20:131–4.[238] Mackman N. New insights into the mechanisms of venous thrombosis. J Clin Invest2012;122:2331–6.[239] von Brühl M-L, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, et al.Monocytes,neutrophils,andplateletscooperatetoinitiateandpropagatevenousthrombosisinmiceinvivo.JExpMed2012;209:819–35.[240] FalangaA,MarchettiM.Thromboticdisease in themyeloproliferativeneoplasms.ASHEducProgramBook2012;2012:571–81.[241] Marchetti M, Falanga A. Leukocytosis, JAK2V617F mutation, and hemostasis inmyeloproliferativedisorders.PathophysiolHaemostThromb2008;36:148–59.[242] Carulli G, Minnucci S, Gianfaldoni ML, Angiolini C, Azzarà A, Ambrogi F. Interactionsbetween platelets and neutrophils in essential thrombocythaemia. Effects on neutrophilchemiluminescenceandsuperoxideaniongeneration.EurJClinInvest1995;25:929–34.[243] Barbui T, Finazzi G, Falanga A. Myeloproliferative neoplasms and thrombosis. Blood2013;122:2176–84.[244] Augello C, Cattaneo D, Bucelli C, Terrasi A, Fermo E, Martinelli I, et al. <EmphasisType="Italic">CD18</Emphasis> promoter methylation is associated with a higher risk ofthromboticcomplicationsinprimarymyelofibrosis.AnnHematol2016;95:1965–9.[245] Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al.NeutrophilExtracellularTrapsKillBacteria.Science2004;303:1532–5.[246] MartinodK,WagnerDD.Thrombosis:tangledupinNETs.Blood2014;123:2768–76.[247] DemersM,KrauseDS,SchatzbergD,MartinodK,VoorheesJR,FuchsTA,etal.CancerspredisposeneutrophilstoreleaseextracellularDNAtrapsthatcontributetocancer-associatedthrombosis.ProcNatlAcadSci2012;109:13076–81[248] Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M, Chappell RJ, et al.Increasedneutrophil extracellular trap formationpromotes thrombosis inmyeloproliferativeneoplasms.SciTranslMed2018;10.[249] MarinOyarzúnCP,CarestiaA,LevPR,GlembotskyAC,CastroRíosMA,MoiraghiB,etal.Neutrophil extracellular trap formationand circulatingnucleosomes inpatientswith chronicmyeloproliferativeneoplasms.SciRep2016;6:38738.[250] Colin Y, Van Kim CL, El Nemer W. Red cell adhesion in human diseases: Curr OpinHematol2014;21:186–92.[251] Cines DB, Lebedeva T, Nagaswami C, Hayes V, Massefski W, Litvinov RI, et al. Clotcontraction: compressionof erythrocytes into tightlypackedpolyhedra and redistributionofplateletsandfibrin.Blood2014;123:1596–603.[252] KraussS.Haptoglobinmetabolisminpolycythemiavera.Blood1969;33:865–76.

157

[253] Strati P, Masarova L, Bose P, Daver N, Pemmaraju N, Verstovsek S. Haptoglobin isfrequentlylowinpatientswithmyelofibrosis:Clinicalrelevance.LeukRes2017;57:85–8.[254] RusakT,MisztalT,PiszczJ,TomasiakM.Nitricoxidescavengingbycell-freehemoglobinmay be a primary factor determining hypertension in polycythemic patients. FreeRadicRes2014;48:230–8.[255] WautierM-P,NemerWE,GaneP,RainJ-D,CartronJ-P,ColinY,etal.Increasedadhesionto endothelial cells of erythrocytes from patients with polycythemia vera is mediated bylamininα5chainandLu/BCAM.Blood2007;110:894–901.[256] GrandisMD,CambotM,WautierM-P,CassinatB,ChomienneC,ColinY,etal.JAK2V617Factivates Lu/BCAM-mediated red cell adhesion in polycythemia vera through an EpoR-independentRap1/Aktpathway.Blood2013;121:658–65.[257] Rautou P-E, Vion A-C, Amabile N, Chironi G, Simon A, Tedgui A, et al. Microparticles,VascularFunction,andAtherothrombosis.CircRes2011;109:593–606.[258] BoulangerCM,LoyerX,RautouP-E,AmabileN.Extracellularvesiclesincoronaryarterydisease.NatRevCardiol2017;14:259–72.[259] Wood JP, Ellery PER, Maroney SA, Mast AE. Protein S is a cofactor for platelet andendothelial tissue factor pathway inhibitor-α but not for cell surface-associated tissue factorpathwayinhibitor.ArteriosclerThrombVascBiol2014;34:169–76.[260] TongD,YuM,GuoL,LiT,Li J,NovakovicVA,etal.Phosphatidylserine-exposingbloodand endothelial cells contribute to the hypercoagulable state in essential thrombocythemiapatients.AnnHematol2018;97:605–16.[261] Duchemin J, Ugo V, Ianotto J-C, Lecucq L,Mercier B, Abgrall J-F. Increased circulatingprocoagulantactivityandthrombingenerationinpatientswithmyeloproliferativeneoplasms.ThrombRes2010;126:238–42.[262] MarchettiM,CastoldiE,SpronkHMH,vanOerleR,BalducciD,BarbuiT,etal.ThrombingenerationandactivatedproteinCresistanceinpatientswithessentialthrombocythemiaandpolycythemiavera.Blood2008;112:4061–8.[263] TripodiA, ChantarangkulV, Gianniello F, ClericiM, LemmaL, PadovanL, et al. Globalcoagulationinmyeloproliferativeneoplasms.AnnHematol2013;92:1633–9.[264] TrappenburgMC,vanSchilfgaardeM,MarchettiM,SpronkHM,tenCateH,LeyteA,etal.Elevatedprocoagulantmicroparticlesexpressingendothelialandplateletmarkersinessentialthrombocythemia.Haematologica2009;94:911–8.[265] Kogan I, Chap D, Hoffman R, Axelman E, Brenner B, Nadir Y. JAK-2 V617F mutationincreasesheparanaseprocoagulantactivity.ThrombHaemost2016;115:73–80.[266] GroverSP,MackmanN.TissueFactor:AnEssentialMediatorofHemostasisandTriggerofThrombosis.ArteriosclerThrombVascBiol2018;38:709–25.[267] Carmeliet P, Stassen JM, Schoonjans L, Ream B, van den Oord JJ, De Mol M, et al.Plasminogen activator inhibitor-1 gene-deficient mice. II. Effects on hemostasis, thrombosis,andthrombolysis.JClinInvest1993;92:2756–60.[268] Friedenberg WR, Roberts RC, David DE. Relationship of thrombohemorrhagiccomplicationstoendothelialcellfunctioninpatientswithchronicmyeloproliferativedisorders.AmJHematol1992;40:283–9.[269] SonmezM,SaglamF,KarahanSC,ErkutN,MenteseA,SonmezB,etal.Treatmentrelatedchanges in antifibrinolytic activity in patients with polycythemia vera. Hematology2010;15:391–6.[270] KaftanO,BalcikOS,CipilH,OzetG,BavbekN,KoşarA,etal.Plasmalevelsofthrombin-activatablefibrinolysis inhibitor inprimaryandsecondarythrombocytosis.ClinApplThrombOffJIntAcadClinApplThromb2005;11:449–54.[271] BirdaneA,HaznedaroğluIC,BavbekN,KoşarA,BüyükaşikY,OzcebeO,etal.Theplasma

158

levels of prostanoids and plasminogen activator inhibitor-1 in primary and secondarythrombocytosis.ClinApplThrombOffJIntAcadClinApplThromb2005;11:197–201.[272] PósánE,UjjG,KissA,TelekB,RákK,UdvardyM.ReducedinvitroclotlysisandreleaseofmoreactiveplateletPAI-1inpolycythemiaveraandessentialthrombocythemia.ThrombRes1998;90:51–6.[273] MałeckiR,GackaM,Kuliszkiewicz-JanusM,Jakobsche-PolichtU,KwiatkowskiJ,AdamiecR, et al. Altered plasma fibrin clot properties in essential thrombocythemia. Platelets2016;27:110–6.[274] Rusak T, Piszcz J, Misztal T, Brańska-Januszewska J, Tomasiak M. Platelet-relatedfibrinolysis resistance inpatients suffering fromPV. Impactof clot retractionand isovolemicerythrocytapheresis.ThrombRes2014;134:192–8.[275] AirdWC.Vascularbed-specificthrombosis.JThrombHaemostJTH2007;5Suppl1:283–91.[276] RosenbergRD,AirdWC.Vascular-bed--specifichemostasisandhypercoagulablestates.NEnglJMed1999;340:1555–64.[277] Yuan L, Chan GC, Beeler D, Janes L, Spokes KC, Dharaneeswaran H, et al. A role ofstochastic phenotype switching in generating mosaic endothelial cell heterogeneity. NatCommun2016;7:10160.[278] Cheng Z, Fu J, Liu G, Zhang L, Xu Q, Wang S. Angiogenesis in JAK2 V617F positivemyeloproliferative neoplasms and ruxolitinib decrease VEGF, HIF-1 enesis in JAK2 V617Fpositivecells.LeukLymphoma2018;59:196–203.[279] Zangari M, Fink L, Tolomelli G, Lee JCH, Stein BL, Hickman K, et al. Could hypoxiaincrease the prevalence of thrombotic complications in polycythemia vera? Blood CoagulFibrinolysisIntJHaemostThromb2013;24:311–6.[280] Plessier A, Rautou P-E, Valla D-C.Management of hepatic vascular diseases. J Hepatol2012;56:S25–S38.[281] AgenoW,DentaliF,PomeroF,FenoglioL,SquizzatoA,PaganiG,etal. IncidenceratesandcasefatalityratesofportalveinthrombosisandBudd-ChiariSyndrome.ThrombHaemost2017;117:794–800.[282] Ollivier-HourmandI,AllaireM,GoutteN,MorelloR,Chagneau-DerrodeC,GoriaO,etal.TheepidemiologyofBudd-ChiarisyndromeinFrance.DigLiverDisOffJItalSocGastroenterolItalAssocStudyLiver2018.[283] DarwishMuradS, PlessierA,Hernandez-GuerraM, FabrisF, EapenCE,BahrMJ, et al.Etiology, management, and outcome of the Budd-Chiari syndrome. Ann Intern Med2009;151:167–75.[284] HeitJA.Epidemiologyofvenousthromboembolism.NatRevCardiol2015;12:464–74.[285] Smalberg JH, Arends LR, Valla DC, Kiladjian J-J, Janssen HL, Leebeek FW.Myeloproliferative neoplasms in Budd-Chiari syndrome and portal vein thrombosis: ameta-analysis.Blood2012;120:4921–4928.[286] How J, Zhou A, Oh ST. Splanchnic vein thrombosis in myeloproliferative neoplasms:pathophysiologyandmolecularmechanismsofdisease.TherAdvHematol2017;8:107–18.[287] KiladjianJ-J,CervantesF,LeebeekFWG,MarzacC,CassinatB,ChevretS,etal.TheimpactofJAK2andMPLmutationsondiagnosisandprognosisofsplanchnicveinthrombosis:areporton241cases.Blood2008;111:4922–9.[288] DeStefanoV,FioriniA,RossiE,ZaT,FarinaG,ChiusoloP,etal. Incidenceof the JAK2V617Fmutationamongpatientswith splanchnicor cerebralvenous thrombosisandwithoutovertchronicmyeloproliferativedisorders.JThrombHaemostJTH2007;5:708–14.[289] PrimignaniM,BarosiG, BergamaschiG, GianelliU, Fabris F,ReatiR, et al. Role of theJAK2 mutation in the diagnosis of chronic myeloproliferative disorders in splanchnic vein

159

thrombosis.HepatolBaltimMd2006;44:1528–34.[290] Barosi G, Buratti A, Costa A, Liberato LN, Balduini C, Cazzola M, et al. An atypicalmyeloproliferative disorderwith high thrombotic risk and slow disease progression. Cancer1991;68:2310–8.[291] ChaitY,CondatB,Cazals-HatemD,RufatP,AtmaniS,ChaouiD,etal.Relevanceof thecriteria commonly used to diagnosemyeloproliferative disorder in patients with splanchnicveinthrombosis.BrJHaematol2005;129:553–60.[292] VallaD,CasadevallN,HuisseMG,TulliezM,GrangeJD,MullerO,etal.Etiologyofportalvein thrombosis in adults. A prospective evaluation of primarymyeloproliferative disorders.Gastroenterology1988;94:1063–9.[293] Lamy T, Devillers A, Bernard M, Moisan A, Grulois I, Drenou B, et al. Inapparentpolycythemiavera:anunrecognizeddiagnosis.AmJMed1997;102:14–20.[294] DeStefanoV,ZaT,RossiE,VannucchiAM,RuggeriM,ElliE,etal.Recurrentthrombosisinpatientswithpolycythemiaveraandessentialthrombocythemia:incidence,riskfactors,andeffectoftreatments.Haematologica2008;93:372–80.[295] Colaizzo D, Amitrano L, Guardascione MA, Tiscia GL, D’Andrea G, Longo VAC, et al.OutcomeofpatientswithsplanchnicvenousthrombosispresentingwithoutovertMPN:arolefortheJAK2V617Fmutationre-evaluation.ThrombRes2013;132:e99–104.[296] Aird WC. Phenotypic Heterogeneity of the Endothelium: I. Structure, Function, andMechanisms.CircRes2007;100:158–73.[297] PoissonJ,LemoinneS,BoulangerC,DurandF,MoreauR,VallaD,etal.Liversinusoidalendothelialcells:Physiologyandroleinliverdiseases.JHepatol2017;66:212–27.[298] Smalberg JH, Kruip MJHA, Janssen HLA, Rijken DC, Leebeek FWG, de Maat MPM.Hypercoagulabilityandhypofibrinolysisandriskofdeepveinthrombosisandsplanchnicveinthrombosis:similaritiesanddifferences.ArteriosclerThrombVascBiol2011;31:485–93.[299] Mathew R, Huang J, Wu JM, Fallon JT, Gewitz MH. Hematological disorders andpulmonaryhypertension.WorldJCardiol2016;8:703–18.[300] García-ManeroG,SchusterSJ,PatrickH,MartinezJ.Pulmonaryhypertensioninpatientswithmyelofibrosissecondarytomyeloproliferativediseases.AmJHematol1999;60:130–5.[301] TabarrokiA,LindnerDJ,VisconteV,ZhangL,RogersHJ,ParkerY,etal.Ruxolitinibleadsto improvement of pulmonary hypertension in patients with myelofibrosis. Leukemia2014;28:1486–93.[302] Masri FA, XuW, Comhair SAA,AsosinghK,KooM,Vasanji A, et al.Hyperproliferativeapoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am JPhysiol-LungCellMolPhysiol2007;293:L548–54.[303] InraCN,ZhouBO,AcarM,MurphyMM,RichardsonJ,ZhaoZ,etal.Aperisinusoidalnicheforextramedullaryhaematopoiesisinthespleen.Nature2015;527:466–71.[304] Kvasnicka HM, Thiele J. Bone marrow angiogenesis: methods of quantification andchangesevolvinginchronicmyeloproliferativedisorders.HistolHistopathol2004;19:1245–60.[305] Ni H, Barosi G, Hoffman R. Quantitative evaluation of bone marrow angiogenesis inidiopathicmyelofibrosis.AmJClinPathol2006;126:241–7.[306] MedingerM,SkodaR,GratwohlA,TheocharidesA,BuserA,HeimD,etal.Angiogenesisandvascularendothelialgrowthfactor-/receptorexpressioninmyeloproliferativeneoplasms:correlation with clinical parameters and JAK2-V617F mutational status. Br J Haematol2009;146:150–7.[307] Gianelli U, Vener C, Raviele PR, Savi F, Somalvico F, Calori R, et al. VEGF ExpressionCorrelates With Microvessel Density in Philadelphia Chromosome–Negative ChronicMyeloproliferativeDisorders.AmJClinPathol2007;128:966–73.[308] Panteli K, Bai M, Hatzimichael E, Zagorianakou N, Agnantis NJ, Bourantas K. Serum

160

levels, and bone marrow immunohistochemical expression of, vascular endothelial growthfactorinpatientswithchronicmyeloproliferativediseases.Hematology2007;12:481–6.[309] BoiocchiL,VenerC,SaviF,BonoldiE,MoroA,FracchiollaNS,etal.Increasedexpressionofvascularendothelialgrowthfactorreceptor1correlateswithVEGFandmicrovesseldensityin Philadelphia chromosome-negative myeloproliferative neoplasms. J Clin Pathol2011;64:226–31.[310] Subotički T, Mitrović Ajtić O, Beleslin-Čokić BB, Nienhold R, Diklić M, Djikić D, et al.Angiogenic factors are increased in circulating granulocytes and CD34+ cells ofmyeloproliferativeneoplasms.MolCarcinog2017;56:567–79.[311] Bogdanova A, Mihov D, Lutz H, Saam B, Gassmann M, Vogel J. Enhanced erythro-phagocytosisinpolycythemicmiceoverexpressingerythropoietin.Blood2007;110:762–9.[312] StamJ.Thrombosisofthecerebralveinsandsinuses.NEnglJMed2005;352:1791–8.[313] MartinelliI,DeStefanoV.Rarethrombosesofcerebral,splanchnicandupper-extremityveins.Anarrativereview.ThrombHaemost2010;103:1136–44.[314] Passamonti SM, Biguzzi E, CazzolaM, Franchi F, Gianniello F, Bucciarelli P, et al. TheJAK2V617F mutation in patients with cerebral venous thrombosis. J Thromb Haemost JTH2012;10:998–1003.[315] LamyM,PalazzoP,AgiusP,ChomelJC,CironJ,BerthometA,etal.ShouldWeScreenforJanusKinase2V617FMutationinCerebralVenousThrombosis?CerebrovascDisBaselSwitz2017;44:97–104.[316] DeT,PrabhakarP,NagarajaD,ChristopherR. Januskinase(JAK)2V617Fmutation inAsianIndianswithcerebralvenousthrombosisandwithoutovertmyeloproliferativedisorders.JNeurolSci2012;323:178–82.[317] DentaliF,AgenoW,RumiE,CasettiI,PoliD,ScodittiU,etal.Cerebralvenousthrombosisand myeloproliferative neoplasms: results from two large databases. Thromb Res2014;134:41–3.[318] HasselbalchHC.PerspectivesontheimpactofJAK-inhibitortherapyuponinflammation-mediated comorbidities in myelofibrosis and related neoplasms. Expert Rev Hematol2014;7:203–16.[319] FinazziG,DeStefanoV,BarbuiT.AreMPNsvasculardiseases?CurrHematolMaligRep2013;8:307–16.[320] Vrtovec M, Anzic A, Zupan IP, Zaletel K, Blinc A. Carotid Artery Stiffness, DigitalEndothelialFunction,andCoronaryCalciuminPatientswithEssentialThrombocytosis,FreeofOvertAtheroscleroticDisease.RadiolOncol2017;51:203–10.[321] JaiswalS,FontanillasP,Flannick J,ManningA,GraumanPV,MarBG,etal.Age-relatedclonalhematopoiesisassociatedwithadverseoutcomes.NEnglJMed2014;371:2488–98.[322] Fuster JJ,WalshK.SomaticMutationsandClonalHematopoiesis:UnexpectedPotentialNewDriversofAge-RelatedCardiovascularDisease.CircRes2018;122:523–32.[323] JaiswalS,NatarajanP,SilverAJ,GibsonCJ,BickAG,ShvartzE,etal.ClonalHematopoiesisandRiskofAtheroscleroticCardiovascularDisease.NEnglJMed2017;377:111–21.[324] CassinatB,HarrisonC,KiladjianJ-J.ClonalHematopoiesisandAtherosclerosis.NEnglJMed2017;377:1400–1.[325] JaiswalS,NatarajanP,EbertBL.ClonalHematopoiesisandAtherosclerosis.NEnglJMed2017;377:1401–2.[326] Muendlein A, Gasser K, Kinz E, Stark N, Leiherer A, Rein P, et al. Evaluation of theprevalenceandprospectiveclinical impactof the JAK2V617Fmutation in coronarypatients.AmJHematol2014;89:295–301.[327] MuendleinA,KinzE,GasserK,LeihererA,ReinP,SaelyCH,etal.OccurrenceoftheJAK2V617Fmutationinpatientswithperipheralarterialdisease.AmJHematol2015;90:E17-21.

161

[328] Fuster JJ,MacLauchlan S, ZuriagaMA, PolackalMN, Ostriker AC, Chakraborty R, et al.ClonalhematopoiesisassociatedwithTET2deficiencyacceleratesatherosclerosisdevelopmentinmice.Science2017;355:842–7.[329] RidkerPM,MacFadyenJG,EverettBM,LibbyP,ThurenT,GlynnRJ,etal.RelationshipofC-reactive protein reduction to cardiovascular event reduction following treatment withcanakinumab:asecondaryanalysisfromtheCANTOSrandomisedcontrolledtrial.LancetLondEngl2018;391:319–28.[330] DaviesPF.Flow-mediatedendothelialmechanotransduction.PhysiolRev1995;75:519–60.[331] MalekAM,AlperSL,IzumoS.Hemodynamicshearstressanditsroleinatherosclerosis.JAMA1999;282:2035–42.[332] ParmarKM,LarmanHB,DaiG,ZhangY,WangET,MoorthySN,etal.Integrationofflow-dependentendothelialphenotypesbyKruppel-likefactor2.JClinInvest2006;116:49–58.[333] Wade JP, Pearson TC, Russell RW,Wetherley-Mein G. Cerebral blood flow and bloodviscosityinpatientswithpolycythaemiasecondarytohypoxiclungdisease.BrMedJClinResEd1981;283:689–92.[334] WellsRE,MerrillEW.INFLUENCEOFFLOWPROPERTIESOFBLOODUPONVISCOSITY-HEMATOCRITRELATIONSHIPS*.JClinInvest1962;41:1591–8.[335] Pearson TC, Wetherley-Mein G. VASCULAR OCCLUSIVE EPISODES AND VENOUSHÆMATOCRIT IN PRIMARY PROLIFERATIVE POLYCYTHÆMLX. The Lancet 1978;312:1219–22.[336] GolseN,BucurPO,AdamR,CastaingD,SaCunhaA,VibertE.Newparadigms inpost-hepatectomyliverfailure.JGastrointestSurgOffJSocSurgAlimentTract2013;17:593–605.[337] Yamanaka K, Hatano E, Narita M, Kitamura K, Yanagida A, Asechi H, et al. Olprinoneattenuatesexcessiveshearstressthroughup-regulationofendothelialnitricoxidesynthaseina rat excessive hepatectomymodel. Liver Transplant Off Publ AmAssoc Study Liver Dis IntLiverTransplantSoc2011;17:60–9.[338] Martini J,CarpentierB,NegreteAC,Frangos JA, IntagliettaM.Paradoxicalhypotensionfollowing increased hematocrit and blood viscosity. Am J Physiol-Heart Circ Physiol2005;289:H2136–43.[339] Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, et al.Prolonged fluid shear stress induces adistinct set of endothelial cell genes,most specificallylungKrüppel-likefactor(KLF2).Blood2002;100:1689–98.[340] LusisAJ.Atherosclerosis.Nature2000;407:233–41.[341] Knowles JW, Reddick RL, Jennette JC, Shesely EG, Smithies O, Maeda N. Enhancedatherosclerosis and kidney dysfunction in eNOS(-/-)Apoe(-/-) mice are ameliorated byenalapriltreatment.JClinInvest2000;105:451–8.[342] Moss JWE, Ramji DP. Nutraceutical therapies for atherosclerosis. Nat Rev Cardiol2016;13:513–32.[343] Neunteufl T, Heher S, Stefenelli T, Pabinger I, GisslingerH. Endothelial dysfunction inpatientswithpolycythaemiavera.BrJHaematol2001;115:354–9.[344] Li Y, Lui KO, Zhou B. Reassessing endothelial-to-mesenchymal transition incardiovasculardiseases.NatRevCardiol2018.[345] Cho JG, Lee A, Chang W, Lee M-S, Kim J. Endothelial to Mesenchymal TransitionRepresentsaKeyLink in the Interactionbetween InflammationandEndothelialDysfunction.FrontImmunol2018;9:294.[346] ChenP-Y,QinL,BaeyensN,LiG,AfolabiT,BudathaM,etal.Endothelial-to-mesenchymaltransitiondrivesatherosclerosisprogression.JClinInvest2015;125:4514–28.[347] Erba BG, Gruppi C, Corada M, Pisati F, Rosti V, Bartalucci N, et al. Endothelial-to-

162

Mesenchymal Transition in BoneMarrow and Spleen of PrimaryMyelofibrosis. Am J Pathol2017;187:1879–92.[348] ZahrAA,SalamaME,CarreauN,TremblayD,VerstovsekS,MesaR,etal.Bonemarrowfibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies. Haematologica2016;101:660–71.[349] Chou JM, Li C-Y, Tefferi A. Bone marrow immunohistochemical studies of angiogeniccytokines and their receptors in myelofibrosis with myeloid metaplasia. Leuk Res2003;27:499–504.[350] CampanelliR,RostiV,VillaniL,CastagnoM,MorettiE,BonettiE,etal.Evaluationofthebioactive and total transforming growth factor β1 levels in primarymyelofibrosis. Cytokine2011;53:100–6.[351] Simon SI, Green CE. Molecular Mechanics and Dynamics of Leukocyte RecruitmentDuringInflammation.AnnuRevBiomedEng2005;7:151–85.[352] Carman CV, Springer TA. A transmigratory cup in leukocyte diapedesis both throughindividualvascularendothelialcellsandbetweenthem.JCellBiol2004;167:377–88.[353] LibbyP,RidkerPM,HanssonGK,LeducqTransatlanticNetworkonAtherothrombosis.Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol2009;54:2129–38.[354] Tedgui A,Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways.PhysiolRev2006;86:515–81.[355] RamjiDP,DaviesTS. Cytokines in atherosclerosis:Keyplayers in all stages of diseaseandpromisingtherapeutictargets.CytokineGrowthFactorRev2015;26:673–85.[356] BarbuiT,CarobbioA,FinazziG,VannucchiAM,BarosiG,AntonioliE,etal.Inflammationand thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactiveproteinandpentraxin3.Haematologica2011;96:315–8.[357] BarosiG.AnimmunedysregulationinMPN.CurrHematolMaligRep2014;9:331–9.[358] Hasselbalch HC. Chronic inflammation as a promotor of mutagenesis in essentialthrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model forcancerdevelopment?LeukRes2013;37:214–20.[359] RossR.Atherosclerosis--aninflammatorydisease.NEnglJMed1999;340:115–26.[360] Hasselbalch HC. Perspectives on chronic inflammation in essential thrombocythemia,polycythemia vera, andmyelofibrosis: is chronic inflammation a trigger and driver of clonalevolution and development of accelerated atherosclerosis and second cancer? Blood2012;119:3219–25.[361] TabasI.Macrophagedeathanddefectiveinflammationresolutioninatherosclerosis.NatRevImmunol2010;10:36–46.[362] FebbraioM,PodrezEA,SmithJD,HajjarDP,HazenSL,HoffHF,etal.TargeteddisruptionoftheclassBscavengerreceptorCD36protectsagainstatheroscleroticlesiondevelopmentinmice.JClinInvest2000;105:1049–56.[363] Silverstein RL. Inflammation, atherosclerosis, and arterial thrombosis: role of thescavengerreceptorCD36.CleveClinJMed2009;76Suppl2:S27-30.[364] GinsbergH,GilbertHS,GibsonJC,LeNA,BrownWV.Increasedlow-density-lipoproteincatabolisminmyeloproliferativedisorders.AnnInternMed1982;96:311–6.[365] Ginsberg H, Goldberg IJ,Wang-Iverson P, Gitler E, Le NA, Gilbert HS, et al. Increasedcatabolismofnativeandcyclohexanedione-modified lowdensity lipoprotein in subjectswithmyeloproliferativediseases.ArteriosclerDallasTex1983;3:233–41.[366] Vallabhajosula S, Gilbert HS, Goldsmith SJ, Paidi M, Hanna MM, Ginsberg HN. Low-densitylipoprotein(LDL)distributionshownby99mtechnetium-LDLimaginginpatientswithmyeloproliferativediseases.AnnInternMed1989;110:208–13.

163

[367] Gardai SJ,McPhillips KA, Frasch SC, JanssenWJ, Starefeldt A,Murphy-Ullrich JE, et al.Cell-surfacecalreticulininitiatesclearanceofviableorapoptoticcellsthroughtrans-activationofLRPonthephagocyte.Cell2005;123:321–34.[368] Daitoku S, Takenaka K, Yamauchi T, Yurino A, Jinnouchi F, Nunomura T, et al.Calreticulinmutationdoesnotcontributetodiseaseprogressioninessentialthrombocythemiabyinhibitingphagocytosis.ExpHematol2016;44:817-825.e3.[369] Getz GS, Reardon CA. Natural killer T cells in atherosclerosis. Nat Rev Cardiol2017;14:304–14.[370] Ait-OufellaH, SalomonBL, Potteaux S,RobertsonA-KL,GourdyP, Zoll J, et al.NaturalregulatoryTcellscontrol thedevelopmentofatherosclerosis inmice.NatMed2006;12:178–80.[371] Pastrana JL, Sha X, Virtue A, Mai J, Cueto R, Lee IA, et al. Regulatory T cells andAtherosclerosis.JClinExpCardiol2012;2012:002.[372] LiuzzoG,GoronzyJJ,YangH,KopeckySL,HolmesDR,FryeRL,etal.MonoclonalT-cellproliferationandplaqueinstabilityinacutecoronarysyndromes.Circulation2000;101:2883–8.[373] Cheng X, Yu X, Ding Y-J, Fu Q-Q, Xie J-J, Tang T-T, et al. The Th17/Treg imbalance inpatientswithacutecoronarysyndrome.ClinImmunolOrlandoFla2008;127:89–97.[374] LimK-H,ChenCG-S,ChangY-C,ChiangY-H,KaoC-W,WangW-T,etal.IncreasedBcellactivation is present in JAK2V617F-mutated, CALR-mutated and triple-negative essentialthrombocythemia.Oncotarget2017;8:32476–91.[375] Sanchez C, Baier C, Colle JG, Chelbi R, Rihet P, Le Treut T, et al. Natural killer cells inpatientswithpolycythemiavera.HumImmunol2015;76:644–50.[376] ChoiDC,TremblayD,Iancu-RubinC,MascarenhasJ.Programmedcelldeath-1pathwayinhibition in myeloid malignancies: implications for myeloproliferative neoplasms. AnnHematol2017;96:919–27.[377] ZhaoW,LiY,LiuX,ZhangL,WangX.InvolvementofCD4+CD25+regulatoryTcells inthepathogenesisofpolycythaemiavera.ChinMedJ(Engl)2008;121:1781–6.[378] Keohane C, Kordasti S, Seidl T, Abellan PP, Thomas NSB, Harrison CN, et al. JAKinhibition induces silencing of T Helper cytokine secretion and a profound reduction in Tregulatorycells.BrJHaematol2015;171:60–73.[379] Shoeibi S, Mozdziak P, Mohammadi S. Important signals regulating coronary arteryangiogenesis.MicrovascRes2018;117:1–9.[380] Moreno PR, Purushothaman K-R, Sirol M, Levy AP, Fuster V. Neovascularization inhumanatherosclerosis.Circulation2006;113:2245–52.[381] VirmaniR,KolodgieFD,BurkeAP,FinnAV,GoldHK,TulenkoTN,etal.Atheroscleroticplaque progression and vulnerability to rupture: angiogenesis as a source of intraplaquehemorrhage.ArteriosclerThrombVascBiol2005;25:2054–61.[382] Rohde E, Malischnik C, Thaler D, Maierhofer T, Linkesch W, Lanzer G, et al. Bloodmonocytesmimicendothelialprogenitorcells.StemCellsDaytOhio2006;24:357–67.[383] Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR, et al. HumanCD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitivehematopoieticprogenitors.ExpHematol2007;35:1109–18.[384] Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation ofputativeprogenitorendothelialcellsforangiogenesis.Science1997;275:964–7.[385] IngramDA,MeadLE,TanakaH,MeadeV,FenoglioA,MortellK,etal.Identificationofanovel hierarchy of endothelial progenitor cells using human peripheral and umbilical cordblood.Blood2004;104:2752–60.[386] YoderMC,MeadLE,PraterD,KrierTR,MrouehKN,LiF, et al.Redefiningendothelial

164

progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood2007;109:1801–9.[387] Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial CellMetabolism.PhysiolRev2017;98:3–58.[388] Silvestre J-S, Smadja DM, Lévy BI. Postischemic Revascularization: From Cellular andMolecularMechanismstoClinicalApplications.PhysiolRev2013;93:1743–802.[389] Hill JM,ZalosG,HalcoxJPJ,SchenkeWH,WaclawiwMA,QuyyumiAA,etal.CirculatingEndothelial Progenitor Cells, Vascular Function, and Cardiovascular Risk.Http://DxDoiOrgGate2InistFr/101056/NEJMoa0222872009.[390] WernerN,KosiolS,SchieglT,AhlersP,WalentaK,LinkA,etal.Circulatingendothelialprogenitorcellsandcardiovascularoutcomes.NEnglJMed2005;353:999–1007.[391] Piaggio G, Rosti V, Corselli M, Bertolotti F, Bergamaschi G, Pozzi S, et al. Endothelialcolony-formingcellsfrompatientswithchronicmyeloproliferativedisorderslackthedisease-specificmolecularclonalitymarker.Blood2009;114:3127–30.[392] Medinger M, Mross K. Clinical trials with anti-angiogenic agents in hematologicalmalignancies.JAngiogenesisRes2010;2:10.[393] DaviesMJ.Thepathophysiologyofacutecoronarysyndromes.Heart2000;83:361–6.[394] Crea F, Libby P. Acute Coronary Syndromes: TheWay Forward FromMechanisms toPrecisionTreatment.Circulation2017;136:1155–66.[395] CasscellsW, Naghavi M,Willerson JT. Vulnerable atherosclerotic plaque: a multifocaldisease.Circulation2003;107:2072–5.[396] Newby AC. Matrix metalloproteinases regulate migration, proliferation, and death ofvascularsmoothmusclecellsbydegradingmatrixandnon-matrixsubstrates.CardiovascRes2006;69:614–24.[397] Michiels JJ, Berneman ZN, Schroyens W, Van Vliet HHDM. Pathophysiology andtreatment of platelet-mediated microvascular disturbances, major thrombosis and bleedingcomplications in essential thrombocythaemia and polycythaemia vera. Platelets 2004;15:67–84.[398] Petrides PE, Siegel F. Thrombotic complications in essential thrombocythemia (ET):clinicalfactsandbiochemicalriddles.BloodCellsMolDis2006;36:379–84.[399] Ozben B, Ekmekci A, Bugra Z, Umman S, MericM. Multiple coronary thrombosis andstent implantation to the subtotally occluded right renal artery in a patient with essentialthrombocytosis:acasereportwithreview.JThrombThrombolysis2006;22:79–84.[400] Agewall S, Beltrame JF, Reynolds HR, Niessner A, Rosano G, Caforio ALP, et al. ESCworkinggrouppositionpaperonmyocardialinfarctionwithnon-obstructivecoronaryarteries.EurHeartJ2017;38:143–53.[401] Beltrame JF,CreaF,Kaski JC,OgawaH,OngP,SechtemU,etal.TheWho,What,Why,When,HowandWhereofVasospasticAngina.CircJOffJJpnCircSoc2016;80:289–98.[402] LandolfiR,DiGennaroL,BarbuiT,DeStefanoV,FinazziG,MarfisiR,etal.Leukocytosisasamajorthromboticriskfactorinpatientswithpolycythemiavera.Blood2007;109:2446–52.[403] KaessBM,PreisSR,BeiserA,SawyerDB,ChenTC,SeshadriS,etal.Circulatingvascularendothelial growth factor and the risk of cardiovascular events. Heart 2016:heartjnl-2015-309155.[404] Pósfai É, Marton I, Borbényi Z, Nemes A. Myocardial infarction as a thromboticcomplication of essential thrombocythemia and polycythemia vera. Anatol J Cardiol2016;16:397–402.[405] LarsenAI,GalbraithPD,GhaliWA,NorrisCM,GrahamMM,KnudtsonML.Characteristicsand outcomes of patients with acute myocardial infarction and angiographically normalcoronaryarteries.AmJCardiol2005;95:261–3.

165

[406] BaireyMerzCN,PepineCJ,WalshMN, Fleg JL. Ischemia andNoObstructiveCoronaryArteryDisease (INOCA):DevelopingEvidence-BasedTherapies andResearchAgenda for theNextDecade.Circulation2017;135:1075–92.[407] Ong P, Aziz A, Hansen HS, Prescott E, Athanasiadis A, Sechtem U. Structural andFunctionalCoronaryArteryAbnormalitiesinPatientsWithVasospasticAnginaPectoris.CircJOffJJpnCircSoc2015;79:1431–8.[408] BangOY,ToyodaK,ArenillasJF,LiuL,KimJS.IntracranialLargeArteryDiseaseofNon-AtheroscleroticOrigin:RecentProgressandClinicalImplications.JStroke2018;20:208–17.[409] FurchgottRF,Zawadzki JV.Theobligatory roleofendothelial cells in the relaxationofarterialsmoothmusclebyacetylcholine.Nature1980;288:373–6.[410] Rapoport RM, Murad F. Agonist-induced endothelium-dependent relaxation in ratthoracicaortamaybemediatedthroughcGMP.CircRes1983;52:352–7.[411] Ignarro LJ, Buga GM,WoodKS, Byrns RE, Chaudhuri G. Endothelium-derived relaxingfactor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A1987;84:9265–9.[412] Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxidefromL-arginine.Nature1988;333:664–6.[413] SessaWC.eNOSataglance.JCellSci2004;117:2427–9.[414] DimmelerS,Haendeler J,NehlsM,ZeiherAM.Suppressionofapoptosisbynitricoxideviainhibitionofinterleukin-1beta-convertingenzyme(ICE)-likeandcysteineproteaseprotein(CPP)-32-likeproteases.JExpMed1997;185:601–7.[415] Kang-DeckerN,CaoS,ChatterjeeS,YaoJ,EganLJ,SemelaD,etal.NitricoxidepromotesendothelialcellsurvivalsignalingthroughS-nitrosylationandactivationofdynamin-2.JCellSci2007;120:492–501.[416] Xu L, Eu JP,Meissner G, Stamler JS. Activation of the cardiac calcium release channel(ryanodinereceptor)bypoly-S-nitrosylation.Science1998;279:234–7.[417] Shiva S. Nitrite: A physiological store of nitric oxide andmodulator of mitochondrialfunction.RedoxBiol2013;1:40–4.[418] Hogg N. Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy.FreeRadicBiolMed2010;49:122–9.[419] DimmelerS,FlemingI,FisslthalerB,HermannC,BusseR,ZeiherAM.ActivationofnitricoxidesynthaseinendothelialcellsbyAkt-dependentphosphorylation.Nature1999;399:601–5.[420] Vanhoutte PM, Zhao Y, Xu A, Leung SWS. Thirty Years of Saying NO: Sources, Fate,Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator. Circ Res2016;119:375–96.[421] Cortelazzo S,VieroP,Morelli C,BarbuiT, deGaetanoG.Normal vascularprostacyclingenerationinpatientswithchronicmyeloproliferativedisorders.ThrombRes1985;39:139–41.[422] Cavalca V, Rocca B, Squellerio I, Dragani A, Veglia F, Pagliaccia F, et al. In vivoprostacyclin biosynthesis and effects of different aspirin regimens in patientswith essentialthrombocythaemia.ThrombHaemost2014;112:118–27.[423] CortelazzoS,GalliM,CastagnaD,VieroP,GaetanoGde,BarbuiT.IncreasedResponsetoArachidonic Acid and U-46619 and Resistance to Inhibitory Prostaglandins in Patients withChronicMyeloproliferativeDisorders.ThrombHaemost1988;59:73–6.[424] CooperB,AhernD.CharacterizationofthePlateletProstaglandinD2Receptor:LOSSOFPROSTAGLANDIN D2 RECEPTORS IN PLATELETS OF PATIENTS WITH MYELOPROLIFERATIVE

DISORDERS.JClinInvest1979;64:586–90.[425] CooperB,SchaferAI,PuchalskyD,HandinRI.PlateletresistancetoprostaglandinD2inpatientswithmyeloproliferativedisorders.Blood1978;52:618–26.[426] Nimmo GR,McInnes G, Turner AR, Evan-Wong A. Severemesenteric ischemia due to

166

primarythrombocythemiatreatedwithprostacyclin.CritCareMed1990;18:889–90.[427] ZeidmanA,DickerD,MittelmanM. Interferon-InducedVasospasm inChronicMyeloidLeukaemia.ActaHaematol1998;100:94–6.[428] RubanyiGM,PolokoffMA.Endothelins:molecularbiology,biochemistry,pharmacology,physiology,andpathophysiology.PharmacolRev1994;46:325–415.[429] Thorin E, ClozelM. The cardiovascular physiology and pharmacology of endothelin-1.AdvPharmacolSanDiegoCalif2010;60:1–26.[430] Yachoui R, Kristianto J, Sitwala K, Blank RD. Role of Endothelin-1 in a Syndrome ofMyelofibrosisandOsteosclerosis.JClinEndocrinolMetab2015;100:3971–4.[431] NakahataN.ThromboxaneA2:physiology/pathophysiology,cellularsignaltransductionandpharmacology.PharmacolTher2008;118:18–35.[432] YaoH-X,HuangL,LinL-E,WuC-M,WangH,ChenW-T,etal.[Thestudyofrelationshipbetween platelet function and thrombus in patients with essential thrombocythaemia].ZhonghuaYiXueZaZhi2010;90:253–5.[433] SchaferAI.Deficiencyofplateletlipoxygenaseactivityinmyeloproliferativedisorders.NEnglJMed1982;306:381–6.[434] Smith IL, Martin TJ. Platelet thromboxane synthesis and release reactions inmyeloproliferativedisorders.Haemostasis1982;11:119–27.[435] Okuma M, Uchino H. Altered arachidonate metabolism by platelets in patients withmyeloproliferativedisorders.Blood1979;54:1258–71.[436] RoccaB,CiabattoniG,TartaglioneR,CortelazzoS,BarbuiT,PatronoC,etal. Increasedthromboxanebiosynthesisinessentialthrombocythemia.ThrombHaemost1995;74:1225–30.[437] Dragani A, Pascale S, Recchiuti A, Mattoscio D, Lattanzio S, Petrucci G, et al. Thecontribution of cyclooxygenase-1 and -2 to persistent thromboxane biosynthesis in aspirin-treated essential thrombocythemia: implications for antiplatelet therapy. Blood2010;115:1054–61.[438] LandolfiR,CiabattoniG,PatrignaniP,CastellanaMA,PoglianiE,BizziB,etal.Increasedthromboxane biosynthesis in patients with polycythemia vera: evidence for aspirin-suppressibleplateletactivationinvivo.Blood1992;80:1965–71.[439] PatronoC,CiabattoniG,PatrignaniP,RoccaB,LandolfiR.Eicosanoidbiosynthesisandmetabolisminmyeloproliferativedisorders.AnnNYAcadSci1994;744:229–36.[440] ZahaviM, Zahavi J. Platelet function and thromboxane synthesis inmyeloproliferativedisorders.Blood1993;82:1377–8.[441] ZahaviJ,ZahaviM,FirsteterE,FrishB,TurleanuR,RachmaniR.Anabnormalpatternofmultiple platelet function abnormalities and increased thromboxane generation in patientswithprimarythrombocytosisandthromboticcomplications.EurJHaematol1991;47:326–32.[442] van Genderen PJ, Prins FJ, Michiels JJ, Schrör K. Thromboxane-dependent plateletactivationinvivoprecedesarterialthrombosisinthrombocythaemia:arationalefortheuseoflow-doseaspirinasanantithromboticagent.BrJHaematol1999;104:438–41.[443] Pascale S, Petrucci G, Dragani A, Habib A, Zaccardi F, Pagliaccia F, et al. Aspirin-insensitive thromboxane biosynthesis in essential thrombocythemia is explained byacceleratedrenewalofthedrugtarget.Blood2012;119:3595–603.[444] TefferiA.Overcoming“aspirinresistance”inMPN.Blood2012;119:3377–8.[445] Karantanos T, Moliterno AR. The roles of JAK2 in DNA damage and repair in themyeloproliferativeneoplasms:Opportunitiesfortargetedtherapy.BloodRev2018.[446] BjørnME, Hasselbalch HC. The Role of Reactive Oxygen Species inMyelofibrosis andRelatedNeoplasms.MediatorsInflamm2015;2015:648090.[447] Kagoya Y, Yoshimi A, Tsuruta-Kishino T, Arai S, Satoh T, Akira S, et al. JAK2V617F+myeloproliferative neoplasm clones evoke paracrine DNA damage to adjacent normal cells

167

throughsecretionoflipocalin-2.Blood2014;124:2996–3006.[448] MartyC,LacoutC,DroinN,LeCouédic J-P,RibragV,SolaryE,etal.Arole forreactiveoxygen species in JAK2V617F myeloproliferative neoplasm progression. Leukemia2013;27:2187–95.[449] Plo I, Nakatake M, Malivert L, de Villartay J-P, Giraudier S, Villeval J-L, et al. JAK2stimulates homologous recombination and genetic instability: potential implication in theheterogeneityofmyeloproliferativedisorders.Blood2008;112:1402–12.[450] AhnJS,LiJ,ChenE,KentDG,ParkHJ,GreenAR.JAK2V617FmediatesresistancetoDNAdamage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation.Oncogene2016;35:2235–46.[451] Hurtado-NedelecM,Csillag-GrangeM-J,BoussettaT,BelambriSA,FayM,CassinatB,etal.Increasedreactiveoxygenspeciesproductionandp47phoxphosphorylationinneutrophilsfrom myeloproliferative disorders patients with JAK2 (V617F) mutation. Haematologica2013;98:1517–24.[452] MusolinoC,AllegraA, SaijaA,AlonciA,RussoS, SpatariG, et al.Changes inadvancedoxidation protein products, advanced glycation end products, and s-nitrosylated proteins, inpatients affected by polycythemia vera and essential thrombocythemia. Clin Biochem2012;45:1439–43.[453] DurmusA,MenteseA,YilmazM, SumerA,Akalin I,TopalC, et al. Increasedoxidativestressinpatientswithessentialthrombocythemia.EurRevMedPharmacolSci2013;17:2860[454] Vener C, Novembrino C, Catena FB, Fracchiolla NS, Gianelli U, Savi F, et al. Oxidativestress is increased in primary and post-polycythemia vera myelofibrosis. Exp Hematol2010;38:1058–65.[455] Hasselbalch HC, Thomassen M, Riley CH, Kjær L, Larsen TS, Jensen MK, et al. Wholeblood transcriptional profiling reveals deregulation of oxidative and antioxidative defencegenesinmyelofibrosisandrelatedneoplasms.PotentialimplicationsofdownregulationofNrf2forgenomicinstabilityanddiseaseprogression.PloSOne2014;9:e112786.[456] IurloA,DeGiuseppeR,SciumèM,CattaneoD,FermoE,DeVitaC,etal.Oxidativestatusintreatment-naïveessentialthrombocythemia:apilotstudyinasinglecenter.HematolOncol2017;35:335–40.[457] BarbuiT,MasciulliA,GhirardiA,CarobbioA.ACEinhibitorsandcytoreductivetherapyinpolycythemiavera.Blood2017;129:1226–7.[458] AksuS,BeyazitY,HaznedarogluIC,KekilliM,CanpinarH,MisirlioğluM,etal.Enhancedexpressionofthelocalhaematopoieticbonemarrowrenin-angiotensinsysteminpolycythemiarubravera.JIntMedRes2005;33:661–7.[459] Haznedaroğlu IC, Büyükaşik Y. Current evidence for the existence of a local renin-angiotensinsystemaffectingphysiologicalandpathologicalhaemopoiesisinthebonemarrow.BrJHaematol1997;99:471.[460] VrsalovicMM, Pejsa V, Veic TS, Kolonic SO, Ajdukovic R, Haris V, et al. Bonemarrowrenin-angiotensin system expression in polycythemia vera and essential thrombocythemiadependsonJAK2mutationalstatus.CancerBiolTher2007;6:1434–6.[461] Haznedaroglu IC, Malkan UY. Local bone marrow renin-angiotensin system in thegenesisofleukemiaandothermalignancies.EurRevMedPharmacolSci2016;20:4089–111.[462] Rodrigues-Ferreira S, Abdelkarim M, Dillenburg-Pilla P, Luissint A-C, di-Tommaso A,DeshayesF,etal.AngiotensinIIfacilitatesbreastcancercellmigrationandmetastasis.PloSOne2012;7:e35667.[463] Shi K, ZhaoW, Chen Y,HoWT, Yang P, Zhao ZJ. Cardiac hypertrophy associatedwithmyeloproliferativeneoplasmsinJAK2V617Ftransgenicmice.JHematolOncolJHematolOncol2014;7:25.

168

[464] Tarach JS, Nowicka-Tarach BM, Matuszek B, Nowakowski A. Erythromelalgia--athromboticcomplicationinchronicmyeloproliferativedisorders.MedSciMonitIntMedJExpClinRes2000;6:204–8.[465] VallaD-C.PrimaryBudd-Chiarisyndrome.JHepatol2009;50:195–203.[466] Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, et al.Ephrin-B2controlsVEGF-inducedangiogenesisandlymphangiogenesis.Nature2010;465:483–6.[467] Marty C, Lacout C,Martin A, Hasan S, Jacquot S, BirlingM-C, et al.Myeloproliferativeneoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood2010;116:783–7.[468] Simonetto DA, Yang H, Yin M, de Assuncao TM, Kwon JH, Hilscher M, et al. Chronicpassive venous congestion drives hepatic fibrogenesis via sinusoidal thrombosis andmechanicalforces.HepatolBaltimMd2015;61:648–59.[469] Schaefer A, Jung M, Miller K, Lein M, Kristiansen G, Erbersdobler A, et al. Suitablereference genes for relative quantification ofmiRNA expression in prostate cancer. ExpMolMed2010;42:749–58.[470] KaessBM,PreisSR,BeiserA,SawyerDB,ChenTC,SeshadriS,etal.Circulatingvascularendothelial growth factor and the risk of cardiovascular events. Heart Br Card Soc2016;102:1898–901.[471] Zhao B, Mei Y, Cao L, Zhang J, Sumagin R, Yang J, et al. Loss of pleckstrin-2 revertslethality and vascular occlusions in JAK2V617F-positivemyeloproliferative neoplasms. J ClinInvest2017.[472] Sen-BanerjeeS,MirS,LinZ,HamikA,AtkinsGB,DasH,etal.Kruppel-LikeFactor2asaNovelMediatorofStatinEffectsinEndothelialCells.Circulation2005;112:720–6.[473] MasonRP,WalterMF,JacobRF.EffectsofHMG-CoAreductaseinhibitorsonendothelialfunction:roleofmicrodomainsandoxidativestress.Circulation2004;109:II34-41.[474] AngonaA,Alvarez-LarránA,BellosilloB,LongarónR,Fernández-RodríguezC,BessesC.Dynamics of JAK2V617F allele burdenof CD34+haematopoietic progenitor cells in patientstreatedwithruxolitinib.BrJHaematol2016;172:639–42.[475] VainchenkerW,LeroyE,GillesL,MartyC,PloI,ConstantinescuSN.JAKinhibitorsforthetreatmentofmyeloproliferativeneoplasmsandotherdisorders.F1000Research2018;7:82.[476] Cokic VP, Beleslin-Cokic BB, Tomic M, Stojilkovic SS, Noguchi CT, Schechter AN.HydroxyureainducestheeNOS-cGMPpathwayinendothelialcells.Blood2006;108:184–91.[477] Miki T, SuzukiM, Shibasaki T, UemuraH, SatoT, YamaguchiK, et al.Mousemodel ofPrinzmetalanginabydisruptionoftheinwardrectifierKir6.1.NatMed2002;8:466–72.[478] ZorovDB,JuhaszovaM,SollottSJ.Mitochondrialreactiveoxygenspecies(ROS)andROS-inducedROSrelease.PhysiolRev2014;94:909–50.[479] HeitzerT,SchlinzigT,KrohnK,MeinertzT,MünzelT.Endothelialdysfunction,oxidativestress,andriskof cardiovascularevents inpatientswithcoronaryarterydisease.Circulation2001;104:2673–8.[480] PonomarevaAA,NevzorovaTA,MordakhanovaER,Andrianova IA,RauovaL, LitvinovRI, et al. Intracellular origin and ultrastructure of platelet-derived microparticles. J ThrombHaemostJTH2017;15:1655–67.[481] CamusSM,GausserèsB,BonninP,LoufraniL,GrimaudL,CharueD, et al.Erythrocytemicroparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease.Blood2012;120:5050–8.[482] CamusSM,DeMoraesJA,BonninP,AbbyadP,LeJeuneS,LionnetF,etal.Circulatingcellmembrane microparticles transfer heme to endothelial cells and trigger vasoocclusions insicklecelldisease.Blood2015;125:3805–14.

169

[483] Merle NS, Grunenwald A, Rajaratnam H, Gnemmi V, Frimat M, Figueres M-L, et al.Intravascular hemolysis activates complement via cell-free heme and heme-loadedmicrovesicles.JCIInsight2018;

170

VII. APPENDIX

A. Appendix1:Review:Liversinusoidalendothelialcells:physiologyandrole

inliverdiseases

Liversinusoidalendothelialcells:Physiologyand

roleinliverdiseases

JohannePoisson1,2*,SaraLemoinne3,4*,ChantalBoulanger1,2,FrançoisDurand5,6,7,Richard

Moreau5,6,7,DominiqueValla5,6,7,Pierre-EmmanuelRautou1,2,5,6,7

*Theseauthorscontributedequallyasjointfirstauthors.

1INSERM,UMR-970,ParisCardiovascularResearchCenter–PARCC,Paris,France;

2UniversitéParisDescartes,SorbonneParisCité,Paris,France;

3 INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Université Pierre et Marie Curie

Paris6,Paris,France;

4Serviced’hépatologie,HôpitalSaint-Antoine,APHP,Paris,France;

5Serviced’hépatologie,DHUUnity,HôpitalBeaujon,APHP,Clichy,France;

6INSERM,UMR-1149,CentredeRecherchesurl’inflammation,Paris-Clichy,France;

7UniversitéDenisDiderot-Paris7,SorbonneParisCité,75018Paris,France

ReviewpublishedinJHepatol.2017Jan;66(1):212-227

Liver sinusoidal endothelial cells: Physiology and role inliver diseases

Johanne Poisson1,2,y, Sara Lemoinne3,4,y, Chantal Boulanger1,2, François Durand5,6,7,Richard Moreau5,6,7, Dominique Valla5,6,7, Pierre-Emmanuel Rautou1,2,5,6,7,⇑

Summary

Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells representingthe interface between blood cells on the one side and hepatocytes and hepatic stellate cells onthe other side. LSECs represent a permeable barrier. Indeed, the association of ‘fenestrae’,absence of diaphragm and lack of basement membrane make them the most permeableendothelial cells of the mammalian body. They also have the highest endocytosis capacityof human cells. In physiological conditions, LSECs regulate hepatic vascular tone contributingto the maintenance of a low portal pressure despite the major changes in hepatic blood flowoccurring during digestion. LSECs maintain hepatic stellate cell quiescence, thus inhibitingintrahepatic vasoconstriction and fibrosis development. In pathological conditions, LSECs playa key role in the initiation and progression of chronic liver diseases. Indeed, they become cap-illarized and lose their protective properties, and they promote angiogenesis and vasoconstric-tion. LSECs are implicated in liver regeneration following acute liver injury or partialhepatectomy since they renew from LSECs and/or LSEC progenitors, they sense changes inshear stress resulting from surgery, and they interact with platelets and inflammatory cells.LSECs also play a role in hepatocellular carcinoma development and progression, in ageing,and in liver lesions related to inflammation and infection. This review also presents a detailedanalysis of the technical aspects relevant for LSEC analysis including the markers these cellsexpress, the available cell lines and the transgenic mouse models. Finally, this review providesan overview of the strategies available for a specific targeting of LSECs.! 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rightsreserved.

Introduction

The vascular endothelium, representing the inter-face between blood and other tissues, is not onlya physical barrier, but contributes to different phys-iological and pathological processes, includinghemostasis/thrombosis, metabolites transporta-tion, inflammation, angiogenesis and vascular tone[1]. Liver sinusoidal endothelial cells (LSECs) formthe wall of the liver sinusoids and representapproximately 15 to 20% of liver cells but only 3%of the total liver volume [2]. LSECs are highly spe-cialized endothelial cells. They have a discontinu-ous architecture meaning that fusion of theluminal and abluminal plasma membrane occursat other sites than cell junctions, in areas called‘fenestrae’. This review focuses on the role of LSECsin physiological conditions and their involvementin liver diseases.

LSECs in the normal liver

Formation of sinusoids during embryogenesis

As illustrated in Fig. 1, an early structural differentia-tion of hepatic sinusoids occurs between gestationalweeks 5 and 12 in human embryos [3]. During thatperiod, LSECs gradually loose cellmarkers of continu-ous endothelial cells including platelet endothelialadhesion molecule-1 (PECAM-1, also called clusterof differentiation (CD)31), CD34 and 1F10 antigen,and acquire markers of adult sinusoidal cells includ-ing CD4, CD32 and the intracellular adhesionmolecule-1 (ICAM-1). This differentiation of LSECsis regulated by hepatoblasts, both via the vascularendothelial growth factor (VEGF) they release andvia direct intercellular interactions [4,5].

Journal of Hepatology 2017 vol. 66 j 212–227

Review

Review

Keywords: Liver sinusoidal endo-

thelial cells; Capillarization; End-

othelial dysfunction; Cirrhosis;

Liver regeneration; Angiogenesis;

Drug delivery system;

Endothelium.

Received 24 May 2016; received in

revised form 5 July 2016; accepted 7

July 2016

1INSERM, UMR-970, Paris Cardio-

vascular Research Center – PARCC,

Paris, France;2Université Paris Descartes, Sor-

bonne Paris Cité, Paris, France;3INSERM, UMRS 938, Centre de

Recherche Saint-Antoine, Université

Pierre et Marie Curie Paris 6, Paris,

France;4Service d’hépatologie, Hôpital

Saint-Antoine, APHP, Paris, France;5Service d’hépatologie, DHU Unity

Hôpital Beaujon, APHP, Clichy,

France;6INSERM, UMR-1149, Centre de

Recherche sur l’inflammation, Paris-

Clichy, France;7Université Denis Diderot-Paris 7,

Sorbonne Paris Cité, 75018 Paris,

France

y These authors contributed

equally as joint first authors.

⇑ Corresponding author. Address:

Service d’Hépatologie, Hôpital

Beaujon, 100 Boulevard du

Général Leclerc, 92110 Clichy,

France. Tel.: +33 1 40 87 52 83;

fax: +33 1 40 87 54 87.

E-mail address: pierre-emmanuel.

[email protected] (P.-E. Rautou).

The embryological origin of LSECs is still a mat-ter of debate. Initial observational studies describedcapillaries progressively surrounded by growingcords of hepatoblasts in the septum transversum,suggesting that LSECs derive from the septumtransversum mesenchyme, a part of the mesoderm[3,6,7]. However, recent cell lineage experimentsperformed in mice showed that the septumtransversum gives rise to mesothelial cells, hepaticstellate cells, portal fibroblasts, and perivascularmesenchymal cells, but not to LSECs [8]. A part ofLSECs rather derives from a common progenitorto endothelial and blood cells, called the ‘‘heman-gioblast”, as attested by overlapping expression ofhematopoietic and endothelial cell markers byLSECs and by fate tracing experiments [9–14].These progenitor cells form veins crossing the sep-tum transversum, i.e., vitelin veins [15], umbilicalveins or cardinal veins and then LSECs [16,17].Another part of LSECs derives from the endo-cardium of the sinus venosus, a compartment ofthe primitive cardiac tube [18]. These two embry-ological origins might explain the heterogeneity ofthe markers expressed by LSECs in adults.

LSECs renewal

Although specific data are lacking, we can specu-late that in a physiological state LSECs are quies-cent, i.e., with a low proliferation rate and a longlife span, similar to endothelial cells from large ves-sels [19]. LSECs renewal differs in physiological andin pathological conditions. Three cell types con-tribute to LSEC renewal, namely mature LSECs,intrahepatic or resident sinusoidal endothelial cellprogenitors, and bone marrow derived sinusoidalendothelial cell progenitors [20]. Mature LSECscan self-proliferate in normal conditions, whenstimulated with growth factors such as VEGF andFGF (fibroblast growth factor) [20,21]. Residentsinusoidal endothelial cell progenitors represent 1to 7% of the LSECs of a normal rodent liver andprobably contribute to LSECs regeneration [20].Bone marrow derived sinusoidal endothelial cellprogenitors do not participate in LSEC turnover ina normal liver [22]. By contrast, after liver injury,these cells are the main drivers of liver regenera-tion [20,22]. Indeed, a subtoxic dose of monocro-talin, a toxic agent for LSECs, elicits liver injuryonly when bone marrow is suppressed. In addition,infusion of bone marrow cells after a toxic dose ofmonocrotalin almost fully corrects liver lesions[23].

Hepatic blood flow regulation

Liver sinusoids have a dual blood supply, receivingblood flow from the portal vein (70%) and the hep-atic artery (30%) [24]. Blood pressure equalizes inthe sinusoid and blood is then drained into the hep-atic veins and the inferior vena cava. Despite major

circadian changes in hepatic blood flow due todigestion, hepatic venous pressure gradient remainsat 4 mmHg or less in a normal individual, attesting afine regulation of hepatic vascular tone [25]. Intra-hepatic shear stress is recognized as a main driverof hepatic blood flow regulation [26]. Shear stressis a frictional force applied by blood flow onendothelial surface [26]. It is proportional to flowintensity and to blood viscosity and inversely pro-portional to the cubic radius of the vessel [26]. Intra-hepatic shear stress has never been directlymeasured in human or animal. Its evaluation isindeed difficult since the radius of sinusoids is verysmall and varies within the liver. Moreover, viscos-ity is hard to estimate in this specific area and alsovaries with hemodilution. In normal conditions, inthe liver like in other vascular beds, the endothe-lium is able to generate vasodilator agents inresponse to increased shear stress in order to atten-uate the increase in blood pressure. The loss of thisproperty is called endothelial dysfunction. Anendothelial specific transcription factor induced byprolonged shear stress, called Kruppel-like factor 2(KLF2) mediates this effect of shear stress [27].KLF2 induces the endothelial upregulation ofvasodilating agents including nitric oxide (NO) [28](Fig. 2). Shah and colleagues previously demon-strated that LSECs are the main source of NO inthe normal liver through endothelial nitric oxidesynthase (eNOS) activation by shear stress [29].KLF2 also induces the downregulation of vasocon-strictive molecules including endothelin-1 [28].Other molecules released by LSECs regulating bloodflow include the vasodilating agent carbon monox-ide (CO) and the metabolites of the cyclooxygenase(COX) pathway (thromboxane A2, Prostacyclin)[30]. All these molecules act in a paracrine manneron hepatic stellate cells localized in the space ofDisse [31]. Healthy LSECs maintain hepatic stellatecell quiescence, thus inhibiting their vasoconstric-tive effect [34]. The concept that hepatic stellate cellactivation induces sinusoid constriction is based ontheir expression of molecules found in smooth mus-cle cells including aSMA, on their position wrappedaround the exterior of LSECs and on the ex vivo

observation of their ability to contract [32,33].Although still controversial, LSEC could also regulateblood flow by swelling, thus creating an inlet and anoutlet sphincter [32]. Kupffer cells possess contrac-tile proteins as well, but their role in the regulationof hepatic blood flow remains controversial [32]. Incontrast to most vascular beds where blood flow ismostly regulated by smooth muscle cells, in theliver, smooth muscle cells play a limited role since,although present in hepatic arterioles, they are onlyfound in limited numbers in portal venules [32].

LSECs, a selective barrier

LSECs are positioned at an interface. On theirsinusoidal side, they are exposed to the highly

Key point

In a normal liver, differenti-ated LSECs are gatekeepersof fibrogenesis by maintain-ing hepatic stellate cells intheir inactivated state. LSECsregulate sinusoidal bloodflow through their actionon hepatic stellate cells andthus maintain a low portalpressure.

Review

JOURNAL OF HEPATOLOGY

Journal of Hepatology 2017 vol. 66 j 212–227 213

oxygenated arterial blood mixed with the portalblood derived from the gut and the pancreas con-taining nutrients, bile acids, and hormones includ-ing insulin and glucagon. On the abluminal side,they interact with hepatic stellate cells and hepato-cytes that are crucial for protein, lipid and glucosemetabolism. LSECs thus represent a permeable bar-rier allowing exchanges but also active uptake anddegradation of molecules [35].

Fluid exchange through fenestrae

Like endothelial cells located in other exchange ter-ritories, such as the glomeruli, the spleen and thebone marrow, LSECs are highly permeable [36].The association of fenestrae, absence of diaphragmand lack of basement membrane make them themost permeable endothelial cells of the mam-malian body [24]. These fenestrae are organizedin clusters termed sieve plates [37]. LSEC fenestraehave a diameter ranging from 50 to 150 nm[2,37,38]. Their size and number varies dependingon their localization in the liver, with larger butfewer fenestrae per sieve plate in the periportalregion and smaller but more numerous fenestraeper sieve plate in the centrilobular region [37,39].

This distribution could be related to the progressivedecrease in oxygen tension along the lobule accom-panied with an increasing need for oxygen exchange[36]. Alternatively, this distribution could be a mar-ker of LSEC maturation as they spread along the lob-ule [39]. Fenestrae are not static structures. Theirnumber and size varies in physiological conditionslike fasting that decreases the number but increasesthe size of the fenestrae [40] and in pathologicalconditions [36,39,41–43]. Using super-resolutionoptical microscopy, Mönkemöller and colleaguesrecently showed that sieve plates are surroundedand separated by microtubuli and that each fenes-trae within a sieve plate is surround by actin fila-ments [38]. Cytoskeleton is thus of greatimportance for the LSECS fenestrations. Fifteen yearsago, LSEC fenestrations were thought to be sort ofcaveolae [44]. Caveolae are uncoated plasma mem-brane invaginations found in lipid-ordered domainsof cell membranes called lipid rafts. Caveolin is amajor structural protein of caveolae. Althoughcaveolin-1 has been observed in LSECs fenestrations[44], caveolin-1 knockout mice have normal fenes-trations [45]. In addition, Svistounov and colleagues[46,47] described the ‘‘sieve-raft crosstalk”, wherefenestrations are formed in reduced lipid-raftregions of endothelial cells. Thus, fenestrations arenot dependent on caveolin-1 and are different struc-tures from caveolae.

In a normal liver, LSECs retain blood cells in thevessels, while molecules, such as metabolites,plasma proteins, pharmaceutical drugs, lipoproteinsand small chylomicron remnants, viruses (<200 nm)and exosomes can access the space of Disse to betaken up by hepatocytes and hepatic stellate cells[2,38,48]. There is no significant osmotic and hydro-static pressure gradient across the normal liver sinu-soids [41,49]. Small molecules and gasses freelydiffuse through the fenestrae, so that the space ofDisse contains a para-vascular part of the plasmavolume. In addition, as blood cells squeeze into thesinusoids, they massage the endothelial cells andfurther mix plasma and space of Disse fluids [49].Larger molecules, may also cross LSEC by a processcalled permselectivity or ‘‘sieving”, namely therestricted transport of large molecules due to theirdeformation capacity through membrane pores[41]. The fluid present in the space of Disse isdrained into hepatic lymphatics, then into hepatichilum lymphatics, cisterna chili, thoracic duct andeventually the central venous circulation, succes-sively [50]. The fluid formed in excess gains freeaccess to the Glisson’s capsule on the liver surface[49]. Contrary to the mesentery, the liver is thusleaky to large molecules including proteins. Thisexplains why ascites related to post-sinusoidalobstruction, such as cardiac failure or Budd-Chiarisyndrome, is protein rich while ascites resultingfrom cirrhosis is not [50].

Septum transversum

Foregut

Blood vesselsD

Liver primordium

V

A

B

Foregut

Hepatoblasts(liver primordium)

Future LSEC

Differentiated LSEC

(Weeks of gestation)

5 8 12

Markers expressed by LSECs

CD4; CD32; ICAM-1; Fenestrae

CD31; CD34; 1F10

Time

Fig. 1. Formation of sinusoids during human embryogenesis. (A) Frontal section of an embryo

showing the formation of an outgrowth of the foregut (endoderm), called the liver primordium, which

extends into the septum transversum (mesoderm), in which blood vessels are developing. V, ventral; D,

dorsal. (B) Transversal section of the embryo showing the liver primordium (i.e., hepatoblasts arranged

in thick cords separated by vascular spaces) growing into the septum transversum. The hepatic

sinusoids are progressively established. First, the endothelial lining is continuous with a basement

membrane (pink region) and no fenestrations. Around gestation week 12, fenestrations appear initially

with diaphragms. These diaphragms disappear during development [15,170,171].

Key point

LSECs act as a selective bar-rier, since exchanges occurthrough fenestrae as well asby transcytosis and LSECscavenging functions.

Review

Review

214 Journal of Hepatology 2017 vol. 66 j 212–227

Endocytic capacity

LSECs have one of the highest endocytic capacity inthe human body [51]. This property combined witha strong lysosomal activity give LSECs the ability toclear waste from the blood, as part of the ‘‘dual-cellprinciple” of waste clearance. This principle statesthat the mononuclear system represents the pro-fessional phagocyte, eliminating large particles,and that the scavenger endothelial cells, includingLSECs, represents the professional pinocyte, clear-ing soluble macromolecules and small particlesthrough endocytic receptors [52]. This propertycan be used to specifically target LSECs. LSEC endo-cytosis also contributes to the transfer of moleculesfrom the sinusoids to the space of Disse, a processcalled transcytosis [35]. Endocytosis by LSECsimplies different high affinity endocytosis recep-tors, including scavenger receptors (SR-A, SR-Band SR-H), mannose receptor and Fc gamma-receptor IIb2 [51,52]. The SRs mediate endocytosisof polyanionic molecules, such as oxidized andacetylate low-density lipoproteins (oxLDL and

acLDL), advanced glycation end products and wasteproducts (hyaluronan, chondroitin sulfate or N-terminal propeptides of procollagen (I, III)). Themain SRs of LSECs are SR-H/stabilin-1 and SR-H/stabilin-2. Stabilin1/2 double-knockout mice showonly a mild liver fibrosis without liver dysfunctionbut a severe renal glomerular fibrosis [53], suggest-ing that stabilin-1 and 2 are major liver endocyticreceptors implicated in the clearance of moleculestoxic mainly for the kidney. The mannose receptorsare not specific of LSECs and bind a wide range ofglycoproteins and microbial glycans, such as colla-gen alpha chains (I, II, III, IV, V, XI), tissue plasmino-gen activator regulating fibrinolytic activity, andlysosomal enzymes that are recruited for furtheruse in LSEC [54]. Thus, they have a role both inimmunity and in glycoprotein homeostasis [52].The Fc gamma-receptor IIb2 is the only Fc gamma-receptor expressed by LSECs and mediates the clear-ance of small circulating immune complexes; LSECplay a role in vascular immunity through this recep-tor [51,52].

E

EE

E

Shear stress

LSEC

↑KLF2

Fenestrae sieve plate

Space of Disse

Hepatocyte

VASODILATION VASOCONSTRICTION

HSC

QuiescentCollagen

LSEC

Hepatocyte

Space of Disse

HSC

Activated

NO

NO

NO

NO

NO NOStatins

Endothelial dysfunction

↑KLF2

BM

↑Shear stress

↑Resistance

NORMAL LIVER CIRRHOTIC LIVER

x

Fig. 2. Role of liver sinusoidal cells (LSECs) in chronic liver diseases. In normal conditions, LSECs maintain hepatic stellate cell

quiescence through a NO-dependent pathway as long as they are differentiated [101]. Exposure of LSECs to a physiological shear

stress activates the transcriptor factor KLF2 leading to the release of vasodilating agents including nitric oxide (NO) and to the

downregulation of vasoconstrictive molecules including endothelin-1. In a cirrhotic liver, LSECs become capillarized, meaning that

they lose their fenestrae and a basement membrane appears. Capillarized LSECs permit hepatic stellate cell activation and thus

production of collagen and of fibrosis. This change is associated with an endothelial dysfunction meaning that increased shear stress

no longer leads to vasodilation but rather to vasoconstriction and thus to increased intrahepatic resistance. Simvastatin restores the

vasoprotective effect of KLF2 and improves HSC phenotype through a NO-dependent pathway (the effect of simvastatin appears in

red) [102]. BM, basement membrane; E, endothelin; HSC, hepatic stellate cell; KLF2, Kruppel-like factor 2; LSEC, liver sinusoidal cell;

NO, nitric oxide.

Review

JOURNAL OF HEPATOLOGY

Journal of Hepatology 2017 vol. 66 j 212–227 215

Technical aspects for the study of LSECs

Markers of LSEC

Identification and isolation of LSECs is a majorchallenge for the understanding of liver physiologyand diseases. However, technical barriers as well asa lack of consensual specific LSEC markers explainthat LSECs populations differ between researchgroups, which limits the interpretation and thecomparison of the results.

Features used to identify LSECs include: (a) theirhigh and rapid endocytic capacity, using labeledformaldehyde-treated serum albumin, collagenalpha chains or acLDL. As other cells, includingKupffer cells, also have endocytic capacities,labeled molecules have to be incubated in smallamount and for a short period of time to be specificfor LSECs [55]. (b) Fenestrae without diaphragmand organized in sieve plates, using electron micro-scopy. Although this feature is the only one specificof LSECs, it has some limitations. First, the distribu-tion of the fenestration varies along the lobule [37].Second, LSEC isolation methods, including liver per-fusion and cell preparation for electron microscopy,dilate fenestrae and might even create holes in cellsurface [55]. Third, fenestrae rapidly disappearwhen LSEC are cultured as a monolayer of cells,out of their environment [56]. This loss of fenestra-tion associated with basement membrane synthe-sis and modification of the expression of surfacemarkers is called capillarization. Capillarizationnot only happens in cultured LSEC but also in vivo

in most liver diseases [56]. (c) surface markers[24] (Table 1). Some markers are common to otherendothelial cells and some to hematopoietic cells.No single marker is specific for LSECs and a combi-nation is required. For instance, Ding and col-leagues considered that LSEC are VEGFR3+ CD34!

VEGFR2+ VE-Cadherin+ FactorVIII+ CD45! [57],while Lalor and colleagues selected CD31+, LYVE-1+, L-SIGN+, Stabilin-1+, CD34!, PROX-1! cells[56]. CD31, CD45 and CD33 deserve specific com-ments. CD31 (PECAM-1) is an intercellular adhe-sion molecule classically expressed at the surfaceof endothelial cells, but also of several leukocytes[58]. The expression of CD31 by LSECs is controver-sial. Several studies reported CD31 positivity ofLSECs in liver slices analyzed by immunohisto-chemistry or in cultured cells permeabilized beforestaining [55]. Conversely, for the isolation of LSECsusing flow cytometry, LSECs are considered asCD31 negative, CD31 positive cells being arterialand venous endothelial cells as well as capillarizedLSECs. An electron microscopic analysis reconciledthese results by showing that CD31 is located intra-cellularly shortly after establishing LSEC cultures,but, when fenestrae disappear few days later,CD31 becomes expressed at the cell surface likein other endothelial cells [59]. CD45 is ahematopoietic cell marker, expressed by leuco-

cytes. LSECs are usually described as CD45!, andliver CD45+ cells are often considered as Kupffercells. However, the reality may be more complex,as LSEC CD45 positivity appears to depend on thelocalization and the differentiation of LSECs[24,39]: bright CD45 positivity is found in periportalarea where LSECs have less fenestration, while CD45negativity appears to predominate in centrilobularareas where LSECs are more differentiated withmore fenestrae.

Knowledge of LSEC markers helps understandingsome drug adverse effects. For instance, Mylotarg"

(gemtuzumab ozogamicin), a drug used for acutemyeloid leukemia, consists of a humanized antibodyanti-CD33, linked to a potent antitumor antibiotic(calicheamicin). CD33 is expressed on the surfaceof acute myeloid leukemia cells, but also of LSECslikely explaining the high prevalence of hepaticsinusoidal obstruction syndrome following thistreatment [60].

LSECs culture

As mentioned above, obtaining a pure culture of pri-mary LSECs is challenging because of the lack ofspecific markers of these cells. LSEC isolation proto-cols are detailed elsewhere [61,62]. The culture ofLSECs has at least four particularities. First, culturedLSEC tend to lose their typical phenotype. In order toprevent this dedifferentiation, several methods havebeen developed. Co-culture with hepatocytes andfibroblasts rather than with hepatocytes aloneallows LSECs to maintain their phenotype for up to2 weeks [63]. Extracellular matrix coating mimick-ing the space of Disse and its modifications inpathology can also be used, e.g., low-density base-ment membrane-like matrix imitating normal con-ditions, and interstitial type matrix (fibril-formingcollagen) imitating cirrhosis [63]. The addition ofVEGF to the medium or the use of hepatocyte-conditioned medium can also prevent LSECs dedif-ferentiation [56,64,65]. Second, when culturedalone, LSECs undergo apoptosis within 2 days [63];methods preventing dedifferentiation also preventcell death. Third, serum supplementation is toxicfor LSECs [55]. Fourth, in the normal liver, LSECsare exposed to an oxygen pressure decreasing alongthe liver lobule from 90 to 30 mmHg [66]; oxygenlevel is thus lower than in atmospheric conditionswhere oxygen pressure is 160 mmHg; actually, LSECare particularly sensitive to hyperoxia and to theresulting oxidative stress [67]; survival of primaryLSECs is improved under 5% oxygen instead of thecommonly used 20% [51,66].

To overcome the difficulties of culturing primaryLSECs, several teams have developed human andmurine immortalized LSECs lines. However, the firstimmortalized lines, obtained by viral transfectionsuch as M1LEC, had no fenestrae [68–72]. Subse-quently, several humans and murine immortalizedLSEC lines have been developed. As summarized in

Key point

There is no unique specificmarker of LSECs, apart fromtheir fenestrae devoid of dia-phragm in the absence ofbasement membrane. Acombination of markers isthus mandatory for theiridentification.

Key point

When cultured, primaryLSECs rapidly lose theirspecific phenotype. How-ever, human and murineimmortalized LSECs lineshave been successfullydeveloped.

Review

Review

216 Journal of Hepatology 2017 vol. 66 j 212–227

Table 2, these cell lines display many characteris-tics of LSEC. Each cell line has particular advantagesmaking it more appropriate for specific studies. Forinstance, TSECs are adequate for angiogenesis anal-yses and Sk Hep1 for fenestration. However, thefact that these cell lines are immortalized impliesthat they may react differently from primary cellsin response to stress. Therefore, a confirmation ofthe findings using primary cells is useful.

Mouse models

Transgenic mice using the Cre/Lox system can bevery useful to study the properties of LSECs in vivo.Briefly, Cre-recombinase, which can be regulatedby a tissue-specific promoter, excises essentialloxP-flanked (‘‘floxed’’) genes via intrachromosomalrecombination to generate so called conditionalknockouts, i.e., knockouts specifically affecting

Table 2. Liver sinusoidal endothelial cell lines features.

Human lines Rodent lines

Authors Parent et al.

[145]

Cogger et al.

[146]

Matsumura et

al. [68]

Hering et al.

[69]

Zhao et al.

[147]

Huebert et al.

[148]

Maru et al.

[70]

Name TRP3 SK Hep1 TMNK-1 iSEC n.a. TSEC NP11, NP26,

NP31, and NP32

Origin Hereditary

hemorrhagic

telangiectasia

patient

Ascitic fluid from

a patient with

hepatocellular

carcinoma

Human liver

endothelial cells

Human fetal liver Mouse Mouse Rat

Method of

immortalization

Lentivirus

(hTERT)

Spontaneous Lentivirus

(SV40 and

hTERT)

Transfection

with polyoma

virus large tumor

antigen

Spontaneous Lentivirus (SV40) Lentivirus (SV40)

Fenestration

organized in

sieve

Few (data not

shown)

Yes n.a. n.a. Yes Few n.a.

CD31 n.a. Not at the surface Yes (RNA) n.a. Yes surf. Yes surf. and

cytop.

n.a.

Uptake of

acLDL

Yes Yes (uptake of

FITC-FSA)

Yes n.a. Yes Yes Yes

Tube forming Yes Yes Yes Incomplete Yes Yes Only in NP11 and

NP26

vWf Yes perm. Yes surf. Yes (RNA) Yes cytop. Yes perm. Yes surf. and

cytop.

No

CD34 Yes perm. n.a. Yes (RNA) n.a. n.a. n.a. n.a.

Other CD32b, Stabilin-2,

LYVE-1 and

cytoplasmic

L-SIGN

NOS, VEGFR2 Collagen IV,

fibronectine

Chemotaxis

in response

to angiogenic

growth factors

VEGFR-1

(low level)

acLDL, acetylate low-density lipoproteins; Cytop., cytoplasmic; L-SIGN, liver specific intercellular adhesion molecule-3 grabbing non-integrin; LYVE, lymphatic vessel

endothelial hyaluronan acid receptor; FITC, fluorescein isothiocyanate; FSA, formaldehyde-treated serum albumin; n.a., not available; Perm., Permeabilized; Surf., Surface;

Spont., Spontaneous; VEGFR, vascular endothelial growth factor receptor; vWF, Von Willebrand factor.Review

Table 1. Liver sinusoidal endothelial cell markers.

Common with EC markers Endocytic markers Antigen presentation Common with leucocytes Common with lymphatic EC

CD34$

CD105*

CD146

Cytoplasmic CD31

ICAM-1

Ulex Lectin binding

vWf (Factor VIII)$

CD36

DC-SIGN

L-SIGN

Lectins

LYVE-1

SR-A/SR-B

Stabilin-1

Stabilin-2

Uptake of acLDL or denatured

alpha-collagen chain

CD40$

CD80$

CD86$

Fc Gamma R (CD32b**)

Mannose R

MHC I/MHC II$

CD4

CD11b

CD11c$

CD33

CD45$

Cytoplasmic CD31

VAP-1

⁄Also expressed by hepatic stellate cells and myofibroblasts; ⁄⁄correlates with fenestration and corresponds to SE-1 in rats [63]; $controversial [55].

AcLDL, acetylated low-density lipoprotein; Ag, antigen; CD, cluster of differentiation; DC-SIGN, dendritic cell-specific intercellular adhesion molecule-3 grabbing non-

integrin; EC, endothelial cells; ICAM, intracellular adhesion molecule; L-SIGN, liver specific intercellular adhesion molecule-3 grabbing non-integrin; LDL, low-density

lipoprotein; LYVE, lymphatic vessel endothelial hyaluronan acid receptor; MHC, major histocompatibility complex; R, receptor; SR, scavenger receptors; VAP, vascular

adhesion protein-1; vWF, von Willebrand factor.

JOURNAL OF HEPATOLOGY

Journal of Hepatology 2017 vol. 66 j 212–227 217

tissues where the promoter is expressed. Severalmodels with an endothelial cell expression of theCre-recombinase have been developed and are sum-marized in Table 3. Mice with a constitutive expres-sion of the Cre-recombinase appeared first.However, the expression of the Cre-recombinase isnot restricted to endothelial cells, especially in adultmice, as recombination also occurs in hematopoieticcells. Indeed, early embryonic endothelial andhematopoietic cells arise froma commonembryonicprecursor called the hemangioblast [14]. This limita-tion can be overcome by performing a transplanta-tion of wild-type bone marrow together with aclodronate mediated Kupffer cell depletion [73].Indeed, in the absence of clodronate treatment,2 months after bone marrow transplantation, 85%of the Kupffer cells are still derived from the recipi-ent [74]. Myeloablation conditionings required forbone marrow transplantation might however alterLSEC function. Another way to overcome the con-comitant expression of the Cre-recombinase inendothelial and hematopoietic cells is to use trans-genic lines where Cre expression is induced in adultendothelial cells after tamoxifen administration. Inthat case, there is no expression of the transgene inhematopoietic cells.

LSECs in liver diseases

Chronic liver diseases

LSECs play a key role in chronic liver disease initi-ation and progression, through four processes:

sinusoid capillarization, angiogenesis, angiocrinesignals and vasoconstriction.

Capillarization of LSECs, also called dedifferentia-tion, occurs following liver injury in animal modelsas well as in patients [75–80]. Capillarization is anearly event since it precedes the activation of hep-atic stellate cells and macrophages and the onsetof liver fibrosis, suggesting that it could be a prelim-inary step necessary for fibrogenesis [76,81,82]. Themechanisms of capillarization and the cross talkbetween LSECs and hepatic stellate cells has beenreviewed elsewhere [83]. Briefly, LSECs are able tomaintain hepatic stellate cells quiescent as long asthey are differentiated so that differentiated LSECsare gatekeepers of fibrosis [34,84]. VEGF contributesto the maintenance of LSEC differentiation (Fig. 3).The role of LSECs in fibrosis regression is less clear.Indeed, in experimental models, restoration of LSECdifferentiation in vivo promotes regression of mildfibrosis [34,85]. However, immunohistochemicalanalysis of paired liver biopsies from 38 hepatitis Cvirus patients with cirrhosis, before and after antivi-ral treatment, revealed that sinusoid capillarizationpersists despite the regression of cirrhosis. LSEC dif-ferentiation is thus not crucial for fibrosis regressionin this setting [86].

Angiogenesis is defined by the development ofnew vessels from preexistent vessels [87]. Hepaticangiogenesis occurs during liver fibrogenesis andthese two processes are closely linked [88,89]. Liverfibrosis enhances angiogenesis and, in turn, liverangiogenesis aggravates liver fibrosis, as attestedby the anti-fibrotic effect of most anti-angiogenic

Key point

The loss of the specific phe-notype of LSECs, includingthe disappearance of the fen-estrae, the development of abasement membrane, andthe appearance of specificmarkers is called capillariza-tion and is an early even inchronic liver injury. Whencapillarized, LSECs lose theircapacity to inactivate hepaticstellate cells, thus promotingfibrogenesis and intrahepaticvasoconstriction.

Table 3. Characteristics of transgenic mice available to study the properties of liver endothelial cells in vivo.

Transgenic mice [Ref.] Constitutive/

inducible

Liver endothelial expression in adults Expression by hematopoietic

cells in adults

Limitation

Portal vein Sinusoids Centri lobular

vein

PECAM1-Cre [149] Constitutive n.a. n.a. n.a. Likely Poorly described

Tie1-Cre [150] Constitutive n.a. Good Good Yes (20%) Hematopoietic cell

expression

Tie2-Cre [151] Constitutive Good Good Good Yes (90%) Strong hematopoietic cell

expression

Flk1-Cre [17,152] Constitutive n.a. Moderate n.a. Yes Hematopoietic cell

expression

Cdh5-Cre [12,14] Constitutive Good Good Good Yes (50%) Moderate hematopoietic

cell expression

Tie2-CreERT2 [153] Inducible Good Absent n.a. No No expression in LSEC

Endothelial-SCL-CreERT2 [154] Inducible Good Absent Absent No No expression in LSEC

Cdh5-CreERT2 [155] Inducible n.a. Mild Mild No Less penetrant than

Cdh5(PAC)-CreERT2

Cdh5(PAC)-CreERT2 [156] Inducible Good Good Good No

Pdgfb-iCreERT2 [157] Inducible n.a. Absent Good No during the first month

after induction of Cre-

mediated recombination

No expression in LSEC

Bmx cre [158] Constitutive Absent Absent Absent n.a. Artery specific

Recombination was classified as good (>66%), moderate (33–66%), mild (5–33%); absent (<5%) based on data provided in the articles describing each model for all mouse

lines but Tie2-Cre, Pdgfb-iCreERT2 and Cdh5 (PAC)-CreERT2. Indeed, these last 3 lines were independently and thoroughly analyzed and compared back to back using mT/

mG reporter mice by the group of C James, Pessac, France (Kilani et al., unpublished). Cdh5-CreERT2 mice were also analyzed using mT/mG reporter by our group

(unpublished data). Regarding LSEC expression, caution is needed since in all cases LacZ staining was performed without immunohistochemistry. Cells considered as LSEC

were thus sinusoidal cells. They may be LSEC but also may be Kupffer cells.

LSEC, liver sinusoidal endothelial cell; n.a., information not available.

Review

Review

218 Journal of Hepatology 2017 vol. 66 j 212–227

agents in animal models of liver fibrosis [90,91].However, analysis of the relationships betweenangiogenesis and fibrogenesis is not straightfor-ward since most tools used to inhibit angiogenesisalso act on fibrogenesis. For instance, VEGF, themaster regulator of angiogenesis, is also implicatedin fibrogenesis (Fig. 3) [87,92–95]. Besides LSECs,endothelial progenitor cell (EPC), i.e., endothelialcells derived from bone marrow, also contributeto liver angiogenesis, as reviewed elsewhere[96,97].

LSECs also regulate fibrosis by releasing angio-crine signals. This latter term refers to the paracrinefactors produced by endothelial cells that maintainorgan homeostasis, balance the self-renewal anddifferentiation of stem cells and orchestrate organregeneration and tumor growth. A recent landmarkstudy demonstrated that LSECs release divergentangiocrine signals balancing liver regenerationand fibrosis. After acute liver injury, activation ofCXCR7-Id1 pathway in LSECs stimulates productionof hepatic-active angiocrine factors leading to liverregeneration. By contrast, chronic injury causespersistent FGFR1 activation in LSECs that perturbsCXCR7-Id1 pathway and favors a CXCR4-drivenpro-fibrotic angiocrine response, thereby provokingliver fibrosis. Therefore, in response to injury, dif-ferentially primed LSECs deploy divergent angio-crine signals to balance liver regeneration andfibrosis [98].

Endothelial dysfunction occurs early in chronicliver disease, even before fibrosis and inflammationtake place, and persists in advanced cirrhosis[84,99,100] (Fig. 2). The mechanisms of endothelialdysfunction have been reviewed elsewhere and aresummarized in Fig. 2 [83,84]. Importantly, pharma-cologic strategies improving LSECs in chronic liverdiseases, including statins, decrease liver fibrosis,endothelial dysfunction and portal pressure[101,103,104].

Role of LSECs in hepatocellular carcinoma

Hepatocellular carcinoma (HCC) most often emergesin the context of chronic liver disease. The develop-ment of HCC is thought to be a multistep processfrom precancerous lesions (low then high grade dys-plastic nodule) to early and advanced HCC [105].Dysplastic nodules receive blood supply preferen-tially via the portal vein similarly to regenerativenodules of cirrhosis. A switch to prominent arterialblood supply occurs at the stage of early HCC[106]. Then, angiogenesis results in a highly vascu-larized tumor and promotes tumorigenesis and thedevelopment of metastasis. HCC is associated withchanges in endothelial cells within and around thetumor.

Endothelial cells present within HCC sequentiallylose during tumor progression LSECs markers,including stabilin-1, stabilin-2, LYVE-1 and CD32b,

Fenestrae sieve plate

Space of Disse

HepatocyteHepatocyte

HSC

Activated

Capillarized LSEC

BM

NORMAL LIVER CIRRHOTIC LIVER

Differentiated LSEC

Space of Disse

TGF-β1

Fibrosis Angiogenesis

Cholangiocyte

↑VEGF

HSC

Quiescent

VEGF

Fig. 3. A dual role of VEGF in chronic liver disease progression. In physiological conditions, VEGF released by hepatocytes,

cholangiocytes and HSC, maintains LSEC differentiation (blue arrow) and consequently HSC quiescence. VEGF is thus anti-fibrogenic.

During fibrogenesis, liver expression of VEGF increases. These high VEGF levels have a pro-fibrogenic action (red arrows) by inducing

liver angiogenesis and by activating HSC. The activation of HSC results from a direct action of VEGF on HSC and from the release of

TGF-b1 by capillarized LSECs. BM, basement membrane; HSC, hepatic stellate cell; LSEC, liver sinusoidal cell; VEGF, vascular growth

factor; TGF-b1, transforming growth factor b1.

Review

JOURNAL OF HEPATOLOGY

Journal of Hepatology 2017 vol. 66 j 212–227 219

as observed both in murine HCC models and inhuman HCC [107]. Moreover, as compared to LSECsfrom a healthy human liver, endothelial cellsderived from human HCC have a higher expressionof integrins, lower expression of ICAM-1, and exhi-bit higher angiogenic, procoagulant and fibrinolyticcapacities [108].

LSECs in the peritumoral tissue also undergochanges as HCC progresses including the loss ofthe LSEC markers stabilin-2 and CD32b [107]. In amouse tumor xenograft model, peritumoral livertissue displays a higher microvascular density andexpression of the proangiogenic genes,interleukin-6 (IL-6) and interleukin-6 receptor (IL-6R) than the model tumoral tissue [109]. In thesame line, peritumoral endothelial cells isolatedfrom patients with HCC proliferate more when cul-tured with IL-6 and soluble IL-6R than tumoralendothelial cells. IL-6 is secreted by peritumoralendothelial cells in response to hypoxia while IL-6R is secreted by macrophages, present in largenumber in the peritumoral liver tissue duringtumoral progression. These data suggesting a majorrole of peritumoral endothelial cells in HCC pro-gression echo the previous observation that geneexpression in the nontumoral liver from patientswith HCC has a higher prognostic value of thangene expression in HCC [110].

LSEC and liver regeneration following acute liver

injury or partial hepatectomy

Liver regeneration following acute liver injuryor partial hepatectomy is a complex process whereLSECs play a key role. LSECs sense the majorchanges in shear stress resulting from resection.They proliferate, and orchestrate the harmoniousregeneration of the different cell types by interact-ing with sinusoidal progenitor cells, platelets andinflammatory cells (Fig. 4).

After an acute liver injury or a partial hepatec-tomy, LSECs play a central role in liver regenerationthrough a dynamic regulation of the balancebetween hepatocytes proliferation and vascularproliferation. There is an asynchronism betweenhepatocyte and LSEC proliferation. In the earlyphase (at day 2), non-proliferative LSECs activatehepatocytes proliferation by two complementarymechanisms: (a) the downregulation of the hepato-cyte growth inhibitor TGF-b, through the downreg-ulation of the Tie2 receptor antagonist,angiopoiteine-2 [111]; and (b) the secretion of hep-atotropic cytokines, Wnt and hepatocyte growthfactor (HGF), through the upregulation of the tran-scription factor Id1 via the VEGFR2/VEGFA path-ways [57]. Following liver resection, the portalflow per gram of tissue immediately increases,enhancing the shear stress on LSECs [112,113]. Inresponse to this increased shear stress, LSECsrelease NO that sensitizes hepatocytes to HGF

[112,114]. Shear stress is thus a key inducer of liverregeneration. However, when resection is excessive,exaggerated shear stress can damage LSECs and leadto hemorrhagic necrosis [112]. Limiting shear stresscould be a potential strategy to prevent post-hepatectomy liver failure as suggested by the bene-ficial effect of portosystemic shunts, splenectomy orsplenic artery embolization in murine models and inpatients with large liver resections [112,115–121]. Aless invasive surgical intervention is being tested ina prospective trial (NCT02390713), using a pneu-matic ring to modulate the diameter of the portalvein and thus the post-hepatectomy shear stress.New promising molecules decreasing shear stressto prevent post-hepatectomy liver failure andsmall-for-size-syndrome have been proposedincluding the vasodilator olprinone, a phosphodi-esterase III inhibitor [122,123] currently tested in aprospective trial (NCT00966745).

In the second phase following hepatectomy (atday 4), LSECs begin to proliferate, via the upregula-tion of angiopoietin-2 and VEGFR2/VEGFA pathways[111]. VEGFR2 is a classical mediator of the mito-genic and the angiogenic effect of VEGFA. The roleof VEFGA/VEGFR1 pathway is more controversialthan that of the VEGFR2 pathway. Le Couteur et al.

described that VEGFR1 activation in LSECs after liverinjury, can paracrinally induce hepatocyte prolifera-tion, without LSEC proliferation and protectsparenchymal cells from the injury [124].

Liver regeneration not only implicates liver cellsbut also circulating cells including sinusoidal pro-genitor cells, platelets and inflammatory cells. Therole of sinusoidal progenitor cells in liver regenera-tion has been recently reviewed elsewhere and issummarized in Fig. 4 [20]. Briefly, liver injuryinduces increased hepatic VEGF expression, whichdrives recruitment of hepatocyte growth factor-rich bone marrow sinusoidal progenitor cells andpromotes expression of HGF by resident sinusoidalprogenitor cells and LSECs. HGF in turn stimulatesthe proliferation of hepatocytes in liver regenera-tion. In addition, sinusoidal progenitor cells replaceLSECs that were lost during injury. The role of theinteraction between LSECs and platelets in liverregeneration is summarized in Fig. 4 [125]. Follow-ing liver injury, platelets are recruited to andtrapped within the liver, where they adhere to LSEC.Subsequent platelet activation results in the releaseof platelet granules, which stimulate hepatocyteproliferation. Platelets activate LSECs, leading tothe secretion of growth factors, such as IL-6 [125].Finally, LSECs and hepatocytes can also internalizeplatelets, but the effects of this alternate processon liver regeneration remain to be explored. Theimprovement in survival following subtotal liverresection in rats and mice obtained by the inductionof thrombocytosis by thrombopoietin injection,splenectomy or platelet-rich plasma transfusionillustrates importance of platelets in liver regenera-tion [126–128]. The endothelial-monocyte interac-

Key point

LSECs are implicated in liverregeneration following acuteliver injury or partial hepa-tectomy since they renewfrom LSECs and/or LSEC pro-genitors, they sense theshear stress changes result-ing from surgery and inter-act with platelets andinflammatory cells.

Review

Review

220 Journal of Hepatology 2017 vol. 66 j 212–227

tion is also implicated in liver regeneration. Indeed,circulating monocytes are recruited in the injuredliver and stimulate parenchymal but also endothe-lial regeneration. LSECs regulate the infiltration ofmonocyte in the liver through a destabilization ofVE-Cadherin junction and through adhesive mole-cule expression [129].

Lastly, liver regeneration also depends on theexistence of lesion related to ischemia reperfusion.Mechanisms of ischemia reperfusion injury havebeen reviewed previously and will not be detailedhere [130].

Inflammation and infection

LSECs regulate liver inflammation in two manners.First, LSECs are a barrier separating the blood fromthe rest of liver, and thus restrict or enable theentry of circulating leucocytes into the liver tissue.The detailed mechanisms of the interactionsbetween leucocytes and LSECs have been previ-ously reviewed [131]. Briefly, LSECs expressICAM-1 and vascular adhesion protein-1 (VAP-1),allowing adhesion of leucocytes to the endothe-lium. During inflammation, expression of ICAM-1

increases and expression of vascular cell adhesionmolecule-1 (VCAM-1) and CD31 are induced, lead-ing to the transendothelial migration of leucocytes.Stabilin-1 has also been reported to promotetransendothelial migration of leucocytes, preferen-tially regulatory T cells [132]. Second, LSECs canmodulate lymphocytes behavior. In physiologicalconditions, antigen presentation by LSECs leads totolerance induction in CD8+ cells [133]. LSECs canalso induce differentiation of T cells into immuno-suppressive regulatory T cells (Treg) that are func-tional in vitro and in vivo [134]. As an application,the selective delivery of autoantigen peptides toLSECs in vivo using a polymeric nanoparticle carriercan efficiently prevent and treat an animal model ofautoimmunity, by increasing the number of Treg[135]. In inflammatory conditions, LSECs also tendto have an anti-inflammatory action since theyincrease the expression of the anti-inflammatorycytokine IL-10 in Th1 cells via the Notch pathway[136].

But LSECs can also be targeted by pathogens. Dueto their scavenging ability, LSECs can capture circu-lating viruses via the expression of lectin at theirsurface and in turn induce infection of hepatocytes,

Space of Disse

Hepatocytes

LSEC

Engraftment Differentiation

HGF

Shear stressPlateletsVEGF A

NO

Space of Disse

++

+

+

Liver injury

Mobilization

ProliferationVEGF

ProliferationReleaseStimulation

+

SPCs

Fig. 4. Liver sinusoidal cell (LSECs) and liver regeneration following acute liver injury or partial hepatectomy. Following liver

injury, liver expression of VEGF increases, leading to the proliferation of bone marrow sinusoidal progenitor cells (SPC) (1), to their

mobilization to the circulation (2), their engraftment in the sinusoids (3) and their differentiation in mature LSECs (4). VEGF A

stimulates liver regeneration trough LSECs (a) leading to HGF production (b), hepatocyte proliferation (c) and LSECs proliferation (d)

[20]. Increased shear stress associated with liver resection induces LSECs derived nitric oxide (NO) (I), which increase the effect of

HGF on hepatocytes proliferation (II). Platelets are rapidly recruited in the liver after liver surgery (A). They adhere to LSECs and

stimulate secretion of key molecules involved in hepatocytes (F) and LSECs (B) proliferation and survival. Platelets can also be

endocytosed by LSECs (C), or trapped in the space of Disse (E), a migration facilitated by the increased size of fenestration associated

with liver surgery (D). Abbreviations: HSC, hepatic stellate cell; NO, nitric oxide; LSEC, liver sinusoidal cell; HGF, hepatocyte growth

factor; VEGF, vascular growth factor; VEGFR, vascular growth factor receptor; SPC, sinusoid progenitor cells.

Review

JOURNAL OF HEPATOLOGY

Journal of Hepatology 2017 vol. 66 j 212–227 221

as observed for hepatitis B and hepatitis C viruses[137,138]. Lectin expressed by LSECs is not onlyinvolved in regulation of the entry of viruses butalso in the regulation of their clearance by modu-lating functions of T cells as it has been shown foradenovirus [139]. LSECs can also be infected withCMV (cytomegalovirus) which upregulates ICAM-1 and CXCL10 expression, thus favoring CD4 T celltransendothelial migration. Migration of effectormemory T cells through CMV-infected LSECs isassociated with a change in memory T cells pheno-type towards an activated phenotype facilitatinghepatic inflammation, while regulatory T cells

transmigrating retain a suppressive phenotype,favoring virus persistence [140]. This change inendothelial cells towards a proinflammatory pheno-type induced by CMV might explain why acute CMVinfection can trigger portal vein thrombosis [141].The effect of CMV on LSECs and lymphocytes mayalso be of particular interest in the setting of livertransplantation where CMV infection may favoracute rejection, a disease characterized byendotheliitis.

LSECs can also be infected with bacteria as elec-tron microscopy studies revealed Bartonella bacilli inLSECs associated with angiomatosis and peliosis

Table 4. Drug delivery system to LSEC in vivo.

Carrier distribution in vivo

Reference Carrier Size (nm) LSEC* KC* Hep* Other organs Experimental strategies and results Toxicity

Sano et al.

[159]

HA n.a. Yes n.a. n.a. n.a. Delivering of sphingosine-1-

phosphate

Hepatic I/R injury model in rats

→↓ALT level and hepatocytes and

LSECs apoptosis

n.a.

Fraser et al.

[160]

HA n.a. 90% 0 4% Low in spleen Bio-distribution in rats n.a.

Toriyabe et al.

[161]

HA-SA-liposome 254 ± 19 Yes Yes (NQ) No (NQ) Low expression in

lungs

Bio-distribution in mice n.a.

Takei et al.

[162]

PLL-g-HA 100 to 200 Yes No (NQ) No (NQ) >93% liver

2.5-1% spleen,

intestine and kidney

<1% heart, thymus,

lung and blood$

Delivering of DNA complexes

Bio-distribution in rats

n.a.

Kren et al.

[163]

HA-nanocapsule

(polyethyleneimine)

<50 Yes n.a. No (NQ) Not in lung, kidney,

spleen, heart and

gonads

Delivering of transposon vectors

expressing FVIII

Hemophilia A mice model

→Normalization of plasmatic

FVIII expression and activity

up to 11 mo

No

toxicity

in 72 h

and 3

mo

Carambia et

al. [135]

Iron oxide

nanocrystals

<50 Yes n.a. No (NQ) 90% liver

10% spleen and

kidney$

Delivering of auto-antigen peptide

Autoimmune encephalomyelitis mice

model

→Controlled disease progression by

Treg induction by LSECs

No

toxicity

(9 wk)

Tanoi et al.

[164]

STR-KLGR

modified YSK05-

MEND

80-120 Yes n.a. Lower (NQ) n.a. Delivering of BAX siRNA

Acute liver damage (anti-FAS Ab)

in mice

→↓Hepatocytes apoptosis. Preserve

sinusoidal structure

100%

alive at

24 h

Akhter et al.

[165]

STR-KLGR

modified YSK05-

MEND

80-120 Yes n.a. Low High in liver

Lower expression in

lung and kidney

Delivering of Tie2 siRNA

Bio-distribution in mice

→80% knockdown in LSECs

No liver

toxicity

(24 h)

Bartsch et al.

[166]

Aco-HSA-CCLs 154 ± 12 60% 40% 1.30% 60% liver

4% spleen

<1% lungs, heart,

kidneys£

Delivering of ODN

Bio-distribution in rats

n.a.

Kamps et al.

[167]

Aco-HSA

liposomes

92.1 ± 10 65% 25% 10% 80% liver

5% spleen£

Bio-distribution in rats n.a.

Bartsch et al.

[168]

Aco-HSA-PEG-

SAPLs

164 ± 45 75% 25% n.a. 80 % liver

5% spleen£

Delivering of anti-ICAM-1-ODN

No efficiency analyze in vivo

n.a.

⁄ % of expression in liver cells; $Express as % of body distribution; £Express as % of injected dose.

Ab, antibody; Aco-HAS, cis-aconitylated human serum albumin; ALT, alanine aminotransferase; CCLs, lipid-coated cationic lipoplexes; Hep, hepatocytes; HA, hyaluronic

acid; I/R, ischemia reperfusion; ICAM, intracellular adhesion molecule; KC, Kupffer cells; LSECs, liver sinusoidal endothelial cells; MEND, multifunctional type nano device;

n.a., not available; NQ, not quantified; ODN, antisense oligodeoxynucleotides; PEG, polyethylene glycol; PLL-g-HA, hyaluronate-grafted poly(L-Lysine) copolymer; SA,

stearylamine; SAPLs, stabilized antisense lipid particles; siRNA, small interfering RNA; STR-KLRG, sterylated killer cell lectin-like receptor subfamily G; Treg, regulatory T

cells; YSK05, pH-sensitive cationic lipid [169].

Review

Review

222 Journal of Hepatology 2017 vol. 66 j 212–227

hepatitis [142]. The fact that LSECs can be targetsfor pathogens with an impact on the local environ-ment might explain why nodular regenerativehyperplasia develops in patients with primaryhypogammaglobulinemia, a condition frequentlyassociated with intra-sinusoidal lymphocytic infil-tration. Immunodeficiency might favor infectionof LSECs with pathogens, leading to a change intheir phenotype towards a proinflammatory andprothrombotic phenotype and eventually to sinu-soid obstruction [143].

LSEC and ageing

Pseudocapillarization refers to changes in the liversinusoidal endothelium related with ageing. Elec-tron microscopy analyses showed that ageing isassociated with a 50% increase in the thickness ofLSECs, a 50% reduction in the number of LSEC fen-estrae and the formation of a basement membranewith perisinusoidal fibrosis and central vein fibrosis[42,82]. These changes decrease porosity and endo-cytic capacity of LSECs. Consequently clearance ofchylomicron remnants is impaired leading to postprandial triglyceridemia, which could participateto atherosclerosis development in older individuals[42,51]. Moreover, these LSEC changes can inducehepatocytes hypoxemia decreasing oxidative drugmetabolism and possibly promoting adverse drugreactions [42,51,144].

Conclusion

In conclusion, LSECs have a unique highly perme-able phenotype allowing the passage of certainbut not all molecules and cells. They also have avery special localization at the interface betweenblood cells on the one side and hepatocytes andhepatic stellate cells on the other side. LSECs arein constant interaction with other liver cells [83].

LSECs are implicated in most liver diseases includingchronic liver disease initiation and progression, hep-atocellular carcinoma development and progression,liver regeneration following acute liver injury orpartial hepatectomy, liver ageing and liver lesionsrelated to inflammation and infection. This role inmost liver diseases makes them an attractive thera-peutic target. Data summarized in Table 4 suggest apromising place to specific LSECs targeting. Suchcell-specific approaches may limit the adverseeffects associated with systemic drug delivery.

Financial support

This work was supported by the Agence Nationalepour la Recherche (ANR-14-CE12-0011 and ANR-14-CE35-0022) and by the Association Francaisepour l’Etude du foie (AFEF 2014) and J.P by the‘‘poste d’accueil INSERM”.

Conflict of interest

The authors declared that they do not have anythingto disclose regarding funding or conflict of interestwith respect to this manuscript.

Authors’ contributions

JP, SL and PER drafted the manuscript. FD, CMB, RMand DV discussed and critically revised themanuscript.

Acknowledgments

We thank Servier medical art for providing someimages included in the figures.

References

Author names in bold designate shared co-first authorship

[1] Chiu J-J, Chien S. Effects of disturbed flow on vascular endothelium:

pathophysiological basis and clinical perspectives. Physiol Rev

2011;91:327–387.

[2] Maslak E, Gregorius A, Chlopicki S. Liver sinusoidal endothelial cells (LSECs)

function and NAFLD; NO-based therapy targeted to the liver. Pharmacol Rep

2015;67:689–694.

[3] Couvelard A, Scoazec JY, Dauge MC, Bringuier AF, Potet F, Feldmann G.

Structural and functional differentiation of sinusoidal endothelial cells

during liver organogenesis in humans. Blood 1996;87:4568–4580.

[4] Walter TJ, Cast AE, Huppert KA, Huppert SS. Epithelial VEGF signaling is

required in the mouse liver for proper sinusoid endothelial cell identity and

hepatocyte zonation in vivo. Am J Physiol Gastrointest Liver Physiol

2014;306:G849–G862.

[5] Takabe Y, Yagi S, Koike T, Shiojiri N. Immunomagnetic exclusion of E-

cadherin-positive hepatoblasts in fetal mouse liver cell cultures impairs

morphogenesis and gene expression of sinusoidal endothelial cells. J Anat

2012;221:229–239.

[6] Gouysse G, Couvelard A, Frachon S, Bouvier R, Nejjari M, Dauge MC, et al.

Relationship between vascular development and vascular differentiation

during liver organogenesis in humans. J Hepatol 2002;37:730–740.

[7] Shiojiri N, Sugiyama Y. Immunolocalization of extracellular matrix compo-

nents and integrins during mouse liver development. Hepatology

2004;40:346–355.

[8] Asahina K, Zhou B, Pu WT, Tsukamoto H. Septum transversum-derived

mesothelium gives rise to hepatic stellate cells and perivascular mesenchy-

mal cells in developing mouse liver. Hepatology 2011;53:983–995.

[9] Jaffredo T, Nottingham W, Liddiard K, Bollerot K, Pouget C, de Bruijn M. From

hemangioblast to hematopoietic stem cell: an endothelial connection? Exp

Hematol 2005;33:1029–1040.

[10] Bollerot K, Pouget C, Jaffredo T. The embryonic origins of hematopoietic stem

cells: a tale of hemangioblast and hemogenic endothelium. APMIS

2005;113:790–803.

[11] Bailey AS, Fleming WH. Converging roads: evidence for an adult heman-

gioblast. Exp Hematol 2003;31:987–993.

Review

JOURNAL OF HEPATOLOGY

Journal of Hepatology 2017 vol. 66 j 212–227 223

[12] Alva JA, Zovein AC, Monvoisin A, Murphy T, Salazar A, Harvey NL, et al. VE-

Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and

gene deletion in endothelial cells. Dev Dyn 2006;235:759–767.

[13] Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, et al. Fate

tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem

Cell 2008;3:625–636.

[14] Oberlin E, El Hafny B, Petit-Cocault L, Souyri M. Definitive human and mouse

hematopoiesis originates from the embryonic endothelium: a new class of

HSCs based on VE-cadherin expression. Int J Dev Biol 2010;54:1165–1173.

[15] Martinez-Hernandez A, Amenta PS. The hepatic extracellular matrix. II.

Ontogenesis, regeneration and cirrhosis. Virchows Arch 1993;423:77–84.

[16] Shiojiri N, Niwa T, Sugiyama Y, Koike T. Preferential expression of connex-

in37 and connexin40 in the endothelium of the portal veins during mouse

liver development. Cell Tissue Res 2006;324:547–552.

[17] Sugiyama Y, Takabe Y, Nakakura T, Tanaka S, Koike T, Shiojiri N. Sinusoid

development and morphogenesis may be stimulated by VEGF-Flk-1 signaling

during fetal mouse liver development. Dev Dyn 2010;239:386–397.

[18] Zhang H, Pu W, Tian X, Huang X, He L, Liu Q, et al. Genetic lineage tracing

identifies endocardial origin of liver vasculature. Nat Genet

2016;48:537–543.

[19] Davies PF, Civelek M, Fang Y, Fleming I. The atherosusceptible endothelium:

endothelial phenotypes in complex haemodynamic shear stress regions

in vivo. Cardiovasc Res 2013;99:315–327.

[20] DeLeve LD. Liver sinusoidal endothelial cells and liver regeneration. J Clin

Invest 2013;123:1861–1866.

[21] Margreet De Leeuw A, Brouwer A, Knook DL. Sinusoidal endothelial cells of

the liver: Fine structure and function in relation to age. J Electron Microsc

Tech 1990;14:218–236.

[22] Wang L, Wang X, Xie G, Wang L, Hill CK, DeLeve LD. Liver sinusoidal

endothelial cell progenitor cells promote liver regeneration in rats. J Clin

Invest 2012;122:1567–1573.

[23] Harb R, Xie G, Lutzko C, Guo Y, Wang X, Hill CK, et al. Bone marrow

progenitor cells repair rat hepatic sinusoidal endothelial cells after liver

injury. Gastroenterology 2009;137:704–712.

[24] DeLeve LD, Garcia-Tsao G. Vascular liver disease – mechanisms and

management. Springer Science+Business media, LLC; 2011. http://dx.doi.

org/10.1007/978-1-4419-8327-5_2.

[25] Lee SS, Hadengue A, Moreau R, Sayegh R, Hillon P, Lebrec D. Postprandial

hemodynamic responses in patients with cirrhosis. Hepatology

1988;8:647–651.

[26] Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev

1995;75:519–560.

[27] Gracia-Sancho J, Russo L, García-Calderó H, García-Pagán JC, García-Cardeña

G, Bosch J. Endothelial expression of transcription factor Kruppel-like factor 2

and its vasoprotective target genes in the normal and cirrhotic rat liver. Gut

2011;60:517–524.

[28] Parmar KM, Larman HB, Dai G, Zhang Y, Wang ET, Moorthy SN, et al.

Integration of flow-dependent endothelial phenotypes by Kruppel-like factor

2. J Clin Invest 2006;116:49–58.

[29] Shah V, Haddad FG, Garcia-Cardena G, Frangos JA, Mennone A, Groszmann RJ,

et al. Liver sinusoidal endothelial cells are responsible for nitric oxide

modulation of resistance in the hepatic sinusoids. J Clin Invest

1997;100:2923.

[30] Fernandez M. Molecular pathophysiology of portal hypertension. Hepatology

2015;61:1406–1415.

[31] Kawada N, Tran-Thi T-A, Klein H, Decker K. The contraction of hepatic stellate

(Ito) cells stimulated with vasoactive substances. Eur J Biochem

1993;213:815–823.

[32] McCuskey RS. Morphological mechanisms for regulating blood flow through

hepatic sinusoids. Liver 2000;20:3–7.

[33] Rockey D. The cellular pathogenesis of portal hypertension: stellate cell

contractility, endothelin, and nitric oxide. Hepatology 1997;25:2–5.

[34] DeLeve LD, Wang X, Guo Y. Sinusoidal endothelial cells prevent rat stellate

cell activation and promote reversion to quiescence. Hepatology

2008;48:920–930.

[35] Braet F, Wisse E. Structural and functional aspects of liver sinusoidal

endothelial cell fenestrae: a review. Comp Hepatol 2002;1:1.

[36] DeLeve LD. Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology

2015;61:1740–1746.

[37] Wisse E, De Zanger RB, Charels K, Van Der Smissen P, McCuskey RS. The liver

sieve: considerations concerning the structure and function of endothelial

fenestrae, the sinusoidal wall and the space of Disse. Hepatology

1985;5:683–692.

[38] Mönkemöller V, Øie C, Hübner W, Huser T, McCourt P. Multimodal super-

resolution optical microscopy visualizes the close connection between

membrane and the cytoskeleton in liver sinusoidal endothelial cell fenes-

trations. Sci Rep 2015;5:16279.

[39] Xie G, Wang L, Wang X, Wang L, DeLeve LD. Isolation of periportal,

midlobular, and centrilobular rat liver sinusoidal endothelial cells enables

study of zonated drug toxicity. AJP Gastrointest Liver Physiol 2010;299:

G1204–G1210.

[40] O’Reilly JN, Cogger VC, Fraser R, Le Couteur DG. The effect of feeding and

fasting on fenestrations in the liver sinusoidal endothelial cell. Pathology

(Phila) 2010;42:255–258.

[41] Fraser R, Cogger VC, Dobbs B, Jamieson H, Warren A, Hilmer SN, et al. The

liver sieve and atherosclerosis. Pathology (Phila) 2012;44:181–186.

[42] Le Couteur DG, Fraser R, Cogger VC, McLean AJ. Hepatic pseudocapillarisation

and atherosclerosis in ageing. Lancet 2002;359:1612–1615.

[43] Arias IM. The biology of hepatic endothelial cell fenestrae. Prog Liver Dis

1990;9:11–26.

[44] Yokomori H, Oda M, Ogi M, Kamegaya Y, Tsukada N, Ishii H. Endothelial nitric

oxide synthase and caveolin-1 are co-localized in sinusoidal endothelial

fenestrae. Liver 2001;21:198–206.

[45] Warren A, Cogger VC, Arias IM, McCuskey RS, Le Couteur DG. Liver sinusoidal

endothelial fenestrations in caveolin-1 knockout mice. Microcirculation

1994;2010:32–38.

[46] Svistounov D, Warren A, McNerney GP, Owen DM, Zencak D, Zykova SN,

et al. The Relationship between fenestrations, sieve plates and rafts in liver

sinusoidal endothelial cells. PLoS One 2012;7 e46134.

[47] Rodriguez-Vita J, Morales-Ruiz M. Down the liver sinusoidal endothelial cell

(LSEC) hole. Is there a role for lipid rafts in LSEC fenestration? Hepatology

2013;57:1272–1274.

[48] Géraud C, Evdokimov K, Straub BK, Peitsch WK, Demory A, Dörflinger Y,

et al. Unique cell type-specific junctional complexes in vascular endothelium

of human and rat liver sinusoids. PLoS One 2012;7.

[49] Lautt WW. Hepatic circulation: physiology and pathophysiology. San Rafael,

CA: Morgan & Claypool Life Sciences; 2009.

[50] Rodés J, Benhamou J-P, Blei A, Reichen J, Rizzetto M. Textbook of

hepatology: from basic science to clinical practice. 3rd ed. Blackwell

Publishing; 2007.

[51] Smedsrød B, Le Couteur D, Ikejima K, Jaeschke H, Kawada N, Naito M, et al.

Hepatic sinusoidal cells in health and disease: update from the 14th

International Symposium: Hepatic sinusoidal cells in health and disease.

Liver Int 2009;29:490–501.

[52] Sorensen KK, McCourt P, Berg T, Crossley C, Couteur DL, Wake K, et al. The

scavenger endothelial cell: a new player in homeostasis and immunity. Am J

Physiol Regul Integr Comp Physiol 2012;303:R1217–R1230.

[53] Schledzewski K, Géraud C, Arnold B, Wang S, Gröne H-J, Kempf T, et al.

Deficiency of liver sinusoidal scavenger receptors stabilin-1 and -2 in mice

causes glomerulofibrotic nephropathy via impaired hepatic clearance of

noxious blood factors. J Clin Invest 2011;121:703–714.

[54] Elvevold K, Simon-Santamaria J, Hasvold H, McCourt P, Smedsrød B, Sørensen

KK. Liver sinusoidal endothelial cells depend on mannose receptor-mediated

recruitment of lysosomal enzymes for normal degradation capacity. Hepa-

tology 2008;48:2007–2015.

[55] Elvevold K, Smedsrød B, Martinez I. The liver sinusoidal endothelial cell: a

cell type of controversial and confusing identity. Am J Physiol Gastrointest

Liver Physiol 2008;294:G391–G400.

[56] Lalor PF, Lai WK, Curbishley SM, Shetty S, Adams DH. Human hepatic

sinusoidal endothelial cells can be distinguished by expression of phenotypic

markers related to their specialised functions in vivo. World J Gastroenterol

2006;12:5429–5439.

[57] Ding B-S, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, et al.

Inductive angiocrine signals from sinusoidal endothelium are required for

liver regeneration. Nature 2010;468:310–315.

[58] Woodfin A, Voisin M-B, Nourshargh S. PECAM-1: a multi-functional molecule

in inflammation and vascular biology. Arterioscler Thromb Vasc Biol

2007;27:2514–2523.

[59] DeLeve LD, Wang X, Hu L, McCuskey MK, McCuskey RS. Rat liver

sinusoidal endothelial cell phenotype is maintained by paracrine and

autocrine regulation. Am J Physiol Gastrointest Liver Physiol 2004;287:

G757–G763.

[60] Fan CQ, Crawford JM. Sinusoidal obstruction syndrome (hepatic veno-

occlusive disease). J Clin Exp Hepatol 2014;4:332–346.

[61] Smedsrød B. Protocol for preparation of mouse liver Kupffer cells and liver

sinusoidal endothelial cells, 2012.

Review

Review

224 Journal of Hepatology 2017 vol. 66 j 212–227

[62] Meyer J, Gonelle-Gispert C, Morel P, Bühler L. Methods for isolation and

purification of murine liver sinusoidal endothelial cells: a systematic review.

PLoS One 2016;11 e0151945.

[63] March S, Hui EE, Underhill GH, Khetani S, Bhatia SN. Microenvironmental

regulation of the sinusoidal endothelial cell phenotype in vitro. Hepatology

2009;50:920–928.

[64] Yokomori H, Oda M, Yoshimura K, Nagai T, Ogi M, Nomura M, et al. Vascular

endothelial growth factor increases fenestral permeability in hepatic sinu-

soidal endothelial cells. Liver Int 2003;23:467–475.

[65] Krause P, Markus PM, Schwartz P, Unthan-Fechner K, Pestel S, Fandrey J, et al.

Hepatocyte-supported serum-free culture of rat liver sinusoidal endothelial

cells. J Hepatol 2000;32:718–726.

[66] Martinez I, Nedredal GI, Øie CI, Warren A, Johansen O, Le Couteur DG, et al.

The influence of oxygen tension on the structure and function of isolated

liver sinusoidal endothelial cells. Comp Hepatol 2008;7:4.

[67] Motoyama S, Minamiya Y, Saito S, Saito R, Matsuzaki I, Abo S, et al. Hydrogen

peroxide derived from hepatocytes induces sinusoidal endothelial

cell apoptosis in perfused hypoxic rat liver. Gastroenterology 1998;114:

153–163.

[68] Matsumura T, Takesue M, Westerman KA, Okitsu T, Sakaguchi M, Fukazawa

T, et al. Establishment of an immortalized human-liver endothelial cell line

with SV40T and hTERT. Transplantation 2004;77:1357–1365.

[69] Hering S, Griffin BE, Strauss M. Immortalization of human fetal sinusoidal

liver cells by polyoma virus large T antigen. Exp Cell Res 1991;195:1–7.

[70] Maru Y, Yamaguchi S, Takahashi T, Ueno H, Shibuya M. Virally activated Ras

cooperates with integrin to induce tubulogenesis in sinusoidal endothelial

cell lines. J Cell Physiol 1998;176:223–234.

[71] Saito M, Matsuura T, Masaki T, Maehashi H, Braet F. Study of the

reappearance of sieve plate-like pores in immortalized sinusoidal endothelial

cells - Effect of actin inhibitor in mixed perfusion cultures. Comp Hepatol

2004;3:S28.

[72] Matsuura T, Kawada M, Hasumura S, Nagamori S, Obata T, Yamaguchi M,

et al. High density culture of immortalized liver endothelial cells in the

radial-flow bioreactor in the development of an artificial liver. Int J Artif

Organs 1998;21:229–234.

[73] Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, et al.

TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med

2007;13:1324–1332.

[74] Kennedy DW, Abkowitz JL. Kinetics of central nervous system microglial and

macrophage engraftment: analysis using a transgenic bone marrow trans-

plantation model. Blood 1997;90:986–993.

[75] Schaffner F, Poper H. Capillarization of hepatic sinusoids in man. Gastroen-

terology 1963;44:239–242.

[76] Horn T, Christoffersen P, Henriksen JH. Alcoholic liver injury: defenestration

in noncirrhotic livers–a scanning electron microscopic study. Hepatology

1987;7:77–82.

[77] Xu B, Broome U, Uzunel M, Nava S, Ge X, Kumagai-Braesch M, et al.

Capillarization of hepatic sinusoid by liver endothelial cell-reactive autoan-

tibodies in patients with cirrhosis and chronic hepatitis. Am J Pathol

2003;163:1275–1289.

[78] Martinez-Hernandez A, Martinez J. The role of capillarization in hepatic

failure: studies in carbon tetrachloride-induced cirrhosis. Hepatology

1991;14:864–874.

[79] Mori T, Okanoue T, Sawa Y, Hori N, Ohta M, Kagawa K. Defenestration of the

sinusoidal endothelial cell in a rat model of cirrhosis. Hepatology

1993;17:891–897.

[80] Warren A, Bertolino P, Benseler V, Fraser R, McCaughan GW, Le Couteur DG.

Marked changes of the hepatic sinusoid in a transgenic mouse model of acute

immune-mediated hepatitis. J Hepatol 2007;46:239–246.

[81] DeLeve LD, Wang X, Kanel GC, Atkinson RD, McCuskey RS. Prevention of

hepatic fibrosis in a murine model of metabolic syndrome with nonalcoholic

steatohepatitis. Am J Pathol 2008;173:993–1001.

[82] Miyao M, Kotani H, Ishida T, Kawai C, Manabe S, Abiru H, et al. Pivotal role of

liver sinusoidal endothelial cells in NAFLD/NASH progression. Lab Invest

2015;95:1130–1144.

[83] Marrone G, Shah VH, Gracia-Sancho J. Sinusoidal communication in liver

fibrosis and regeneration. J Hepatol 2016;65:608–617. http://dx.doi.org/

10.1016/j.jhep.2016.04.018.

[84] García-Pagán J-C, Gracia-Sancho J, Bosch J. Functional aspects on the

pathophysiology of portal hypertension in cirrhosis. J Hepatol

2012;57:458–461.

[85] Xie G, Wang X, Wang L, Wang L, Atkinson RD, Kanel GC, et al. Role of

differentiation of liver sinusoidal endothelial cells in progression and

regression of hepatic fibrosis in rats. Gastroenterology 2012;142:918–927

e6.

[86] D’Ambrosio R, Aghemo A, Rumi MG, Ronchi G, Donato MF, Paradis V, et al. A

morphometric and immunohistochemical study to assess the benefit of a

sustained virological response in hepatitis C virus patients with cirrhosis.

Hepatology 2012;56:532–543.

[87] Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of

angiogenesis. Nature 2011;473:298–307.

[88] Ehling J, Bartneck M, Wei X, Gremse F, Fech V, Möckel D, et al. CCL2-

dependent infiltrating macrophages promote angiogenesis in progressive

liver fibrosis. Gut 2014;63:1960–1971.

[89] Thabut D, Shah V. Intrahepatic angiogenesis and sinusoidal remodeling in

chronic liver disease: New targets for the treatment of portal hypertension? J

Hepatol 2010;53:976–980.

[90] Taura K, De Minicis S, Seki E, Hatano E, Iwaisako K, Osterreicher CH, et al.

Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver

fibrosis. Gastroenterology 2008;135:1729–1738.

[91] Thabut D, Routray C, Lomberk G, Shergill U, Glaser K, Huebert R, et al.

Complementary vascular and matrix regulatory pathways underlie the

beneficial mechanism of action of sorafenib in liver fibrosis. Hepatology

2011;54:573–585.

[92] Tarantino G, Conca P, Pasanisi F, Ariello M, Mastrolia M, Arena A, et al. Could

inflammatory markers help diagnose nonalcoholic steatohepatitis? Eur J

Gastroenterol Hepatol 2009;21:504–511.

[93] Coulon S, Francque S, Colle I, Verrijken A, Blomme B, Heindryckx F, et al.

Evaluation of inflammatory and angiogenic factors in patients with non-

alcoholic fatty liver disease. Cytokine 2012;59:442–449.

[94] Cayón A, Crespo J, Guerra AR, Pons-Romero F. Gene expression in obese

patients with non-alcoholic steatohepatitis. Rev Esp Enferm Dig

2008;100:212–218.

[95] Sahin H, Borkham-Kamphorst E, Kuppe C, Zaldivar MM, Grouls C, Al-samman

M, et al. Chemokine Cxcl9 attenuates liver fibrosis-associated angiogenesis in

mice. Hepatology 2012;55:1610–1619.

[96] Kaur S, Tripathi D, Dongre K, Garg V, Rooge S, Mukopadhyay A, et al.

Increased number and function of endothelial progenitor cells stimulate

angiogenesis by resident liver sinusoidal endothelial cells (SECs) in cirrhosis

through paracrine factors. J Hepatol 2012;57:1193–1198.

[97] Rautou P-E. Endothelial progenitor cells in cirrhosis: the more, the merrier? J

Hepatol 2012;57:1163–1165.

[98] Ding B-S, Cao Z, Lis R, Nolan DJ, Guo P, Simons M, et al. Divergent angiocrine

signals from vascular niche balance liver regeneration and fibrosis. Nature

2013;505:97–102.

[99] Francque S, Laleman W, Verbeke L, Van Steenkiste C, Casteleyn C, Kwanten

W, et al. Increased intrahepatic resistance in severe steatosis: endothelial

dysfunction, vasoconstrictor overproduction and altered microvascular

architecture. Lab Invest 2012;92:1428–1439.

[100] Pasarín M, La Mura V, Gracia-Sancho J, García-Calderó H, Rodríguez-

Vilarrupla A, García-Pagán JC, et al. Sinusoidal endothelial dysfunction

precedes inflammation and fibrosis in a model of NAFLD. PLoS One 2012;7

e32785.

[101] Marrone G, Russo L, Rosado E, Hide D, García-Cardeña G, García-Pagán JC,

et al. The transcription factor KLF2 mediates hepatic endothelial protection

and paracrine endothelial-stellate cell deactivation induced by statins. J

Hepatol 2013;58:98–103.

[102] Marrone G, Maeso-Díaz R, García-Cardena G, Abraldes JG, García-Pagán JC,

Bosch J, et al. KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic

rat livers: behind the molecular mechanisms of statins. Gut 2014. http://dx.

doi.org/10.1136/gutjnl-2014-308338.

[103] Abraldes JG, Albillos A, Bañares R, Turnes J, González R, García-Pagán JC, et al.

Simvastatin lowers portal pressure in patients with cirrhosis and portal

hypertension: a randomized controlled trial. Gastroenterology

2009;136:1651–1658.

[104] Abraldes JG, Villanueva C, Aracil C, Turnes J, Hernandez-Guerra M, Genesca

J, et al. Addition of simvastatin to standard therapy for the prevention of

variceal rebleeding does not reduce rebleeding but increases survival in

patients with cirrhosis. Gastroenterology 2016. http://dx.doi.org/10.1053/

j.gastro.2016.01.004.

[105] Sakamoto M. Early HCC: diagnosis and molecular markers. J Gastroenterol

2009;44:108–111.

[106] Semela D, Dufour J-F. Angiogenesis and hepatocellular carcinoma. J Hepatol

2004;41:864–880.

[107] Géraud C, Mogler C, Runge A, Evdokimov K, Lu S, Schledzewski K, et al.

Endothelial transdifferentiation in hepatocellular carcinoma: loss of Stabilin-

Review

JOURNAL OF HEPATOLOGY

Journal of Hepatology 2017 vol. 66 j 212–227 225

2 expression in peri-tumourous liver correlates with increased survival. Liver

Int 2013;33:1428–1440.

[108] Wu LQ, Zhang WJ, Niu JX, Ye LY, Yang ZH, Grau GE, et al. Phenotypic and

functional differences between human liver cancer endothelial cells and liver

sinusoidal endothelial cells. J Vasc Res 2008;45:78–86.

[109] Zhuang P-Y, Wang J-D, Tang Z-H, Zhou X-P, Quan Z-W, Liu Y-B, et al. Higher

proliferation of peritumoral endothelial cells to IL-6/sIL-6R than

tumoral endothelial cells in hepatocellular carcinoma. BMC Cancer

2015;15:830.

[110] Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, et al.

Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N

Engl J Med 2008;359:1995–2004.

[111] Hu J, Srivastava K, Wieland M, Runge A, Mogler C, Besemfelder E, et al.

Endothelial cell-derived angiopoietin-2 controls liver regeneration as a

spatiotemporal rheostat. Science 2014;343:416–419.

[112] Golse N, Bucur PO, Adam R, Castaing D, Sa Cunha A, Vibert E. New paradigms

in post-hepatectomy liver failure. J Gastrointest Surg 2013;17:593–605.

[113] Yamanaka K, Hatano E, Narita M, Kitamura K, Yanagida A, Asechi H, et al.

Olprinone attenuates excessive shear stress through up-regulation of

endothelial nitric oxide synthase in a rat excessive hepatectomy model.

Liver Transpl 2011;17:60–69.

[114] Schoen JM, Wang HH, Minuk GY, Lautt WW. Shear stress-induced nitric

oxide release triggers the liver regeneration cascade. Nitric Oxide

2001;5:453–464.

[115] Sugawara Y, Yamamoto J, Shimada K, Yamasaki S, Kosuge T, Takayama T,

et al. Splenectomy in patients with hepatocellular carcinoma and hyper-

splenism. J Am Coll Surg 2000;190:446–450.

[116] Sato Y, Kobayashi T, Nakatsuka H, Yamamoto S, Oya H, Watanabe T, et al.

Splenic arterial ligation prevents liver injury after a major hepatectomy by a

reduction of surplus portal hypertension in hepatocellular carcinoma

patients with cirrhosis. Hepatogastroenterology 2001;48:831–835.

[117] Troisi R, Cammu G, Militerno G, De Baerdemaeker L, Decruyenaere J, Hoste E,

et al. Modulation of portal graft inflow: a necessity in adult living-donor liver

transplantation? Ann Surg 2003;237:429–436.

[118] Ito K, Ozasa H, Horikawa S. Effects of prior splenectomy on remnant liver

after partial hepatectomy with Pringle maneuver in rats. Liver Int

2005;25:438–444.

[119] Ren Y-S, Qian N-S, Tang Y, Liao Y-H, Liu W-H, Raut V, et al. Beneficial effects

of splenectomy on liver regeneration in a rat model of massive hepatectomy.

Hepatobiliary Pancreat Dis Int 2012;11:60–65.

[120] Mogl MT, Nüssler NC, Presser SJ, Podrabsky P, Denecke T, Grieser C, et al.

Evolving experience with prevention and treatment of splenic artery

syndrome after orthotopic liver transplantation. Transpl Int

2010;23:831–841.

[121] Yoshizumi T, Taketomi A, Soejima Y, Ikegami T, Uchiyama H, Kayashima H,

et al. The beneficial role of simultaneous splenectomy in living donor liver

transplantation in patients with small-for-size graft. Transpl Int

2008;21:833–842.

[122] Yamanaka K, Hatano E, Iguchi K, Yamamoto G, Sato M, Toriguchi K, et al.

Effect of olprinone on liver microstructure in rat partial liver transplantation.

J Surg Res 2013;183:391–396.

[123] Iguchi K, Hatano E, Yamanaka K, Sato M, Yamamoto G, Kasai Y, et al.

Hepatoprotective effect by pretreatment with olprinone in a swine partial

hepatectomy model. Liver Transpl 2014;20:838–849.

[124] LeCouter J, Moritz DR, Li B, Phillips GL, Liang XH, Gerber H-P, et al.

Endothelial protection of liver: role of VEGFR-1. Cancer Cell 2002;1:229.

[125] Meyer J, Lejmi E, Fontana P, Morel P, Gonelle-Gispert C, Bühler L. A focus on

the role of platelets in liver regeneration: Do platelet-endothelial cell

interactions initiate the regenerative process? J Hepatol 2015;63:

1263–1271.

[126] Myronovych A, Murata S, Chiba M, Matsuo R, Ikeda O, Watanabe M, et al.

Role of platelets on liver regeneration after 90% hepatectomy in mice. J

Hepatol 2008;49:363–372.

[127] Murata S, Hashimoto I, Nakano Y, Myronovych A, Watanabe M, Ohkohchi N.

Single administration of thrombopoietin prevents progression of liver

fibrosis and promotes liver regeneration after partial hepatectomy in

cirrhotic rats. Ann Surg 2008;248:821–828.

[128] Matsuo R, Nakano Y, Ohkohchi N. Platelet administration via the portal vein

promotes liver regeneration in rats after 70% hepatectomy. Ann Surg

2011;253:759–763.

[129] Melgar-Lesmes P, Edelman ER. Monocyte-endothelial cell interactions in the

regulation of vascular sprouting and liver regeneration in mouse. J Hepatol

2015;63:917–925.

[130] Peralta C, Jiménez-Castro MB, Gracia-Sancho J. Hepatic ischemia and

reperfusion injury: effects on the liver sinusoidal milieu. J Hepatol

2013;59:1094–1106.

[131] Lalor PF, Shields P, Grant A, Adams DH. Recruitment of lymphocytes to the

human liver. Immunol Cell Biol 2002;80:52–64.

[132] Shetty S, Weston CJ, Oo YH, Westerlund N, Stamataki Z, Youster J, et al.

Common lymphatic endothelial and vascular endothelial receptor-1 medi-

ates the transmigration of regulatory T cells across human hepatic sinusoidal

endothelium. J Immunol 1950;2011:4147–4155.

[133] Limmer A, Ohl J, Kurts C, Ljunggren HG, Reiss Y, Groettrup M, et al. Efficient

presentation of exogenous antigen by liver endothelial cells to CD8+ T cells

results in antigen-specific T-cell tolerance. Nat Med 2000;6:1348–1354.

[134] Carambia A, Freund B, Schwinge D, Heine M, Laschtowitz A, Huber S, et al.

TGF-b-dependent induction of CD4+CD25+Foxp3+ Tregs by liver sinusoidal

endothelial cells. J Hepatol 2014;61:594–599.

[135] Carambia A, Freund B, Schwinge D, Bruns OT, Salmen SC, Ittrich H, et al.

Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal

endothelial cells enables control of autoimmunity in mice. J Hepatol

2015;62:1349–1356.

[136] Neumann K, Rudolph C, Neumann C, Janke M, Amsen D, Scheffold A. Liver

sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1

cells via the Notch pathway. Eur J Immunol 2015;45:2008–2016.

[137] Breiner KM, Schaller H, Knolle PA. Endothelial cell-mediated uptake of a

hepatitis B virus: a new concept of liver targeting of hepatotropic microor-

ganisms. Hepatology 2001;34:803–808.

[138] Cormier EG, Durso RJ, Tsamis F, Boussemart L, Manix C, Olson WC, et al. L-

SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by

hepatitis C virus. Proc Natl Acad Sci U S A 2004;101:14067–14072.

[139] Liu B, Wang M, Wang X, Zhao D, Liu D, Liu J, et al. Liver sinusoidal endothelial

cell lectin inhibits CTL-dependent virus clearance in mouse models of viral

hepatitis. J Immunol 1950;2013:4185–4195.

[140] Bruns T, Zimmermann HW, Pachnio A, Li K-K, Trivedi PJ, Reynolds G, et al.

CMV infection of human sinusoidal endothelium regulates hepatic T cell

recruitment and activation. J Hepatol 2015;63:38–49.

[141] Plessier A, Darwish-Murad S, Hernandez-Guerra M, Consigny Y, Fabris F,

Trebicka J, et al. Acute portal vein thrombosis unrelated to cirrhosis: a

prospective multicenter follow-up study. Hepatology 2010;51:210–218.

[142] Leong SS, Cazen RA, Yu GS, LeFevre L, Carson JW. Abdominal visceral peliosis

associated with bacillary angiomatosis. Ultrastructural evidence of endothe-

lial destruction by bacilli. Arch Pathol Lab Med 1992;116:866–871.

[143] Malamut G, Ziol M, Suarez F, Beaugrand M, Viallard JF, Lascaux AS, et al.

Nodular regenerative hyperplasia: the main liver disease in patients with

primary hypogammaglobulinemia and hepatic abnormalities. J Hepatol

2008;48:74–82.

[144] Brunt EM, Gouw ASH, Hubscher SG, Tiniakos DG, Bedossa P, Burt AD, et al.

Pathology of the liver sinusoids. Histopathology 2014;64:907–920.

[145] Parent R, Durantel D, Lahlali T, Sallé A, Plissonnier M-L, DaCosta D, et al. An

immortalized human liver endothelial sinusoidal cell line for the study of the

pathobiology of the liver endothelium. Biochem Biophys Res Commun

2014;450:7–12.

[146] Cogger VC, Arias IM, Warren A, McMahon AC, Kiss DL, Avery VM, et al. The

response of fenestrations, actin, and caveolin-1 to vascular endothelial

growth factor in SK Hep1 cells. Am J Physiol Gastrointest Liver Physiol

2008;295:G137–G145.

[147] Zhao X, Zhao Q, Luo Z, Yu Y, Xiao N, Sun X, et al. Spontaneous immortal-

ization of mouse liver sinusoidal endothelial cells. Int J Mol Med

2015;35:617–624.

[148] Huebert RC, Jagavelu K, Liebl AF, Huang BQ, Splinter PL, LaRusso NF, et al.

Immortalized liver endothelial cells: a cell culture model for studies of

motility and angiogenesis. Lab Invest 2010;90:1770–1781.

[149] Terry RW, Kwee L, Baldwin HS, Labow MA. Cre-mediated generation of a

VCAM-1 null allele in transgenic mice. Transgenic Res 1997;6:349–356.

[150] Gustafsson E, Brakebusch C, Hietanen K, Fässler R. Tie-1-directed expression

of Cre recombinase in endothelial cells of embryoid bodies and transgenic

mice. J Cell Sci 2001;114:671–676.

[151] Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagi-

sawa M. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage

analysis in vivo. Dev Biol 2001;230:230–242.

[152] Licht AH, Raab S, Hofmann U, Breier G. Endothelium-specific Cre recombi-

nase activity in flk-1-Cre transgenic mice. Dev Dyn 2004;229:312–318.

[153] Forde A, Constien R, Gröne H-J, Hämmerling G, Arnold B. Temporal Cre-

mediated recombination exclusively in endothelial cells using Tie2 regula-

tory elements. Genes 2000;2002:191–197.

Review

Review

226 Journal of Hepatology 2017 vol. 66 j 212–227

[154] Göthert JR, Gustin SE, van Eekelen JAM, Schmidt U, Hall MA, Jane SM, et al.

Genetically tagging endothelial cells in vivo: bone marrow-derived cells do

not contribute to tumor endothelium. Blood 2004;104:1769–1777.

[155] Monvoisin A, Alva JA, Hofmann JJ, Zovein AC, Lane TF, Iruela-Arispe ML. VE-

cadherin-CreERT2 transgenic mouse: a model for inducible recombination in

the endothelium. Dev Dyn 2006;235:3413–3422.

[156] Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A,

et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogene-

sis. Nature 2010;465:483–486.

[157] Claxton S, Kostourou V, Jadeja S, Chambon P, Hodivala-Dilke K, Fruttiger M.

Efficient, inducible Cre-recombinase activation in vascular endothelium.

Genes 2000;2008:74–80.

[158] Ehling M, Adams S, Benedito R, Adams RH. Notch controls retinal blood

vessel maturation and quiescence. Development 2013;140:3051–3061.

[159] Sano N, Tamura T, Toriyabe N, Nowatari T, Nakayama K, Tanoi T, et al. New

drug delivery system for liver sinusoidal endothelial cells for ischemia-

reperfusion injury. World J Gastroenterol 2015;21:12778–12786.

[160] Fraser JR, Alcorn D, Laurent TC, Robinson AD, Ryan GB. Uptake of circulating

hyaluronic acid by the rat liver. Cellular localization in situ. Cell Tissue Res

1985;242:505–510.

[161] Toriyabe N, Hayashi Y, Hyodo M, Harashima H. Synthesis and evaluation of

stearylated hyaluronic acid for the active delivery of liposomes to liver

endothelial cells. Biol Pharm Bull 2011;34:1084–1089.

[162] Takei Y, Maruyama A, Ferdous A, Nishimura Y, Kawano S, Ikejima K, et al.

Targeted gene delivery to sinusoidal endothelial cells: DNA nanoassociate

bearing hyaluronan-glycocalyx. FASEB J 2004;18:699–701.

[163] Kren BT, Unger GM, Sjeklocha L, Trossen AA, Korman V, Diethelm-Okita BM,

et al. Nanocapsule-delivered Sleeping Beauty mediates therapeutic Factor

VIII expression in liver sinusoidal endothelial cells of hemophilia A mice. J

Clin Invest 2009;119:2086–2099.

[164] Tanoi T, Tamura T, Sano N, Nakayama K, Fukunaga K, Zheng Y-W, et al.

Protecting liver sinusoidal endothelial cells suppresses apoptosis in acute

liver damage. Hepatol Res 2015. http://dx.doi.org/10.1111/hepr.12607.

[165] Akhter A, Hayashi Y, Sakurai Y, Ohga N, Hida K, Harashima H. Ligand density

at the surface of a nanoparticle and different uptake mechanism: two

important factors for successful siRNA delivery to liver endothelial cells. Int J

Pharm 2014;475:227–237.

[166] Bartsch M, Weeke-Klimp AH, Meijer DKF, Scherphof GL, Kamps JAAM.

Massive and selective delivery of lipid-coated cationic lipoplexes of

oligonucleotides targeted in vivo to hepatic endothelial cells. Pharm Res

2002;19:676–680.

[167] Kamps JA, Morselt HW, Swart PJ, Meijer DK, Scherphof GL. Massive targeting

of liposomes, surface-modified with anionized albumins, to hepatic endothe-

lial cells. Proc Natl Acad Sci U S A 1997;94:11681–11685.

[168] Bartsch M, Weeke-Klimp AH, Morselt HWM, Kimpfler A, Asgeirsdóttir SA,

Schubert R, et al. Optimized targeting of polyethylene glycol-stabilized anti-

intercellular adhesion molecule 1 oligonucleotide/lipid particles to liver

sinusoidal endothelial cells. Mol Pharmacol 2005;67:883–890.

[169] Sato Y, Hatakeyama H, Sakurai Y, Hyodo M, Akita H, Harashima H. A pH-

sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene

silencing activity in vitro and in vivo. J Control Release 2012;163:267–276.

[170] Enzan H, Himeno H, Hiroi M, Kiyoku H, Saibara T, Onishi S. Development of

hepatic sinusoidal structure with special reference to the Ito cells. Microsc

Res Tech 1997;39:336–349.

[171] Herrnberger L, Hennig R, Kremer W, Hellerbrand C, Goepferich A, Kalbitzer

HR, et al. Formation of fenestrae in murine liver sinusoids depends on

plasmalemma vesicle-associated protein and is required for lipoprotein

passage. PLoS One 2014;9 e115005.

Review

JOURNAL OF HEPATOLOGY

Journal of Hepatology 2017 vol. 66 j 212–227 227

187

B. Appendix2:Replyto“Calreticulinmutationsandtheirimportancein

Budd-Chiarisyndrome”

Replyto:‘‘Calreticulinmutationsandtheir

importanceinBudd-Chiarisyndrome”

JohannePoisson1,FannyTuron2,ChristopheMarzac3,4,Dominique-CharlesValla5,6,7

Juan-CarlosGarcia-Pagan2,8,Pierre-EmmanuelRautou1,5,7

1 Inserm, U970, Paris Cardiovascular Research Center – PARCC, Université Paris Descartes,

SorbonneParisCité,Paris,France

2BarcelonaHepaticHemodynamicLaboratory,LiverUnit,HospitalClínic,IDIBAPS,Barcelona,

Spain

3 UPMC, Univ Paris 06, GRC n_7, Groupe de Recherche Clinique sur les Myéloproliférations

AiguësetChroniquesMYPAC,Paris,France

4 Laboratoire d’Hématologie, Département de Biologie et Pathologie Médicales, Institut

GustaveRoussy,Villejuif,France

5 DHU Unity, Pôle des Maladies de l’Appareil Digestif, Service d’Hépatologie, Centre de

RéférencedesMaladiesVasculairesduFoie,HôpitalBeaujon,AP-HP,Clichy,France

6InsermU1149,CentredeRecherchesurl’Inflammation(CRI),Paris,UniversitéParis7-Denis-

Diderot,Clichy,UFRdeMédecine,Paris,France

7UniversitéParisDiderot,SorbonnePariscité,Paris,France

8 Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas

(CIBERehd),Spain

LetterpublishedinJHepatol.2017Nov;67(5):1112-1113.

Supplementary data

Supplementary data associated with this article can be found, in

the online version, at http://dx.doi.org/10.1016/j.jhep.2017.07.

014.

References

[1] Konstantinou D, Deutsch M. The spectrum of HBV/HCV coinfection:

epidemiology, clinical characteristics, viral interactions and management.

Ann Gastroenterol 2015;28:221–228.

[2] Yu ML, Lee CM, Chen CL, Chuang WL, Lu SN, Liu CH, et al. Sustained hepatitis

C virus clearance and increased hepatitis B surface antigen seroclearance in

patients with dual chronic hepatitis C and B during posttreatment follow-up.

Hepatology 2013;57:2135–2142.

[3] Belperio Pamela S, Shahoumian Troy A, Mole Larry A, Backus LI. Evaluation of

hepatitis B reactivation among 62,920 veterans treated with oral hepatitis C

antivirals. Hepatology 2017. http://dx.doi.org/10.1002/hep.29135.

[4] Yeh Ming Lun, Huang Chung Feng, Meng-HsuanHsieh Yu-Min Ko, Chen Ku-

Yu, Liu Ta-Wei, et al. Reactivation of hepatitis B in patients of chronic

hepatitis C with hepatitis B virus infection treated with direct acting

antivirals. J Gastroenterol Hepatol 2017. http://dx.doi.org/10.1111/

jgh.13771.

[5] Wang C, Ji D, Chen J, Shao Q, Li B, Liu J, et al. Hepatitis due to reactivation of

hepatitis B virus in endemic areas among patients with hepatitis C treated

with direct-acting antiviral agents. Clin Gastroenterol Hepatol

2017;15:132–136.

[6] Kamitsukasa H, Iri M, Tanaka A, Nagashima S, Takahashi M, Nishizawa T,

et al. Spontaneous reactivation of hepatitis B virus (HBV) infection in

patients with resolved or occult HBV infection. J Med Virol

2015;87:589–600.

[7] Chen QY, Wang XY, Harrison TJ, He X, Hu LP, Li KW, et al. HBsAg may

reappear following reactivation in individuals with spontaneous HBsAg

seroclearance 8 years previously. Epidemiol Infect 2017;145:728–738.

[8] AASLD/IDSA HCV Guidelines. People with Hepatitis C Should Be Tested for

Hepatitis B Before Starting Antiviral Therapies. September 16 2016 cited;

Available from: http://www.aasld.org/about-aasld/pressroom/people-hep-

atitis-c-should-be-tested-hepatitis-b-starting-antiviral-therapies.

[9] FDA Drug Safety Communication: FDA warns about the risk of hepatitis B

reactivating in some patients treated with direct-acting antivirals for

hepatitis C. October 4 2016 cited; Available from: http://www.fda.gov/

Drugs/DrugSafety/ucm522932.htm.

[10] European Association for the Study of the Liver. EASL recommendations on

treatment of hepatitis C. J Hepatol 2017;66:153–194.

Tsuyoshi Suda

Tetsuro Shimakami⇑

Takayoshi Shirasaki

Tatsuya Yamashita

Eishiro Mizukoshi

Masao Honda

Shuichi Kaneko

Department of Gastroenterology, Kanazawa University Graduate

School of Medical Science, Kanazawa,

Ishikawa 920-8641, Japan⇑Corresponding author. Address: Department of Gastroenterology,

Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa,

Ishikawa 920-8641, Japan.

Tel.: +81 76 265 2233; fax: +81 76 234 4250.

E-mail address: [email protected]

Calreticulin mutations and their importancein Budd-Chiari syndrome

To the Editor:

We have read your recent publications on Calreticulin (CALR)

gene mutations in splanchnic vein thrombosis with great inter-

est. Poisson et al.1 reported prevalence of myeloproliferative neo-

plasms in a cohort of 99 patients with Budd-Chiari syndrome

(BCS), out of which 28 had JAK2V617F gene mutations and one

had a CALR gene mutation. The authors suggested that a combi-

nation of spleen height !16 cm and platelet count[200"109/L

be tested for CALR mutation, in the absence of JAK2 gene muta-

tions. Turon et al.2 reported 24 JAK2V617F gene mutations and

two CALR gene mutations among 69 patients with BCS. We have

summarized the data including three other studies in Table 1.

We wish to highlight data on our patients with CALR related

BCS. Between 2011 and 2017, 38 of 210 (18.1%) patients were

found to have a JAK2V617F mutation and two patients (0.9%) were

found to have CALR mutations (Table 1). CALR mutation testing

was done using polymerase chain reaction-Sanger DNA sequenc-

ing.3 One of our patients was a 39-year-old man with type 2 CALR

mutation (5-bp insertion), presenting with chronic BCS with

ascites. He had thrombosis of the inferior vena cava, right hepatic

vein and right inferior accessory hepatic vein. Baseline investiga-

tions revealed haemoglobin of 12.7 g/dl, total count of 16,210 /

mm3, a platelet count of 708"109/L and spleen height of 16 cm.

He was treated with anticoagulation, an IVC stenting and hydrox-

yurea. At a follow up of 24 months, the patient is doing well with

a patent stent. Another of our patients, a 30-year-old man with

type 3 CALR mutation (3-bp deletion) had an acute presentation

of BCS with ascites. He had thrombosis of suprahepatic inferior

vena cava and all three hepatic veins and subsequently developed

portal vein thrombosis. He had a history of deep vein thrombosis

of the right leg. Baseline investigations revealed haemoglobin of

9 g/dl, total count of 5,000/mm3, platelet count of 63 " 109/L

and a spleen height of 11 cm. He has been treated with anti-coag-

ulation and hydroxyurea.

Detection of CALR mutations may have significant impacts on

disease severity, prognosis and treatment. A study by Klampfl

et al.3 showed that patients with CALR exon mutations have low

levels of haemoglobin and platelets, leading to decreased rates

of thrombosis. Andrikovics et al.4 reported a lower risk of throm-

bosis with CALR mutations compared to JAK2 mutations. Addi-

tionally, in primary myelofibrosis, patients with CALR mutations

have better survival rates compared to patients with JAK2 or

MPL mutations.3 Type 1 mutations (52-bp deletion) are seen in

56%, type 2 (5-bp insertion) in 28% and type 3 (others) in 16%

of patients with CALR mutations.5 Type 2-like CALR mutations

are mainly associated with an essential thrombocythemia (ET)

phenotype, low risk of thrombosis and indolent clinical course,

while type 1-like mutations are mainly associated with a

JOURNAL OF HEPATOLOGY

Journal of Hepatology 2017 vol. 67 j 1106–1121 1111

myelofibrosis phenotype and a high risk of progression from ET

to myelofibrosis.5 However, patients with CALR mutations and

splanchnic vein thrombosis (SVT) are reported to have a signifi-

cant disease burden.6 These patients may derive some benefit

from JAK inhibitors like hydroxyurea and ruxolitinib.6

We agree with the conclusion reached by the authors (Poisson

et al.1 and Turon et al.2), that CALR mutations must be considered

for patients with SVT, without JAK2 mutation. However, one of

our patients did not satisfy criteria of spleen height !16 cm

and platelet count [200"109/L. The clinical features may vary

with the type of CALR mutation. The prognosis also differs among

the different types of CALR mutation. CALR mutation is reported

in less than 1% of patients with BCS. There is a need to develop

an approach, like that recommended by Poisson et al.1 for testing

CALR mutations in patients who are JAK2 negative and present

with BCS. However, our second patient highlights the limitations

of this approach. We would suggest that more studies are

required before any recommendations can be made regarding

the criteria for selective testing of CALR. More work is also

required to understand the long-term impact of CALR mutations

in patients with BCS.

Conflict of interest

The authors declare no conflict of interest.

Author contributions

A Jain: A substantial contribution to analysis and interpretation

of data and critical writing. P Tibdewal: A substantial contribu-

tion to analysis and interpretation of data. A Shukla: A substantial

contribution to interpretation of data; critical writing, revising

the intellectual content and final approval of the version to be

published.

References

[1] Poisson J, Plessier A, Kiladjian JJ, Turon F, Cassinat B, Andreoli A, et al. French

national network for vascular liver diseases. Selective testing for calreticulin

gene mutations in patients with splanchnic vein thrombosis: A prospective

cohort study. J Hepatol 2017;67:501–507.

[2] Turon F, Cervantes F, Colomer D, Baiges A, Hernández-Gea V, Garcia-Pagán JC.

Role of calreticulin mutations in the aetiological diagnosis of splanchnic vein

thrombosis. J Hepatol 2015;62:72–74.

[3] Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD,

et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N

Engl J Med 2013;369:2379–2390.

[4] Andrikovics H, Krahling T, Balassa K, Halm G, Bors A, Koszarska M, et al.

Distinct clinical characteristics of myeloproliferative neoplasms with calreti-

culin mutations. Haematologica 2014;99:184–190.

[5] Pietra D, Rumi E, Ferretti VV, et al. Differential clinical effects of different

mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia

2016;30:431–438.

[6] Sekhar M, Patch D, Austen B, Howard J, Hart S. Calreticulin mutations and

their importance in splanchnic vein thrombosis. Br J Haematol

2016;174:158–160.

[7] Haslam K, Langabeer SE. Incidence of CALR mutations in patients with

splanchnic vein thrombosis. Br J Haematol 2015;168:459–460.

[8] Plompen EP, Valk PJ, Chu I, Darwish Murad SD, Plessier A, Turon F, et al.

European Network for Vascular Disorders of the Liver (EN-Vie). Somatic

calreticulin mutations in patients with Budd-Chiari syndrome and portal vein

thrombosis. Haematologica 2015;100:e226–e228.

[9] Zhang P, Ma H, Min Q, Zu M, Lu Z. CALR mutations in Chinese Budd-Chiari

syndrome patients. Eur J Gastroenterol Hepatol 2016;28:361–362.

Abhinav Jain

Pratik Tibdewal

Akash Shukla⇑

DM Gastro. Department of Gastroenterology, G.S. Medical College

and KEM Hospital, Mumbai 400012, India

Corresponding author. Address: Department of Gastroenterology,

Set G.S. Medical College and KEM Hospital, Parel,

Mumbai 400012, India.

Tel.: +91 22 24103057; fax: +91 22 24103057.

E-mail address: [email protected]

Table 1. Summary of JAK2 and CALR gene mutations in BCS.

Study Year of publication Country Total patients with BCS JAK2 gene mutation, n (%) CALR gene mutation, n (%)

Haslam et al.7 2014 Ireland 9 4 (44.4) 0

Turon et al.2 2015 Spain 69 24 (34.7) 2 (2.9)

Plompen et al.8 2015 Multicentric

(9 European countries)

70 19 (27.1) 0

Zhang et al.9 2016 China 100 2 (2) 0

Poisson et al.1 2017 France 99 28 (28.2) 1 (1)

Present report - India 210 38 (18.1) 2 (0.9)

Total 557 115 (20.6) 5 (0.9)

BCS, Budd-Chiari syndrome.

Reply to: ‘‘Calreticulin mutations and their importancein Budd-Chiari syndrome”

To the Editor:

We thank Jain Abhinav et al.1 for their letter ‘‘Calreticulin muta-

tions and their importance in Budd-Chiari syndrome”, raising the

hypothesis that the type of CALR mutation may influence the

haematological phenotype in patients with splanchnic vein

thrombosis.

Out of the 521 patients included in our study, nine had CALR

mutations. None of them had JAK2V617F. Seven out of the eight

Letters to the Editor

1112 Journal of Hepatology 2017 vol. 67 j 1106–1121

patients with CALR mutations, and spleen height and platelet

count available, had both spleen height P16 cm and platelet

count[200"109 /L, suggesting that CALR mutations testing can

be restricted to patients fulfilling these criteria.2

Jain Abhinav et al. reported two patients with CALR mutations

out of 210 patients with Budd-Chiari syndrome. One patient, with

a type 2 CALR mutation (5-bp insertion), fulfilled the criteria we

proposed. The other, with a 3-bp deletion, had 63"109/L platelet

count and a spleen height of 11 cm, apparently questioning the

validity of our criteria. However, mutations involving indels

occurring as multiples of 3-bp preserve the original reading

frame and are not known to be pathogenic.3–6

Consequently, the only patient with a pathogenic CALR muta-

tion described by Jain Abhinav et al. meets our criteria, thus rein-

forcing our conclusions. The hypothesis that the type of mutation

could influence the validity of our criteria remains an interesting

question. We analyzed the types of CALR mutations in our study

according to platelet count and spleen height. As shown in the

Table 1, the patient not fulfilling our criteria (patient 8) had a

type 1 mutation, while the two patients with type 2 and type

1-like mutation (patients 2 and 6) had a spleen height of

P16 cm and a platelet count [200"109 /L. In conclusion, the

criteria we proposed do not seem to be influenced by the type

of CALR mutation.

Financial support

This work was supported by the Agence Nationale pour la

Recherche (ANR 14 CE35 0022 03/JAK-POT) and J.P by the ‘‘poste

accueil INSERM”.

Conflict of interest

The authors who have taken part in this study declared that they

do not have anything to disclose regarding funding or conflict of

interest with respect to this manuscript.

References

[1] Jain A, Tibdewal P, Shukla A. Calreticulin mutations and their importance in

Budd-Chiari syndrome. J Hepatol 2017;67:1111–1112.

[2] Poisson J, Plessier A, Kiladjian J-J, Turon F, Cassinat B, Andreoli A, et al.

Selective testing for calreticulin gene mutations in patients with

splanchnic vein thrombosis: A prospective cohort study. J Hepatol

2017;67:501–507.

[3] Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New

mutations and pathogenesis of myeloproliferative neoplasms. Blood

2011;118:1723–1735.

[4] Pietra D, Rumi E, Ferretti VV, Buduo CAD, Milanesi C, Cavalloni C, et al.

Differential clinical effects of different mutation subtypes in CALR-mutant

myeloproliferative neoplasms. Leukemia 2016;30:431–438.

[5] Spivak JL. Myeloproliferative Neoplasms. N Engl J Med 2017;376:2168–2181.

[6] Szuber N, Lamontagne B, Busque L. Novel germline mutations in the

calreticulin gene: implications for the diagnosis of myeloproliferative

neoplasms. J Clin Pathol 2016. http://dx.doi.org/10.1136/jclinpath-2016-

203940.

Johanne Poisson1

Fanny Turon2

Christophe Marzac3,4

Dominique-Charles Valla5,6,7

Juan-Carlos Garcia-Pagan2,8

Pierre-Emmanuel Rautou1,5,7,⇑

1Inserm, U970, Paris Cardiovascular Research Center – PARCC,

Université Paris Descartes, Sorbonne Paris Cité, Paris, France2Barcelona Hepatic Hemodynamic Laboratory, Liver Unit,

Hospital Clínic, IDIBAPS, Barcelona, Spain3UPMC, Univ Paris 06, GRC n!7, Groupe de Recherche Clinique sur les

Myéloproliférations Aiguës et Chroniques MYPAC, Paris, France4Laboratoire d’Hématologie, Département de Biologie et Pathologie

Médicales, Institut Gustave Roussy, Villejuif, France5DHU Unity, Pôle des Maladies de l’Appareil Digestif,

Service d’Hépatologie, Centre de Référence des Maladies Vasculaires

du Foie, Hôpital Beaujon, AP-HP, Clichy, France6Inserm U1149, Centre de Recherche sur l’Inflammation (CRI),

Paris, Université Paris 7-Denis-Diderot, Clichy, UFR de Médecine,

Paris, France7Université Paris Diderot, Sorbonne Paris cité, Paris, France

8Centro de Investigación Biomédica en Red de Enfermedades

Hepáticas y Digestivas (CIBERehd), Spain⇑Corresponding author. Address: Service d’Hépatologie,

Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris,

Clichy, France.

Tel.: +33 171114679; fax: +33 140875530.

E-mail address: [email protected]

Table 1. Type of CALR mutations and characteristics of patients with Splanchnic Vein Thrombosis.

Patient Cohort Age

(yrs)

Gender Hematologic

diseases

Type of

SVT

Spleen height

(cm)

Platelet count

(109/L)

CALR mutations

(Type)

1 Test 24 Female PMF BCS 20.0 417 52-bp deletion (1)

2 Test 30 Female ET PVT 16.6 436 5-bp insertion (2)

3 Test 39 Male PMF PVT 19.0 453 52-bp deletion (1)

4 Test 32 Female PMF PVT 17.0 476 52-bp deletion (1)

5 Test 36 Male PMF PVT 18.0 477 52-bp deletion (1)

6 Validation 34 Male ET BCS 18.0 300 34-bp deletion (Other)

7 Validation 57 Female PMF PVT 18.0 607 52-bp deletion (1)

8 Validation 57 Female ET BCS 11.0 477 52-bp deletion (1)

9 Validation 73 Male ET PVT NA* 337 52-bp deletion (1)

BCS, Budd-Chiari syndrome; ET, essential thrombocythemia; PMF, primary myelofibrosis; NA, not available; PVT, Portal venous system thrombosis; yrs, years.* No spleen height available but the patient was known to have an enlarged spleen.

JOURNAL OF HEPATOLOGY

Journal of Hepatology 2017 vol. 67 j 1106–1121 1113

191

C. Appendix3:Curriculumvitaeandlistofpublications

JohannePoisson

Woman,32yearsold,FrenchandCanadian

[email protected];[email protected]

Education

2015-now PhDincardiovascularpathophysiology.ParisDescartesUniversity.Supervisor

Pr.Pierre-EmmanuelRautou(inprogress)

2018 Diplomaofanimalexperimentation.Level1.ParisDescartesUniversity

2015 Medicaldoctor.PhD in InternalMedicine.PierreandMarieCurieUniversity.

Paris

2014-2015 Master of science. Vascular biology, atherosclerosis, thrombosis and

haemostasis.ParisDescartesUniversity

2013-now Speciality in Geriatric Medicine. Pierre andMarie Curie University. Paris (in

progress)

2013 Masterofscience.Biologicalageing.PierreandMarieCurieUniversity.Paris

2010-now Speciality in Internal Medicine. Pierre and Marie Curie university. Paris (in

progress)

2010 Frenchnationalresidencyexamination.Ranked134on6962candidats

2003-2010 Medicaleducation.MontpellierUniversity.France

2004 Medicaleducationentryexamination.MontpellierUniversity.Ranked85on

1438candidats

Workexperience

2015-now ParisCardiovascularCenter(PARCC).InsermU970.Paris.France

PhDThesis:Pathophysiologyofcardiovasculareventsinmyeloproliferative

neoplasms

2015 ParisCardiovascularCenter(PARCC).InsermU970.Paris.France

Traineeship:Shearstressregulatesendothelialsenescence:Roleofautophagy

2010-now Parisuniversityhospitals.Medicalresidency

2008 Addiction treatment and research unit, Penn university hospital,

Presbyterian hospital, Hospital of the university of Pennsylvania, Philadelphia,

USA.3monthtraineeship

2006-2010 MontpellierUniversityhospitals.Medicaleducationinternships

GrantsandAwards

2015-2018 PhDfellowship«Posted’accueilINSERM»(3years)

2014-2015 Master of science fellowship by «Fonds d’études et de recherche du corps

médical»

192

Listofpublications

Originalarticles

1. MeunierT,FrancoisA,PoissonJ,GisselbrechtM,ArletJ.B,DucotL,Lahjibi-PauletH,LeGuenJ,Mercadier

E,PouchotJ,Saint-JeanO.Bloodmanagementingeriatrichospitalizedpopulation.LaRevuedeMedecine

Interne.2017IF0,6

2. VionAC*,KheloufiM*,HammouteneA,Poisson J, Lasselin J,DevueC,Pic I,DupontN,Busse J, StarkK,

Lafaurie-Janvore J, BarakatA, LoyerX, SouyriM,ViolletB, JuliaP, TedguiA, CodognoP,BoulangerCM,

RautouPE.Autophagyisrequiredforendothelialcellalignmentandatheroprotectionunderphysiological

bloodflow.ProcNatlAcadSciUSA.2017Oct10.IF9,7

3. PoissonJ,PlessierA,KiladjianJJ,TuronF,AndreoliA,DeRaucourtE,GoriaO,ZekriniK,BureauC,LorreF,

Cervantes F, Colomer D, Durand F, Boulanger C, Garcia-Pagan JC, Casadevall N, Valla DC, Rautou PE,

MarzacC.SelectivetestingforCALRmutationsinpatientswithsplanchnicveinthrombosis:aprospective

cohortstudyin312patients.JournalofHepatology.2017.2017May5.IF12,5

4. Baudry E, Cotto E,Poisson J, CoudercAL, Bornand-Rouseelot A, Goehrs L, Chaibi P, Canoui-Poitrine F.

RéponseettoléranceàlachimiothérapiedanslelymphomeBàgrandescellulesdusujetâgé.LeJournal

d’OncoGériatrie.Avril2016,Volume7,Numéro1.

5. TouzotM,Poisson J, Faguer S, RibesD, Cohen P, Geffray L, Anguel N, FrançoisH, Karras A, Cacoub P,

DurrbachA, SaadounD.Rituximab in anti-GBMdisease:A retrospective studyof8patients. Journal of

Autoimmunity.2015Jun;60:74-9.IF7,6

6. LeGuen J, LenainE,Poisson J, ChatellierG, Saint JeanO.Hospitalisationdes centenaires en Francede2009à2012auseind’unéchantillonreprésentatifdelapopulationgénérale.LaRevueFrancophonede

GériatrieetdeGérontologie.Juin2015.N°216.

7. Poisson J,SixM,MorinC,FardetL.Glucocorticoidtherapy:what isthe informationsoughtbypatients?

Trafficanalysisofthewebsitecortisone-info.fr.LaRevuedeMedecineInterne.2013May.IF0,6

Literaturereviews

1. PoissonJ*,LemoinneS*,BoulangerC,DurandF,MoreauR,VallaD,RautouPE.Liversinusoidalendothelialcells:physiologyandroleinliverdiseases.JournalofHepatology.2016Jul13.IF12,5

2. Poisson J,ChaouiD.Livre:L’oncogériatrieenpratiquepar leFROG.Chapitre27.Priseenchargedu

lymphomenonhodgkinienBdiffusàgrandescellules.

3. PoissonJ,ChaouiD.SoinsGérontologie.N°112mars/avril2015.10.1016/j.sger.2015.01.004.Malignant

blooddiseasesintheelderly.

Others

1. Poisson J,HilscherMB,TanguyM,HammouteneA,BoulangerCM,Villeval JL,DouglasDA,VallaD,Shah

VH, Rautou PE. Endothelial JAK2V617Fdoes not enhance liver lesions in mice model wth Budd-Chiari

syndrome.JournalofHepatology2018.IF12,5

2. KheloufiM, Vion AC, Hammoutene A,Poisson J, Lasselin J, Devue C, Pic I, Dupont N, Busse J, Stark K,

Lafaurie-Janvore J, BarakatA, LoyerX, SouyriM,ViolletB, JuliaP, TedguiA, CodognoP,BoulangerCM,

RautouPE. Endothelial autophagic flux hampers atherosclerotic lesion development.Autophagy. 2017Nov20.IF8,6

3. Poisson J, Turon F, Marzac C, Valla DC, Garcia-Pagan JC, Rautou PE. Reply to: Letter "Calreticulin

mutationsandtheirimportanceinBudd-Chiarisyndrome".JournalofHepatology.2017.2017Jun27.IF

12,5

4. Poisson J, Aregui A, Maley K, Darnige L, Gisselbrecht M. Association of chylothorax and direct pleura

involvementinacaseofWaldenström’smacroglobulinemia.AgeAgeing.2014Jul.IF4,3

191

RésuméLessyndromesmyéloprolifératifsBcr/Abl-negatifs(SMP)sontdesmaladieshématopoïétiquesclonales,secondairesdans80%descasàlamutationsporadiqueJAK2V617F.JAK2V617Faétérécemmentmiseen évidence dans les cellules endothéliales. Les deuxièmesmutations en ordre de fréquence sont lesmutationsdeCalréticulin(CALR).LesévènementscardiovasculairessontlapremièrecausedemortalitédesmaladesatteintsdeSMP(2/3artérielset1/3veineux).Lesévènementsveineuxsontcaractérisésparunefréquenceparticulièrementélevéedethrombosessurvenantdansdessitesinhabituels,commeles veines splanchniques (veines hépatiques (syndrome de Budd-Chiari) ou veine porte). Lesmécanismesresponsablesdecesévènementscardiovasculaireschez lesmaladesatteintsdeSMPsontmal compris. Les conséquences phénotypiques et fonctionnelles de la mutation JAK2V617F

sur les

cellulesendothélialesn’ontpasétéévaluées.L’objectifglobaldecetravailestdemieuxcomprendrelaphysiopathologiedesévènementscardio-vasculairesassociésauxSMP,

Sur le plan artériel, j'ai montré, grâce à des expériences de myographie, que les aortes desourisportant JAK2V617Fà la foisdans leurs celluleshématopoïétiqueset endothélialesontune trèsforte augmentation de la réponse aux agents vasoconstricteurs alors que cet effet n’est pas observélorsquelamutationestuniquementendothéliale.J’aiensuiteisolédesmicrovésiculesplasmatiquesdemalades porteurs de JAK2V617F, non traités pour leur SMP, et ai observé que ces microvésiculesreproduisentl’effetd’hyperréponseartérielleauxagentsvasoconstricteurs.J'aiparlasuitemontréqueseuleslesmicrovésiculesdeglobulesrougesportantlamutationJAK2V617Fétaientresponsablesdeceteffet.J’aiensuiteanalysélesmécanismesimpliquésetaidéterminéquecettehyperréactivitévasculaireest dépendante de l’endothélium et des NO synthases. De plus, j'ai aussi mis en évidence une forteaugmentationdustressoxydantdansl'endothéliumdesaortesdesourisportantlamutationJAK2V617Fencomparaisonauxsourissauvages,suggérantquelesperturbationsdelavoieduNOrésultentd’unegénérationdestressoxydant induitepar lesmicrovésiculesdeglobulesrouges.Cesdonnéesnousontpoussés à évaluer de nouvelles thérapeutiques, comme les statines, qui sont des molécules anti-cholestérolémiques ayant indépendamment du cholestérol un effet anti-oxydant bénéfique sur lafonction endothélial. J'aimontré que l'utilisation de simvastatine chez les souris portant lamutationJAK2V617Fdiminuesignificativecettehyperréactivitévasculaireencomparaisonauxsouriscontrôles.Mes résultats suggèrent que chez les malades atteints de SMP une hyperréponse aux agents

vasoconstricteurs induite par les microvésicules circulantes d'origine érythrocytaire pourrait

participer aux accidents artériels et que de nouvelles thérapeutiques, comme les statines

pourraientêtreprometteuses.Sur le plan veineux, en analysant une cohorte prospective de 312 patients atteints de

thrombosessplanchniques,j’aipudéterminerlaprévalencedesmutationsCALRdanscettepopulation(2%)etidentifierungroupedemalades(ceuxsansJAK2V617Fetayantunetaillederate≥16cmetdesplaquettes>200G/L)chez lesquels larecherchedesmutationsCALRdoitêtreeffectuée.Cescritèresontuneexcellentevaleurprédictivenégative(100%)etpermettentd’éviter96%detestsinutiles.J’aiconfirmécescritèresgrâceàunecollaborationeuropéennedansunecohortedevalidationespagnolecomprenant209patients.Jemesuisaussiattachéeàdéterminer le rôlede JAK2V617Fendothélial dans les conséquences hépatiques des thromboses des veines hépatiques. Nousavons montré que la présence de la mutation JAK2V617F dans l'endothélium n'aggrave pas ledéveloppement des lésions hépatiques secondaires à un syndrome de Budd-Chiari, ni en termes defibrosehépatiquenientermesd’hypertensionportale.


Recommended