+ All Categories
Home > Documents > Zircon UPb ages and tectonic implications of 'Early Paleozoic' granitoids at Yanbian, Jilin...

Zircon UPb ages and tectonic implications of 'Early Paleozoic' granitoids at Yanbian, Jilin...

Date post: 30-Nov-2023
Category:
Upload: curtin
View: 0 times
Download: 0 times
Share this document with a friend
22
The Island Arc (2004) 13, 484–505 Blackwell Science, LtdOxford, UKIARThe Island Arc1038-48712004 Blackwell Publishing Asia Pty LtdDecember 2004134484505Research Article‘Early Paleozoic’ granitoids at YanbianY. Zhang et al. *Correspondence. Received 27 January 2004; accepted for publication 14 June 2004. © 2004 Blackwell Publishing Asia Pty Ltd Research Article Zircon U–Pb ages and tectonic implications of ‘Early Paleozoic’ granitoids at Yanbian, Jilin Province, northeast China YANBIN ZHANG, 1, * FUYUAN WU, 1 SIMON A. WILDE, 2 MINGGUO ZHAI, 1 XIAOPING LU 3 AND DEYOU SUN 3 1 Institute of Geology and Geophysics, Chinese Academy of Sciences, PO Box 9825, Beijing 100029, China (email: [email protected]), 2 Department of Applied Geology, Curtin University of Technology, PO Box U1987, Perth, Western Australia 6845, Australia and 3 College of Earth Sciences, Jilin University, Changchun 130061, China Abstract The Yanbian area is located in the eastern part of the Central Asian Orogenic Belt (CAOB) of China and is characterized by widespread Phanerozoic granitic intrusions. It was previously thought that the Yanbian granitoids were mainly emplaced in the Early Paleozoic (so-called ‘Caledonian’ granitoids), extending east–west along the northern margin of the North China craton. However, few of them have been precisely dated; therefore, five typical ‘Caledonian’ granitic intrusions (the Huangniling, Dakai, Mengshan, Gaoling and Bailiping batholiths) were selected for U–Pb zircon isotopic study. New-age data show that emplacement of these granitoids extended from the Late Paleozoic to Late Mesozoic (285–116 Ma). This indicates that no ‘Caledonian’ granitic belt exists along the northern margin of the North China craton. The granitoids can be subdivided into four episodes based on our new data: Early Permian (285 ± 9 Ma), Early Triassic (249–245 Ma), Jurassic (192–168 Ma) and Cretaceous (119–116 Ma). The 285 ± 9 Ma tonalite was most likely related to subduction of the Paleo-Asian Oceanic Plate beneath the North China craton, followed by Triassic (249–245 Ma) syn-collisional monzogranites, representing the collision of the CAOB orogenic collage with the North China craton and final closure of the Paleo-Asian Ocean. The Jurassic granitoids resulted from subduction of the Paleo- Pacific plate and subsequent collision of the Jiamusi–Khanka Massif with the existing continent, assembled in the Triassic. The Early Cretaceous granitoids formed in an exten- sional setting along the eastern Asian continental margin. Key words: granitoids, northeast China, U–Pb geochronology, Yanbian, zircon. INTRODUCTION The Central Asian Orogenic Belt (CAOB) or Altaid Tectonic Collage (Sengör et al. 1993; Jahn et al. 2000a,b) is bounded by the Siberian craton to the north and the North China craton (NCC) to the south. It is a complex Phanerozoic orogenic belt (Tang 1990; Dobretsov et al. 1995) formed by suc- cessive accretion of arc complexes, accompanied by emplacement of immense volumes of granitic rocks (Sengör et al. 1993; Jahn et al. 2000a,b). The eastern segment of the CAOB is located in north- eastern China (Fig. 1a), where Phanerozoic grani- toids are mainly distributed in the Zhangguangcai Range in the east, the Greater Xing’an Range in the west and the Lesser Xing’an Range in the northeast (Wu et al. 2000; see Fig. 1a). The Yanbian area is located in the southern part of the Zhangguangcai Range (Fig. 1a) and is characterized by huge volumes of Phanerozoic granitoids, occupying ~70% of the exposed rocks (JBGMR 1988; Fang 1992; HBGMR 1993) (Fig. 1b). Its location at the junction of the major tectonic units in the area (NCC and CAOB) and its close proximity to the microcontinental blocks of
Transcript

The Island Arc (2004) 13, 484–505

Blackwell Science, LtdOxford, UKIARThe Island Arc1038-48712004 Blackwell Publishing Asia Pty LtdDecember 2004134484505Research Article‘Early Paleozoic’ granitoids at YanbianY. Zhang

et al.

*Correspondence.

Received 27 January 2004; accepted for publication 14 June 2004.© 2004 Blackwell Publishing Asia Pty Ltd

Research ArticleZircon U–Pb ages and tectonic implications of ‘Early Paleozoic’

granitoids at Yanbian, Jilin Province, northeast China

YANBIN ZHANG,1,* FUYUAN WU,1 SIMON A. WILDE,2 MINGGUO ZHAI,1 XIAOPING LU3 AND DEYOU SUN3

1Institute of Geology and Geophysics, Chinese Academy of Sciences, PO Box 9825, Beijing 100029, China (email: [email protected]), 2Department of Applied Geology, Curtin University of Technology, PO Box U1987, Perth, Western Australia 6845, Australia and 3College of Earth Sciences, Jilin University, Changchun 130061, China

Abstract The Yanbian area is located in the eastern part of the Central Asian OrogenicBelt (CAOB) of China and is characterized by widespread Phanerozoic granitic intrusions.It was previously thought that the Yanbian granitoids were mainly emplaced in the EarlyPaleozoic (so-called ‘Caledonian’ granitoids), extending east–west along the northernmargin of the North China craton. However, few of them have been precisely dated;therefore, five typical ‘Caledonian’ granitic intrusions (the Huangniling, Dakai, Mengshan,Gaoling and Bailiping batholiths) were selected for U–Pb zircon isotopic study. New-agedata show that emplacement of these granitoids extended from the Late Paleozoic to LateMesozoic (285–116 Ma). This indicates that no ‘Caledonian’ granitic belt exists along thenorthern margin of the North China craton. The granitoids can be subdivided into fourepisodes based on our new data: Early Permian (285 ± 9 Ma), Early Triassic (249–245 Ma),Jurassic (192–168 Ma) and Cretaceous (119–116 Ma). The 285 ± 9 Ma tonalite was mostlikely related to subduction of the Paleo-Asian Oceanic Plate beneath the North Chinacraton, followed by Triassic (249–245 Ma) syn-collisional monzogranites, representing thecollision of the CAOB orogenic collage with the North China craton and final closure ofthe Paleo-Asian Ocean. The Jurassic granitoids resulted from subduction of the Paleo-Pacific plate and subsequent collision of the Jiamusi–Khanka Massif with the existingcontinent, assembled in the Triassic. The Early Cretaceous granitoids formed in an exten-sional setting along the eastern Asian continental margin.

Key words: granitoids, northeast China, U–Pb geochronology, Yanbian, zircon.

INTRODUCTION

The Central Asian Orogenic Belt (CAOB) or AltaidTectonic Collage (Sengör et al. 1993; Jahn et al.2000a,b) is bounded by the Siberian craton to thenorth and the North China craton (NCC) to thesouth. It is a complex Phanerozoic orogenic belt(Tang 1990; Dobretsov et al. 1995) formed by suc-cessive accretion of arc complexes, accompaniedby emplacement of immense volumes of granitic

rocks (Sengör et al. 1993; Jahn et al. 2000a,b). Theeastern segment of the CAOB is located in north-eastern China (Fig. 1a), where Phanerozoic grani-toids are mainly distributed in the ZhangguangcaiRange in the east, the Greater Xing’an Range inthe west and the Lesser Xing’an Range in thenortheast (Wu et al. 2000; see Fig. 1a).

The Yanbian area is located in the southern partof the Zhangguangcai Range (Fig. 1a) and ischaracterized by huge volumes of Phanerozoicgranitoids, occupying ~70% of the exposed rocks(JBGMR 1988; Fang 1992; HBGMR 1993)(Fig. 1b). Its location at the junction of the majortectonic units in the area (NCC and CAOB) and itsclose proximity to the microcontinental blocks of

‘Early Paleozoic’ granitoids at Yanbian 485

the Khanka and Jiamusi Massifs makes it animportant area for elucidating the magmatic andtectonic evolution of the region.

However, few granitic plutons from this areahave been precisely dated and this hampers under-standing of the regional tectonic evolution. Forexample, along the northern margin of the NCC,deformed granitoids were regarded as havingbeen emplaced in the Early Paleozoic and wereclassified as ‘Caledonian’ (Bi et al. 1995; Jia 1995;Jia & Guo 1995; Wang & Liu 1997; Tian 1999; Peng& Zhao 2001; Peng et al. 2002), a typical examplebeing the Huangniling pluton for which a U–Pbzircon age of 517 Ma was obtained (JBGMR 1988;Liu et al. 1994). However, if we re-calculate theoriginal data using ISOPLOT (Ludwig 1999), it isfound that the spots are not on concordia, and theintercept ages have unreliably large errors. Unfor-tunately this age is widely cited in internationalpublications (Sengör & Natal’in 1996; Jia et al.2004). In order to resolve this problem, we con-ducted a U–Pb zircon geochronological study andpresent here new isotopic data for five so-called‘Caledonian’ granitoids (the Huangniling, Meng-shan, Dakai, Gaoling and Bailiping batholiths). Wethen evaluate their characteristics in terms ofregional setting.

GEOLOGICAL SETTING

The Yanbian area is located at the junction ofChina, Russia and Korea, and was consideredpart of the orogenic collage between the NCC inthe south and the Jiamusi–Khanka Massifs inthe northeast (Peng & Su 1997; Fig. 1a). Thisstudy is restricted to the southern part of thisorogenic belt where Archean rocks are exposednear Helong city. Available U–Pb zircon dataindicate that these greenschist- and amphibolite-facies metamorphosed granitic rocks crystallized~2.5 Ga ago (JBGMR 1988). The ProterozoicSeluohe Group underwent low-grade metamor-phism and intensive deformation and is locatedalong the NCC margin. It is composed mainly ofvolcanic rocks, although its eruption age is notprecisely constrained (JBGMR 1988; Wang et al.1997). Paleozoic strata are widely distributedand underwent various degrees of metamor-phism and deformation, making it difficult todefine a true stratigraphic sequence. For ex-ample, recent studies show that the Paleozoicstrata in this region might be a tectonic mélange(Shao & Tang 1995; Wu et al. 2004c). The young-est strata in the area are Mesozoic–Cenozoicsediments.

Fig. 1 Lithological map showing distribution of granitoids in the Yanbian area, northeast China (b). Inset (a) shows the location of the study area withrespect to the main tectonic units in northeast China.

486 Y. Zhang et al.

Widespread Phanerozoic granitoids are exposedover an area of more than 20 000 km2 in the Yan-bian area, occupying ~80% of the region (Fig. 1b).They are composed of granodiorite, monzogranite,syenogranite and alkali-feldspar granite, withminor amounts of diorite and gabbro. Quartz, pla-gioclase and perthitic feldspar make up the domi-nant mineralogy. Almost all of the granitoids inthis region contain both hornblende and biotite asthe major mafic minerals, suggesting that they areI-types (Wu et al. 2000, 2002). They are similar tothe granitoids in other areas of the ZhangguangcaiRange. According to previous studies (JBGMR1988; Fang 1992), five main stages of graniticintrusion can be distinguished: Early Paleozoic(Caledonian: 570–400 Ma), Carboniferous–Permian(Hercynian: 375–225 Ma), Triassic (Indosinian:225–200 Ma), Jurassic (Early Yanshanian: 200–135 Ma) and Cretaceous (Late Yanshanian:120 Ma). It has been suggested that the ‘Cale-donian’ granitoids are distributed along theFu’erhe–Gudonghe Fault at the northern marginof the NCC, whereas the ‘Hercynian’ and‘Indosinian’ granitoids occur to the north, with theYanshannian granitoids scattered throughout theregion (Shao & Tang 1995; Zhao et al. 1996; Peng& Su 1997; Shao et al. 1997; Peng & Zhao 2001).However, few granitoids have been precisely dated(Zhang 2002) and most reported ages in the liter-ature are not accompanied by either analyticalresults or the errors.

ANALYTICAL TECHNIQUES

Zircon crystals were extracted using a combina-tion of heavy liquid and magnetic separation tech-niques. Individual crystals were handpicked andapproximately 30 grains of zircon, with no obviousinclusions or fractures, were chosen for isotopicanalysis.

Three analytical methods have been used toobtain the zircon U–Pb ages: thermal ionizationmass spectrometry (TIMS), sensitive high mass-resolution ion microprobe (SHRIMP) U–Pb, andlaser-ablation inductively-coupled plasma–massspectrometry (LA-ICP–MS). Single grain zirconages for sample FW00-37 from the Huangnilingbatholith were obtained using a VG 354 mass spec-trometer with a Daly collector at the Tianjin Insti-tute of Geology and Mineral Resources, ChineseAcademy of Geological Sciences. Dissolution of zir-cons and U–Pb chemical separation followed theprocedures of Krogh (1973, 1982) with slight mod-

ification (Li et al. 1995). A 205Pb–235U spike wasadded to the zircon samples in a 0.25-mL fluorine-plastic capsule for zircon dissolution. The final iso-lated U and Pb were loaded onto a Re filamentwith silica gel-phosphoric acid. All U and Pb datawere corrected for mass fractionation. The blankswere 0.03–0.05 ng for Pb and 0.002–0.004 ng for U.

SHRIMP U–Pb analyses of sample FW00-40from the Huangniling batholith were performedusing the SHRIMP II ion microprobe at CurtinUniversity of Technology, following standard pro-cedures described by Nelson (1997) and Williams(1998). Spot sizes averaged ~30 mm and each anal-ysis spot was rastered over 120 mm for 3 min toremove common Pb on the surface or contamina-tion from the gold coating. An average mass reso-lution of 4800 was used to measure Pb/Pb, andPb/U isotopic ratios were normalized to thosemeasured on the standard zircon (CZ3-[206Pb/238U = 0.0914]). Data reduction was performedusing the Krill 007 program of P. D. Kinny of Cur-tin University and applying the 204Pb correction.

LA-ICP–MS U–Pb zircon analyses for all othersamples were obtained using a 193-nm Elan 6100dynamic reaction cell inductively-coupled plasma-mass spectrometry (DRC ICP–MS) at the KeyLaboratory of Continental Dynamics, NorthwestUniversity in Xi’an. The LA-ICP–MS techniquewas only developed in the last decade (Feng et al.1993; Hirata & Nesbitt 1995), but recent studieshave shown that it is a powerful tool in geochro-nology and the results are comparable to those ofSHRIMP (Horn et al. 2000; Li et al. 2001; Kosleret al. 2002; Yuan et al. 2003). Zircon 91500 was usedas an external standard and silicate glass NISTSRM610 was used to optimize the instrument. Thespot diameter was 30 mm. Because of relativityhigh 204Hg blank, 204Pb was not measured.

U–Pb zircon ages were calculated using theISOPLOT program of Ludwig (1999), and theerrors quoted in age computation represent ±2standard deviations (SD).

SAMPLE DESCRIPTIONS AND ANALYTICAL RESULTS

The ‘Early Paleozoic’ granitoids extend in anorthwest direction in the Huadian, Antu andHelong regions (Fig. 1b). They form largebatholiths, with outcrop areas from 400 to2000 km2. In this paper, we selected five represen-tative bodies (the Huangniling, Mengshan, Dakai,Gaoling and Bailiping batholiths) for U–Pb zirconisotopic dating. Lithological classification of the

‘Early Paleozoic’ granitoids at Yanbian 487

analyzed granitoids is based on visually estimatedmodes in hand specimen and thin section. ZirconU–Pb isotopic data are listed in Tables 1 to 3, andshown in Figures 2 to 5.

THE HUANGNILING BATHOLITH

The Huangniling batholith is more than 1000 km2

in area (Fig. 1b). It intrudes Paleozoic strata andis covered by Late Mesozoic basinal sediments.The chief rock types are granodiorite and monzog-ranite, which have undergone variable amounts ofdeformation (JBGMR 1988; Liu et al. 1994).

Monzogranite is light red in color with localgneissic texture. It is coarse-grained and porphy-ritic, with K-feldspar phenocrysts (4–6-cm long).The matrix is hypidiomorphic-granular and con-sists of quartz (18–20%), plagioclase (25–30%), K-feldspar (13–18%) and biotite (2–5%). Biotite is

Tabl

e 1

Zir

con

U-P

b th

erm

al io

niza

tion

mas

s sp

ectr

omet

ry d

ata

of s

ampl

e F

W00

-37

from

the

Hua

ngni

ling

bath

olit

h

Fra

ctio

nC

once

ntra

tion

Com

mon

Isot

opic

rat

ios

Age

s (M

a)†

U (

ppm

)P

b (p

pm)

Pb

(pg)

206 P

b/20

4 Pb

206 P

b/23

8 Pb

2sm

207 P

b/23

5 Pb

2sm

207 P

b/20

6 Pb

2sm

206 P

b/23

8 Pb

207 P

b/23

5 Pb

116

15

3425

40.

0262

80.

178

100.

0491

1916

7 ±

516

6 ±

82

923

166

310.

0263

130.

166

130.

0458

2616

8 ±

815

6 ±

123

884

1516

30.

0264

100.

179

110.

0492

2316

8 ±

616

7 ±

104

923

315

400.

0265

100.

198

110.

0534

2016

9 ±

718

3 ±

105

844

4111

00.

0282

120.

200

140.

0516

2617

9 ±

718

5 ±

126

438

2411

1748

0.04

559

0.58

013

0.09

259

287

± 5

465

± 8

712

7517

714

7107

0.12

345

2.50

013

0.14

695

750

± 3

1272

± 3

8

† Mea

n ±

SD.

Fig. 2 U–Pb concordia diagrams of the Huangniling batholith.(a) FW00-37 analyzed by thermal ionization mass spectrometry (TIMS);(b) FW00-40 analyzed by sensitive high mass-resolution ion micro-probe (SHRIMP).

488 Y. Zhang et al.

commonly oriented parallel to the gneissosity andis locally altered to chlorite. Sericitization of pla-gioclase is also locally observed. The granodioriteis greyish-white in color, with a medium-grainedhypidiomorphic texture and weak gneissic struc-ture. It is composed of quartz (15–20%), K-feldspar

(12–18%), plagioclase (50–60%), and biotite (5–8%).

Previous dating gave a wide range of ages forthese rocks, including zircon U–Pb ages of1800 Ma and 517 Ma (Fang 1992) and 320 Ma(Chen et al. 1982), an apatite U–Pb age of 502 Ma

Table 2 Zircon U-Pb sensitive high mass-resolution ion microprobe (SHRIMP) data of sample FW00-40 from the Huang-niling batholith

Spot Concentration Isotopic ratios Ages (Ma)† U (ppm) Pb (ppm) 206Pb/204Pb 206Pb/238Pb 1sm

207Pb/235Pb 1sm207Pb/206Pb 1sm

206Pb/238Pb 207Pb/235Pb

1 100 3 344 0.0257 7 0.069 40 0.0196 11 164 ± 4 68 ± 382 158 5 8 333 0.0277 6 0.217 26 0.0569 7 176 ± 4 199 ± 223 69 2 5 263 0.0279 8 0.234 61 0.0610 15 177 ± 5 214 ± 504 193 5 11 111 0.0270 6 0.196 21 0.0526 5 172 ± 4 182 ± 185 142 4 10 000 0.0257 6 0.204 30 0.0575 8 164 ± 4 188 ± 256 51 2 556 0.0271 9 0.121 77 0.0324 21 173 ± 6 116 ± 707 47 2 400 0.0273 9 0.279 89 0.0741 23 174 ± 6 250 ± 71

†Mean ± SD.

Fig. 3 U–Pb concordia diagrams of laser-ablation inductively-coupled plasma–mass spectrometry data for the Dakai batholith ([a] YZ02-2) and theMengshan batholith ([b] YZ02-5, [c] YZ02-7, and [d] YZ02-10).

‘Early Paleozoic’ granitoids at Yanbian 489Ta

ble

3Z

irco

n U

-Pb

lase

r-ab

lati

on in

duct

ivel

y-co

uple

d pl

asm

a–m

ass

spec

trom

etry

ana

lyti

cal d

ata

for

the

gran

itoi

ds in

Yan

bian

, nor

thea

st C

hina

Spot

Isot

opic

rat

ios

Age

(M

a)20

7 Pb/

206 P

b1s

m20

7 Pb/

235 U

1sm

206 P

b/23

8 U1s

m20

8 Pb/

232 T

h1s

m20

6 Pb/

238 U

1sm

207 P

b/23

5 U1s

m20

7 Pb/

206 P

b1s

m

Dak

ai b

atho

lith

(YZ

02-2

)Y

Z02

-2-1

0.05

310.

0038

0.30

80.

021

0.04

200.

0009

0.01

310.

0005

265.

35.

427

317

YZ

02-2

-20.

0530

0.00

310.

295

0.01

70.

0403

0.00

080.

0119

0.00

0425

4.7

4.6

262

13Y

Z02

-2-3

0.05

330.

0042

0.29

50.

023

0.04

010.

0009

0.01

370.

0005

253.

45.

626

218

YZ

02-2

-40.

0517

0.00

170.

285

0.00

90.

0399

0.00

060.

0115

0.00

0225

2.4

3.7

255

7Y

Z02

-2-5

0.05

310.

0047

0.29

80.

026

0.04

060.

0010

0.01

330.

0006

256.

76.

026

520

YZ

02-2

-60.

0526

0.00

260.

282

0.01

40.

0389

0.00

070.

0119

0.00

0324

6.1

4.2

253

11Y

Z02

-2-7

0.05

210.

0033

0.29

40.

018

0.04

090.

0008

0.01

130.

0004

258.

24.

926

114

YZ

02-2

-80.

0534

0.00

260.

308

0.01

50.

0419

0.00

070.

0127

0.00

0326

4.5

4.5

273

12Y

Z02

-2-9

0.05

160.

0026

0.28

00.

014

0.03

930.

0007

0.01

240.

0004

248.

44.

325

011

YZ

02-2

-10

0.05

550.

0026

0.27

90.

013

0.03

640.

0006

0.01

180.

0004

230.

74.

025

010

YZ

02-2

-11

0.05

090.

0048

0.27

60.

026

0.03

940.

0010

0.01

160.

0006

248.

96.

024

820

YZ

02-2

-12

0.05

110.

0021

0.27

00.

011

0.03

830.

0006

0.01

160.

0003

242.

23.

924

29

YZ

02-2

-13

0.05

080.

0024

0.26

90.

013

0.03

840.

0007

0.01

180.

0003

243.

04.

124

210

YZ

02-2

-14

0.05

060.

0023

0.27

30.

012

0.03

920.

0007

0.01

230.

0004

247.

84.

124

510

YZ

02-2

-15

0.05

220.

0026

0.27

30.

013

0.03

790.

0007

0.01

190.

0003

240.

14.

124

511

YZ

02-2

-16

0.05

090.

0051

0.28

80.

028

0.04

110.

0010

0.01

240.

0006

259.

86.

525

722

YZ

02-2

-17

0.05

030.

0018

0.25

90.

009

0.03

740.

0006

0.00

940.

0002

236.

53.

723

47

YZ

02-2

-18

0.05

050.

0079

0.27

70.

042

0.03

990.

0015

0.01

520.

0011

252.

19.

224

834

YZ

02-2

-19

0.05

060.

0021

0.26

70.

011

0.03

830.

0006

0.01

170.

0003

242.

44.

024

09

YZ

02-2

-20

0.09

570.

0038

0.50

70.

020

0.03

850.

0007

0.02

150.

0006

243.

34.

441

614

1543

74Y

Z02

-2-2

10.

0948

0.00

380.

615

0.02

40.

0470

0.00

080.

0271

0.00

0729

6.2

5.2

487

1515

2474

YZ

02-2

-22

0.07

860.

0038

0.42

90.

021

0.03

970.

0008

0.01

550.

0004

250.

74.

636

315

1161

94Y

Z02

-2-2

30.

0767

0.00

420.

432

0.02

30.

0409

0.00

080.

0121

0.00

0425

8.4

5.1

365

1711

1310

6Y

Z02

-2-2

40.

1126

0.00

155.

097

0.08

40.

3288

0.00

480.

1001

0.00

1818

32.3

23.2

1836

1418

4224

Men

gsha

n ba

thol

ith

(YZ

02-5

)Y

Z02

-5-1

0.04

920.

0030

0.18

10.

011

0.02

670.

0005

0.00

800.

0002

169.

83.

216

99

YZ

02-5

-20.

0504

0.00

450.

195

0.01

70.

0281

0.00

070.

0092

0.00

0417

8.9

4.2

181

15Y

Z02

-5-3

0.04

990.

0036

0.18

20.

013

0.02

660.

0005

0.00

820.

0003

168.

93.

417

011

YZ

02-5

-40.

0578

0.00

640.

204

0.02

20.

0257

0.00

080.

0098

0.00

0516

3.3

4.7

189

19Y

Z02

-5-5

0.05

710.

0034

0.21

70.

013

0.02

750.

0005

0.00

960.

0003

174.

93.

419

911

YZ

02-5

-60.

0570

0.00

440.

211

0.01

60.

0269

0.00

060.

0124

0.00

0417

1.1

3.8

195

13Y

Z02

-5-7

0.05

070.

0047

0.18

50.

017

0.02

640.

0007

0.00

790.

0004

168.

14.

117

215

YZ

02-5

-80.

0560

0.00

590.

200

0.02

10.

0259

0.00

070.

0091

0.00

0516

5.1

4.7

185

18Y

Z02

-5-9

0.05

020.

0030

0.19

10.

011

0.02

760.

0005

0.00

910.

0003

175.

53.

317

810

YZ

02-5

-10

0.04

980.

0032

0.19

00.

012

0.02

760.

0005

0.00

890.

0003

175.

63.

317

610

YZ

02-5

-11

0.04

890.

0050

0.19

40.

020

0.02

880.

0007

0.00

890.

0004

183.

04.

118

017

YZ

02-5

-12

0.04

960.

0094

0.17

90.

033

0.02

620.

0010

0.00

790.

0007

167.

06.

416

829

YZ

02-5

-13

0.05

030.

0063

0.19

60.

024

0.02

840.

0007

0.00

870.

0004

180.

34.

618

221

YZ

02-5

-14

0.04

950.

0036

0.19

00.

014

0.02

780.

0006

0.00

920.

0003

176.

93.

517

612

YZ

02-5

-15

0.05

080.

0054

0.17

80.

018

0.02

550.

0007

0.00

940.

0005

162.

14.

416

716

YZ

02-5

-16

0.05

250.

0037

0.19

20.

013

0.02

650.

0005

0.00

840.

0003

168.

93.

417

911

490 Y. Zhang et al.

YZ

02-5

-17

0.05

050.

0038

0.19

90.

015

0.02

860.

0006

0.00

940.

0004

181.

73.

818

412

YZ

02-5

-18

0.05

050.

0064

0.19

30.

024

0.02

770.

0008

0.00

880.

0006

176.

25.

217

920

YZ

02-5

-19

0.05

140.

0108

0.20

40.

042

0.02

890.

0012

0.01

040.

0010

183.

47.

718

936

YZ

02-5

-20

0.05

030.

0027

0.19

90.

011

0.02

870.

0005

0.00

890.

0003

182.

43.

218

49

Men

gsha

n ba

thol

ith

(YZ

02-7

)Y

Z02

-7-1

0.04

980.

0048

0.20

00.

019

0.02

910.

0007

0.00

960.

0004

185.

14.

518

516

YZ

02-7

-20.

0497

0.00

330.

192

0.01

20.

0280

0.00

060.

0084

0.00

0217

8.0

3.5

178

11Y

Z02

-7-3

0.05

960.

0042

0.23

10.

016

0.02

810.

0006

0.00

750.

0003

178.

73.

921

113

YZ

02-7

-40.

0573

0.00

280.

232

0.01

10.

0293

0.00

050.

0119

0.00

0418

6.4

3.3

212

9Y

Z02

-7-5

0.05

200.

0036

0.20

60.

014

0.02

880.

0006

0.00

930.

0003

182.

83.

819

012

YZ

02-7

-60.

0574

0.00

160.

227

0.00

60.

0288

0.00

050.

0103

0.00

0218

2.8

2.8

208

5Y

Z02

-7-7

0.05

400.

0023

0.20

20.

009

0.02

720.

0005

0.00

830.

0002

172.

92.

918

77

YZ

02-7

-80.

0648

0.00

540.

258

0.02

10.

0289

0.00

070.

0126

0.00

0618

3.6

4.5

233

17Y

Z02

-7-9

0.05

030.

0058

0.19

50.

022

0.02

820.

0008

0.00

860.

0003

179.

24.

918

119

YZ

02-7

-10

0.04

960.

0031

0.19

70.

012

0.02

880.

0006

0.00

910.

0002

182.

83.

418

210

YZ

02-7

-11

0.04

940.

0024

0.18

80.

009

0.02

770.

0005

0.00

810.

0002

175.

93.

017

58

YZ

02-7

-12

0.05

420.

0020

0.21

00.

008

0.02

810.

0005

0.01

020.

0002

178.

92.

919

46

YZ

02-7

-13

0.04

950.

0039

0.19

90.

016

0.02

920.

0006

0.00

960.

0005

185.

43.

818

413

YZ

02-7

-14

0.04

930.

0023

0.19

70.

009

0.02

890.

0005

0.00

940.

0003

183.

83.

118

28

YZ

02-7

-15

0.06

500.

0042

0.26

30.

017

0.02

930.

0006

0.01

210.

0005

186.

43.

823

713

YZ

02-7

-16

0.06

000.

0017

0.23

50.

007

0.02

840.

0004

0.01

050.

0002

180.

82.

721

56

Men

gsha

n ba

thol

ith

(YZ

02-1

0)Y

Z02

-10-

10.

0514

0.00

180.

208

0.00

70.

0293

0.00

050.

0102

0.00

0219

1.6

6.1

186

3Y

Z02

-10-

20.

0584

0.00

520.

228

0.02

00.

0284

0.00

070.

0106

0.00

0620

8.9

16.6

180

4Y

Z02

-10-

30.

0490

0.00

190.

202

0.00

80.

0299

0.00

050.

0107

0.00

0318

6.7

6.7

190

3Y

Z02

-10-

40.

0589

0.00

510.

225

0.01

90.

0278

0.00

070.

0118

0.00

0520

6.4

15.8

176

4Y

Z02

-10-

50.

0503

0.00

240.

212

0.01

00.

0306

0.00

050.

0089

0.00

0219

5.5

8.5

194

3Y

Z02

-10-

60.

0499

0.00

360.

192

0.01

40.

0280

0.00

060.

0084

0.00

0317

8.5

11.7

178

4Y

Z02

-10-

70.

0574

0.00

320.

222

0.01

20.

0280

0.00

050.

0096

0.00

0320

3.4

10.2

178

3Y

Z02

-10-

80.

0557

0.00

270.

226

0.01

10.

0294

0.00

050.

0108

0.00

0320

6.7

9.1

187

3Y

Z02

-10-

90.

0623

0.00

220.

257

0.00

90.

0299

0.00

050.

0062

0.00

0123

1.8

7.5

190

3Y

Z02

-10-

100.

0503

0.00

290.

202

0.01

20.

0292

0.00

060.

0095

0.00

0318

7.2

9.8

186

3Y

Z02

-10-

110.

0548

0.00

200.

219

0.00

80.

0290

0.00

050.

0084

0.00

0220

1.0

6.8

184

3Y

Z02

-10-

120.

0460

0.00

220.

178

0.00

90.

0281

0.00

050.

0094

0.00

0216

6.6

7.5

179

3Y

Z02

-10-

130.

0504

0.00

210.

198

0.00

80.

0285

0.00

050.

0097

0.00

0218

3.2

7.1

181

3Y

Z02

-10-

140.

0494

0.00

300.

199

0.01

20.

0292

0.00

060.

0100

0.00

0318

4.2

10.0

186

3Y

Z02

-10-

150.

0494

0.00

810.

197

0.03

20.

0290

0.00

110.

0103

0.00

1118

2.9

26.9

184

7Y

Z02

-10-

160.

0509

0.00

210.

204

0.00

80.

0291

0.00

050.

0096

0.00

0318

8.7

7.0

185

3Y

Z02

-10-

170.

0507

0.00

390.

204

0.01

50.

0292

0.00

060.

0098

0.00

0318

8.7

13.0

186

4Y

Z02

-10-

180.

0497

0.00

200.

197

0.00

80.

0288

0.00

050.

0096

0.00

0218

2.8

6.8

183

3Y

Z02

-10-

190.

0520

0.00

390.

211

0.01

60.

0294

0.00

070.

0110

0.00

0519

4.3

13.0

187

4Y

Z02

-10-

200.

0491

0.00

270.

197

0.01

10.

0291

0.00

050.

0093

0.00

0418

2.4

9.2

185

3

Spot

Isot

opic

rat

ios

Age

(M

a)20

7 Pb/

206 P

b1s

m20

7 Pb/

235 U

1sm

206 P

b/23

8 U1s

m20

8 Pb/

232 T

h1s

m20

6 Pb/

238 U

1sm

207 P

b/23

5 U1s

m20

7 Pb/

206 P

b1s

m

Tabl

e 3

Con

tinu

ed

‘Early Paleozoic’ granitoids at Yanbian 491

Gao

ling

bath

olit

h (Y

Z02

-33)

YZ

02-3

3-1

0.05

190.

0043

0.19

80.

016

0.02

760.

0006

0.00

850.

0004

175.

73.

718

313

YZ

02-3

3-2

0.05

060.

0025

0.17

50.

009

0.02

510.

0004

0.00

720.

0002

160.

02.

516

47

YZ

02-3

3-3

0.05

030.

0022

0.18

50.

008

0.02

670.

0004

0.00

790.

0002

169.

72.

417

27

YZ

02-3

3-4

0.05

040.

0073

0.18

90.

027

0.02

720.

0009

0.00

930.

0006

173.

15.

817

623

YZ

02-3

3-5

0.05

210.

0022

0.18

60.

008

0.02

590.

0004

0.00

750.

0002

164.

92.

417

37

YZ

02-3

3-6

0.05

060.

0028

0.19

20.

010

0.02

750.

0005

0.00

830.

0002

175.

02.

917

89

YZ

02-3

3-7

0.05

650.

0020

0.21

80.

008

0.02

810.

0004

0.00

870.

0002

178.

32.

520

16

YZ

02-3

3-8

0.05

000.

0055

0.19

30.

021

0.02

800.

0007

0.00

740.

0004

177.

74.

617

918

YZ

02-3

3-9

0.05

040.

0089

0.18

30.

032

0.02

640.

0010

0.00

750.

0005

167.

96.

417

127

YZ

02-3

3-10

0.06

190.

0038

0.21

40.

013

0.02

510.

0005

0.00

810.

0003

159.

53.

019

711

YZ

02-3

3-11

0.04

970.

0076

0.18

30.

027

0.02

670.

0010

0.00

800.

0005

170.

05.

917

123

YZ

02-3

3-12

0.05

020.

0031

0.17

80.

011

0.02

570.

0005

0.00

820.

0002

163.

82.

916

69

YZ

02-3

3-13

0.05

030.

0027

0.18

90.

010

0.02

730.

0005

0.00

750.

0002

173.

82.

817

69

YZ

02-3

3-14

0.05

730.

0025

0.20

80.

009

0.02

640.

0004

0.00

870.

0002

167.

82.

619

28

YZ

02-3

3-15

0.05

180.

0023

0.19

60.

008

0.02

750.

0004

0.00

810.

0002

174.

72.

618

27

YZ

02-3

3-16

0.04

990.

0021

0.18

60.

008

0.02

700.

0004

0.00

820.

0002

171.

82.

517

36

Gao

ling

bath

olit

h (Y

Z02

-45)

YZ

02-4

5-1

0.05

120.

0051

0.20

90.

020

0.02

970.

0007

0.00

900.

0004

188.

74.

419

317

YZ

02-4

5-2

0.04

960.

0033

0.21

10.

014

0.03

090.

0006

0.00

850.

0003

195.

93.

419

512

YZ

02-4

5-3

0.05

330.

0040

0.22

30.

016

0.03

040.

0006

0.01

010.

0003

193.

23.

920

514

YZ

02-4

5-4

0.05

090.

0028

0.21

40.

011

0.03

050.

0005

0.00

890.

0003

193.

53.

219

710

YZ

02-4

5-5

0.05

060.

0033

0.21

30.

014

0.03

050.

0005

0.00

970.

0003

193.

93.

419

611

YZ

02-4

5-6

0.05

040.

0038

0.21

60.

016

0.03

110.

0006

0.00

900.

0003

197.

63.

919

913

YZ

02-4

5-7

0.04

990.

0047

0.22

20.

021

0.03

240.

0007

0.01

120.

0005

205.

34.

620

417

YZ

02-4

5-8

0.05

060.

0051

0.23

60.

023

0.03

380.

0008

0.00

940.

0005

214.

45.

221

519

YZ

02-4

5-9

0.05

610.

0055

0.23

60.

023

0.03

060.

0008

0.00

880.

0004

194.

24.

921

519

YZ

02-4

5-10

0.05

030.

0028

0.21

40.

012

0.03

100.

0005

0.00

940.

0003

196.

63.

319

710

YZ

02-4

5-11

0.05

100.

0026

0.21

10.

010

0.03

000.

0005

0.00

920.

0002

190.

43.

019

49

YZ

02-4

5-12

0.04

920.

0020

0.20

40.

008

0.03

000.

0004

0.00

900.

0002

190.

62.

718

87

YZ

02-4

5-13

0.05

420.

0043

0.21

60.

017

0.02

900.

0006

0.00

990.

0004

184.

13.

819

914

YZ

02-4

5-14

0.05

070.

0036

0.21

50.

015

0.03

080.

0006

0.01

010.

0003

195.

43.

819

813

YZ

02-4

5-15

0.05

570.

0019

0.20

70.

007

0.02

700.

0004

0.00

820.

0001

171.

92.

419

16

YZ

02-4

5-16

0.05

080.

0027

0.20

60.

011

0.02

950.

0005

0.00

910.

0003

187.

53.

019

19

Bai

lipin

g ba

thol

ith

(YZ

02-1

2-3)

YZ

02-1

2-3-

10.

0520

0.00

230.

303

0.01

30.

0423

0.00

070.

0160

0.00

1026

7.2

4.3

269

10Y

Z02

-12-

3-2

0.07

210.

0027

0.44

20.

017

0.04

450.

0008

0.01

000.

0002

280.

44.

637

112

YZ

02-1

2-3-

30.

0522

0.00

730.

329

0.04

50.

0457

0.00

140.

0157

0.00

0728

8.2

8.6

289

34Y

Z02

-12-

3-4

0.05

220.

0031

0.33

00.

019

0.04

590.

0009

0.01

390.

0004

289.

15.

328

915

YZ

02-1

2-3-

50.

0524

0.00

530.

333

0.03

30.

0461

0.00

120.

0127

0.00

0529

0.3

7.2

292

25Y

Z02

-12-

3-6

0.05

960.

0035

0.36

10.

021

0.04

400.

0009

0.01

450.

0005

277.

75.

231

316

YZ

02-1

2-3-

70.

0551

0.00

370.

361

0.02

40.

0476

0.00

100.

0316

0.00

2729

9.4

5.9

313

18

Spot

Isot

opic

rat

ios

Age

(M

a)20

7 Pb/

206 P

b1s

m20

7 Pb/

235 U

1sm

206 P

b/23

8 U1s

m20

8 Pb/

232 T

h1s

m20

6 Pb/

238 U

1sm

207 P

b/23

5 U1s

m20

7 Pb/

206 P

b1s

m

Tabl

e 3

Con

tinu

ed

492 Y. Zhang et al.

YZ

02-1

2-3-

80.

0650

0.00

320.

417

0.02

00.

0466

0.00

090.

0147

0.00

0329

3.7

5.2

354

14Y

Z02

-12-

3-9

0.06

070.

0033

0.39

20.

021

0.04

690.

0009

0.01

870.

0007

295.

35.

533

615

YZ

02-1

2-3-

100.

0542

0.00

330.

345

0.02

10.

0461

0.00

090.

0143

0.00

0429

0.7

5.4

301

16Y

Z02

-12-

3-11

0.09

720.

0034

0.66

20.

023

0.04

940.

0009

0.01

380.

0003

310.

65.

351

614

YZ

02-1

2-3-

120.

1512

0.00

309.

365

0.20

10.

4493

0.00

710.

1223

0.00

2823

92.2

31.4

2374

2023

6034

YZ

02-1

2-3-

130.

1507

0.00

449.

273

0.27

20.

4466

0.00

800.

1309

0.00

3323

80.0

35.6

2365

2723

5449

YZ

02-1

2-3-

140.

1579

0.00

249.

701

0.16

80.

4461

0.00

650.

1226

0.00

2123

77.7

28.9

2407

1624

3326

YZ

02-1

2-3-

150.

1554

0.00

299.

706

0.19

50.

4533

0.00

690.

1306

0.00

2124

10.0

30.7

2407

1924

0631

YZ

02-1

2-3-

160.

1515

0.00

279.

543

0.18

50.

4572

0.00

690.

1301

0.00

2824

27.1

30.5

2392

1823

6330

YZ

02-1

2-3-

170.

1595

0.00

229.

845

0.15

80.

4479

0.00

640.

1301

0.00

2223

85.8

28.6

2420

1524

5123

YZ

02-1

2-3-

180.

1567

0.00

818.

146

0.40

60.

3773

0.00

920.

1088

0.00

2820

63.4

43.1

2247

4524

2085

YZ

02-1

2-3-

190.

1643

0.01

0210

.661

0.63

70.

4709

0.01

400.

1626

0.03

1224

87.4

61.4

2494

5525

0010

1Y

Z02

-12-

3-20

0.15

590.

0060

9.78

80.

372

0.45

560.

0095

0.13

820.

0056

2420

.242

.024

1535

2412

64

Bai

lipin

g ba

thol

ith

(YZ

02-2

2-2)

YZ

02-2

2-2-

10.

0574

0.00

270.

298

0.01

40.

0377

0.00

070.

0107

0.00

0423

8.7

4.0

265

11Y

Z02

-22-

2-2

0.05

170.

0030

0.27

10.

015

0.03

810.

0007

0.01

020.

0003

241.

14.

324

412

YZ

02-2

2-2-

30.

0505

0.00

490.

255

0.02

40.

0367

0.00

090.

0086

0.00

0623

2.1

5.5

231

19Y

Z02

-22-

2-4

0.05

190.

0034

0.26

20.

017

0.03

670.

0007

0.01

070.

0003

232.

04.

323

614

YZ

02-2

2-2-

50.

0513

0.01

320.

268

0.06

80.

0379

0.00

150.

0099

0.00

0923

9.8

9.0

241

55Y

Z02

-22-

2-6

0.05

160.

0060

0.25

70.

029

0.03

620.

0010

0.00

850.

0005

229.

26.

223

224

YZ

02-2

2-2-

70.

0565

0.00

360.

313

0.02

00.

0402

0.00

080.

0123

0.00

0425

3.9

5.0

277

15Y

Z02

-22-

2-8

0.05

120.

0035

0.27

00.

018

0.03

830.

0008

0.01

120.

0003

242.

34.

724

315

YZ

02-2

2-2-

90.

0547

0.00

740.

288

0.03

80.

0382

0.00

130.

0135

0.00

1124

1.7

7.9

257

30Y

Z02

-22-

2-10

0.05

100.

0024

0.29

50.

014

0.04

200.

0007

0.01

210.

0003

264.

94.

426

311

YZ

02-2

2-2-

110.

0921

0.00

510.

547

0.02

90.

0431

0.00

090.

0177

0.00

0527

2.2

5.5

443

19Y

Z02

-22-

2-12

0.05

100.

0047

0.29

60.

027

0.04

220.

0010

0.01

270.

0004

266.

56.

226

421

YZ

02-2

2-2-

130.

0542

0.00

280.

298

0.01

50.

0399

0.00

070.

0120

0.00

0425

2.1

4.5

265

12Y

Z02

-22-

2-14

0.05

180.

0030

0.28

60.

016

0.04

000.

0008

0.01

270.

0004

253.

14.

625

513

YZ

02-2

2-2-

150.

0514

0.00

400.

284

0.02

20.

0401

0.00

090.

0120

0.00

0425

3.5

5.4

254

17Y

Z02

-22-

2-16

0.05

120.

0030

0.27

00.

016

0.03

830.

0007

0.01

050.

0003

242.

04.

424

313

YZ

02-2

2-2-

170.

0515

0.01

220.

258

0.06

10.

0364

0.00

130.

0130

0.00

0923

0.2

7.9

233

49Y

Z02

-22-

2-18

0.05

060.

0057

0.25

00.

028

0.03

590.

0009

0.01

050.

0006

227.

35.

622

723

YZ

02-2

2-2-

190.

0589

0.00

370.

298

0.01

90.

0367

0.00

070.

0112

0.00

0323

2.2

4.5

265

15

Bai

lipin

g ba

thol

ith

(YZ

02-2

5-2)

YZ

02-2

5-2-

10.

0512

0.00

170.

277

0.00

90.

0393

0.00

050.

0127

0.00

0224

8.5

3.4

249

7Y

Z02

-25-

2-2

0.05

380.

0017

0.27

50.

008

0.03

700.

0005

0.01

180.

0002

234.

53.

124

77

YZ

02-2

5-2-

30.

0500

0.00

230.

272

0.01

20.

0395

0.00

060.

0120

0.00

0324

9.4

3.7

244

10Y

Z02

-25-

2-4

0.05

430.

0015

0.28

90.

008

0.03

860.

0005

0.01

130.

0002

244.

03.

225

86

YZ

02-2

5-2-

50.

0502

0.00

140.

268

0.00

70.

0388

0.00

050.

0115

0.00

0224

5.2

3.1

241

6Y

Z02

-25-

2-6

0.04

920.

0019

0.25

70.

010

0.03

790.

0005

0.01

300.

0004

240.

13.

423

38

YZ

02-2

5-2-

70.

0536

0.00

190.

282

0.01

00.

0382

0.00

050.

0121

0.00

0324

1.4

3.4

252

8Y

Z02

-25-

2-8

0.05

080.

0015

0.27

90.

008

0.03

990.

0005

0.01

260.

0002

252.

43.

325

07

Spot

Isot

opic

rat

ios

Age

(M

a)20

7 Pb/

206 P

b1s

m20

7 Pb/

235 U

1sm

206 P

b/23

8 U1s

m20

8 Pb/

232 T

h1s

m20

6 Pb/

238 U

1sm

207 P

b/23

5 U1s

m20

7 Pb/

206 P

b1s

m

Tabl

e 3

Con

tinu

ed

‘Early Paleozoic’ granitoids at Yanbian 493

YZ

02-2

5-2-

90.

0520

0.00

250.

287

0.01

30.

0400

0.00

060.

0126

0.00

0325

2.6

3.9

256

11Y

Z02

-25-

2-10

0.05

180.

0013

0.28

60.

007

0.04

000.

0005

0.01

150.

0002

252.

93.

225

56

YZ

02-2

5-2-

110.

0516

0.00

140.

276

0.00

70.

0387

0.00

050.

0111

0.00

0224

5.0

3.1

247

6Y

Z02

-25-

2-12

0.05

240.

0018

0.28

30.

010

0.03

910.

0005

0.01

080.

0002

247.

23.

425

38

YZ

02-2

5-2-

130.

0612

0.00

160.

313

0.00

80.

0370

0.00

050.

0112

0.00

0223

4.4

3.0

276

6Y

Z02

-25-

2-14

0.05

090.

0015

0.27

50.

008

0.03

920.

0005

0.01

100.

0002

247.

73.

224

77

YZ

02-2

5-2-

150.

0518

0.00

510.

274

0.02

70.

0384

0.00

100.

0077

0.00

0424

3.1

6.0

246

21Y

Z02

-25-

2-16

0.05

170.

0014

0.27

90.

008

0.03

910.

0005

0.01

040.

0001

247.

23.

225

06

YZ

02-2

5-2-

170.

0533

0.00

160.

282

0.00

80.

0384

0.00

050.

0109

0.00

0224

3.0

3.2

253

7Y

Z02

-25-

2-18

0.05

450.

0025

0.29

60.

014

0.03

930.

0006

0.00

900.

0002

248.

63.

826

311

YZ

02-2

5-2-

190.

0512

0.00

270.

266

0.01

40.

0377

0.00

060.

0113

0.00

0323

8.4

3.8

239

11Y

Z02

-25-

2-20

0.05

300.

0013

0.28

40.

007

0.03

880.

0005

0.01

050.

0001

245.

53.

125

46

Bai

lipin

g ba

thol

ith

(YZ

02-2

7-2)

YZ

02-2

7-2-

10.

0535

0.00

190.

304

0.01

00.

0411

0.00

060.

0117

0.00

0225

9.8

3.5

269

8Y

Z02

-27-

2-2

0.05

060.

0018

0.26

80.

009

0.03

840.

0005

0.01

150.

0002

242.

93.

324

17

YZ

02-2

7-2-

30.

0523

0.00

210.

277

0.01

10.

0384

0.00

060.

0116

0.00

0224

2.6

3.4

248

9Y

Z02

-27-

2-4

0.05

130.

0033

0.28

20.

018

0.03

990.

0007

0.01

190.

0004

252.

14.

625

214

YZ

02-2

7-2-

50.

0535

0.00

190.

296

0.01

10.

0401

0.00

060.

0109

0.00

0225

3.3

3.5

263

8Y

Z02

-27-

2-6

0.04

960.

0028

0.26

40.

015

0.03

860.

0007

0.01

190.

0003

244.

34.

023

812

YZ

02-2

7-2-

70.

0516

0.00

190.

281

0.01

00.

0395

0.00

060.

0114

0.00

0225

0.0

3.4

252

8Y

Z02

-27-

2-8

0.05

990.

0022

0.31

60.

011

0.03

830.

0006

0.01

420.

0003

242.

03.

427

99

YZ

02-2

7-2-

90.

0520

0.00

170.

281

0.00

90.

0392

0.00

050.

0116

0.00

0224

7.7

3.3

251

7Y

Z02

-27-

2-10

0.05

210.

0018

0.28

10.

010

0.03

920.

0005

0.01

160.

0002

247.

73.

325

28

YZ

02-2

7-2-

110.

0513

0.00

210.

271

0.01

10.

0383

0.00

060.

0110

0.00

0324

2.4

3.5

244

9Y

Z02

-27-

2-12

0.05

140.

0016

0.27

50.

009

0.03

880.

0005

0.01

100.

0002

245.

13.

224

77

YZ

02-2

7-2-

130.

0507

0.00

150.

268

0.00

80.

0383

0.00

050.

0111

0.00

0224

2.5

3.1

241

6Y

Z02

-27-

2-14

0.05

070.

0016

0.27

30.

009

0.03

910.

0005

0.01

230.

0002

246.

93.

224

57

YZ

02-2

7-2-

150.

0506

0.00

140.

274

0.00

80.

0392

0.00

050.

0113

0.00

0224

7.9

3.2

246

6Y

Z02

-27-

2-16

0.05

390.

0027

0.29

80.

015

0.04

010.

0007

0.01

220.

0003

253.

74.

026

511

YZ

02-2

7-2-

170.

0517

0.00

150.

281

0.00

80.

0394

0.00

050.

0117

0.00

0224

9.4

3.2

252

6Y

Z02

-27-

2-18

0.05

290.

0014

0.28

90.

008

0.03

960.

0005

0.01

150.

0002

250.

23.

225

86

YZ

02-2

7-2-

190.

0536

0.00

140.

299

0.00

80.

0404

0.00

050.

0125

0.00

0225

5.3

3.2

265

6

Bai

lipin

g b

atho

lith

(YZ

02-2

8, D

adon

gtun

plu

ton)

YZ

02-2

8-1

0.05

040.

0027

0.19

60.

010

0.02

810.

0005

0.00

920.

0003

178.

92.

918

19

YZ

02-2

8-2

0.04

980.

0053

0.19

50.

020

0.02

840.

0007

0.00

910.

0004

180.

24.

518

117

YZ

02-2

8-3

0.05

140.

0027

0.19

70.

010

0.02

770.

0005

0.00

940.

0002

176.

42.

918

29

YZ

02-2

8-4

0.05

020.

0026

0.19

60.

010

0.02

830.

0005

0.00

960.

0003

179.

82.

818

28

YZ

02-2

8-5

0.05

030.

0029

0.19

50.

011

0.02

810.

0005

0.00

900.

0003

178.

93.

018

19

YZ

02-2

8-6

0.05

000.

0026

0.19

40.

010

0.02

820.

0005

0.00

820.

0003

179.

42.

918

08

YZ

02-2

8-7

0.04

970.

0049

0.19

70.

019

0.02

870.

0007

0.00

890.

0005

182.

64.

518

316

YZ

02-2

8-8

0.05

020.

0050

0.19

10.

018

0.02

760.

0007

0.00

890.

0005

175.

24.

117

716

YZ

02-2

8-9

0.05

020.

0023

0.19

40.

009

0.02

800.

0004

0.00

870.

0002

178.

02.

718

07

Spot

Isot

opic

rat

ios

Age

(M

a)20

7 Pb/

206 P

b1s

m20

7 Pb/

235 U

1sm

206 P

b/23

8 U1s

m20

8 Pb/

232 T

h1s

m20

6 Pb/

238 U

1sm

207 P

b/23

5 U1s

m20

7 Pb/

206 P

b1s

m

Tabl

e 3

Con

tinu

ed

494 Y. Zhang et al.

YZ

02-2

8-10

0.04

950.

0044

0.18

70.

016

0.02

740.

0006

0.00

970.

0005

174.

03.

917

414

YZ

02-2

8-11

0.05

060.

0031

0.18

90.

011

0.02

710.

0005

0.00

870.

0003

172.

53.

117

610

YZ

02-2

8-12

0.05

050.

0071

0.19

60.

027

0.02

810.

0009

0.00

990.

0007

178.

55.

718

123

YZ

02-2

8-13

0.05

050.

0078

0.20

10.

030

0.02

890.

0010

0.01

090.

0009

183.

66.

518

626

YZ

02-2

8-14

0.04

960.

0031

0.19

40.

012

0.02

840.

0005

0.00

920.

0003

180.

73.

118

010

YZ

02-2

8-15

0.04

580.

0023

0.17

80.

009

0.02

830.

0005

0.00

870.

0002

179.

72.

816

78

YZ

02-2

8-16

0.05

020.

0033

0.19

40.

012

0.02

810.

0005

0.00

940.

0004

178.

63.

318

011

YZ

02-2

8-17

0.04

680.

0029

0.18

00.

011

0.02

780.

0005

0.00

850.

0003

177.

03.

116

89

YZ

02-2

8-18

0.05

010.

0049

0.19

70.

019

0.02

850.

0007

0.01

030.

0004

180.

94.

418

216

YZ

02-2

8-19

0.04

950.

0025

0.18

90.

009

0.02

770.

0004

0.00

960.

0002

176.

12.

817

68

YZ

02-2

8-20

0.05

460.

0044

0.21

40.

017

0.02

840.

0006

0.00

890.

0005

180.

73.

919

714

Bai

lipin

g ba

thol

ith

(YZ

02-1

6-1,

Hua

nggo

u pl

uton

)Y

Z02

-16-

1-1

0.06

910.

0031

0.28

30.

012

0.02

970.

0005

0.01

000.

0002

188.

53.

025

310

YZ

02-1

6-1-

20.

0504

0.00

160.

208

0.00

70.

0299

0.00

040.

0096

0.00

0218

9.7

2.5

192

6Y

Z02

-16-

1-3

0.06

400.

0022

0.26

50.

009

0.03

000.

0004

0.00

940.

0001

190.

62.

723

97

YZ

02-1

6-1-

40.

0533

0.00

080.

222

0.00

40.

0302

0.00

040.

0094

0.00

0119

2.1

2.3

204

3Y

Z02

-16-

1-5

0.05

520.

0013

0.22

70.

005

0.02

990.

0004

0.00

910.

0001

189.

92.

420

84

YZ

02-1

6-1-

60.

0501

0.00

250.

202

0.01

00.

0293

0.00

050.

0100

0.00

0218

5.9

2.9

187

9Y

Z02

-16-

1-7

0.05

660.

0023

0.22

20.

009

0.02

840.

0004

0.00

950.

0002

180.

82.

620

37

YZ

02-1

6-1-

80.

0504

0.00

520.

206

0.02

10.

0296

0.00

080.

0099

0.00

0518

8.2

4.7

190

17Y

Z02

-16-

1-9

0.06

430.

0019

0.27

00.

008

0.03

050.

0004

0.01

200.

0002

193.

62.

624

36

YZ

02-1

6-1-

100.

0559

0.00

130.

226

0.00

50.

0293

0.00

040.

0100

0.00

0118

6.2

2.3

207

5Y

Z02

-16-

1-11

0.04

980.

0024

0.19

80.

010

0.02

880.

0004

0.00

880.

0002

182.

82.

818

38

YZ

02-1

6-1-

120.

0500

0.00

210.

203

0.00

90.

0295

0.00

040.

0090

0.00

0118

7.4

2.7

188

7Y

Z02

-16-

1-13

0.05

060.

0020

0.19

80.

008

0.02

840.

0004

0.00

950.

0002

180.

72.

518

46

YZ

02-1

6-1-

140.

0507

0.00

310.

198

0.01

20.

0284

0.00

050.

0096

0.00

0218

0.3

3.2

184

10Y

Z02

-16-

1-15

0.04

980.

0028

0.20

40.

011

0.02

970.

0005

0.00

900.

0002

188.

43.

118

810

Bai

lipin

g ba

thol

ith

(YZ

02-1

8-3)

YZ

02-1

8-3-

10.

0965

0.01

020.

245

0.02

50.

0184

0.00

060.

0068

0.00

0311

7.5

3.8

222

20Y

Z02

-18-

3-2

0.05

220.

0043

0.13

40.

011

0.01

860.

0004

0.00

400.

0003

118.

52.

612

710

YZ

02-1

8-3-

30.

0512

0.01

030.

129

0.02

50.

0182

0.00

080.

0060

0.00

0411

6.5

4.8

123

23Y

Z02

-18-

3-4

0.04

820.

0073

0.12

70.

019

0.01

920.

0005

0.00

610.

0001

122.

33.

112

217

YZ

02-1

8-3-

50.

0486

0.00

440.

125

0.01

10.

0186

0.00

040.

0059

0.00

0311

9.0

2.6

119

10Y

Z02

-18-

3-6

0.04

940.

0045

0.12

80.

011

0.01

880.

0004

0.00

630.

0002

120.

02.

712

210

YZ

02-1

8-3-

70.

0866

0.00

910.

226

0.02

30.

0190

0.00

060.

0077

0.00

0312

1.1

3.7

207

19Y

Z02

-18-

3-8

0.04

900.

0060

0.12

80.

015

0.01

900.

0005

0.00

610.

0003

121.

13.

212

314

YZ

02-1

8-3-

90.

0536

0.00

510.

143

0.01

40.

0194

0.00

050.

0073

0.00

0212

3.9

3.1

136

12Y

Z02

-18-

3-10

0.04

930.

0042

0.12

80.

011

0.01

880.

0004

0.00

610.

0002

120.

02.

712

210

YZ

02-1

8-3-

110.

0540

0.00

850.

135

0.02

10.

0181

0.00

070.

0053

0.00

0511

5.7

4.3

128

19Y

Z02

-18-

3-12

0.04

920.

0145

0.12

70.

037

0.01

870.

0009

0.00

690.

0008

119.

35.

912

133

YZ

02-1

8-3-

130.

0550

0.00

400.

138

0.01

00.

0183

0.00

040.

0057

0.00

0211

6.7

2.3

132

9Y

Z02

-18-

3-14

0.05

300.

0064

0.13

50.

016

0.01

850.

0005

0.00

660.

0003

118.

22.

912

914

Spot

Isot

opic

rat

ios

Age

(M

a)20

7 Pb/

206 P

b1s

m20

7 Pb/

235 U

1sm

206 P

b/23

8 U1s

m20

8 Pb/

232 T

h1s

m20

6 Pb/

238 U

1sm

207 P

b/23

5 U1s

m20

7 Pb/

206 P

b1s

m

Tabl

e 3

Con

tinu

ed

‘Early Paleozoic’ granitoids at Yanbian 495

YZ

02-1

8-3-

150.

0482

0.00

640.

123

0.01

60.

0185

0.00

050.

0056

0.00

0411

7.9

3.2

118

15Y

Z02

-18-

3-16

0.05

290.

0123

0.13

30.

030

0.01

830.

0008

0.00

500.

0006

116.

65.

112

727

YZ

02-1

8-3-

170.

0492

0.00

910.

128

0.02

30.

0189

0.00

070.

0062

0.00

0512

0.9

4.4

123

21Y

Z02

-18-

3-18

0.04

880.

0089

0.12

70.

023

0.01

890.

0007

0.00

660.

0005

121.

04.

112

221

YZ

02-1

8-3-

190.

0488

0.00

510.

122

0.01

30.

0181

0.00

040.

0062

0.00

0311

5.7

2.7

117

11Y

Z02

-18-

3-20

0.04

850.

0070

0.12

60.

018

0.01

880.

0005

0.00

480.

0004

120.

33.

112

016

Bai

lipin

g ba

thol

ith

(YZ

02-2

1-1)

YZ

02-2

1-2-

10.

0526

0.00

620.

135

0.01

60.

0186

0.00

050.

0056

0.00

0311

9.0

3.3

129

14Y

Z02

-21-

2-2

0.05

680.

0052

0.14

20.

013

0.01

820.

0004

0.00

530.

0002

116.

12.

713

511

YZ

02-2

1-2-

30.

0514

0.00

560.

127

0.01

40.

0179

0.00

050.

0056

0.00

0211

4.5

3.1

121

12Y

Z02

-21-

2-4

0.04

790.

0043

0.11

90.

010

0.01

810.

0004

0.00

580.

0002

115.

52.

611

510

YZ

02-2

1-2-

50.

0499

0.00

730.

126

0.01

80.

0183

0.00

060.

0056

0.00

0311

7.0

3.6

121

16Y

Z02

-21-

2-6

0.05

870.

0052

0.14

30.

013

0.01

770.

0004

0.00

500.

0002

113.

12.

713

611

YZ

02-2

1-2-

70.

0523

0.00

470.

126

0.01

10.

0175

0.00

040.

0054

0.00

0211

1.6

2.7

121

10Y

Z02

-21-

2-8

0.05

340.

0043

0.14

90.

012

0.02

020.

0005

0.00

630.

0002

128.

82.

814

110

YZ

02-2

1-2-

90.

0520

0.00

470.

138

0.01

20.

0193

0.00

050.

0055

0.00

0212

3.2

3.0

132

11Y

Z02

-21-

2-10

0.04

780.

0035

0.12

30.

009

0.01

860.

0004

0.00

520.

0001

118.

62.

411

78

YZ

02-2

1-2-

110.

0472

0.00

240.

116

0.00

60.

0179

0.00

030.

0049

0.00

0111

4.3

2.0

112

5Y

Z02

-21-

2-12

0.05

030.

0020

0.12

60.

005

0.01

810.

0003

0.00

500.

0001

115.

81.

912

05

YZ

02-2

1-2-

130.

0571

0.00

850.

142

0.02

10.

0181

0.00

060.

0050

0.00

0311

5.5

4.0

135

18Y

Z02

-21-

2-14

0.04

780.

0033

0.12

10.

008

0.01

830.

0004

0.00

510.

0001

116.

82.

311

67

YZ

02-2

1-2-

150.

0480

0.00

570.

123

0.01

40.

0186

0.00

050.

0052

0.00

0211

8.6

3.2

118

13Y

Z02

-21-

2-16

0.05

730.

0043

0.14

30.

010

0.01

810.

0004

0.00

560.

0002

115.

52.

513

59

YZ

02-2

1-2-

170.

0489

0.00

600.

122

0.01

50.

0181

0.00

050.

0057

0.00

0211

5.4

2.9

117

13Y

Z02

-21-

2-18

0.04

870.

0041

0.12

10.

010

0.01

810.

0004

0.00

530.

0002

115.

32.

511

69

YZ

02-2

1-2-

190.

0487

0.00

180.

120

0.00

40.

0178

0.00

030.

0051

0.00

0111

3.8

1.8

115

4Y

Z02

-21-

2-20

0.05

030.

0073

0.13

10.

019

0.01

880.

0006

0.00

610.

0003

120.

33.

612

517

YZ

02-2

1-2-

210.

0494

0.00

380.

123

0.00

90.

0180

0.00

040.

0054

0.00

0111

5.3

2.4

118

8Y

Z02

-21-

2-22

0.05

640.

0044

0.14

50.

011

0.01

860.

0004

0.00

610.

0002

118.

82.

613

710

YZ

02-2

1-2-

230.

0517

0.01

180.

140

0.03

10.

0197

0.00

090.

0076

0.00

0612

5.4

5.9

133

28Y

Z02

-21-

2-24

0.05

660.

0060

0.13

40.

014

0.01

720.

0005

0.00

520.

0002

110.

03.

012

812

YZ

02-2

1-2-

250.

0595

0.00

510.

144

0.01

20.

0176

0.00

040.

0053

0.00

0211

2.5

2.6

137

11Y

Z02

-21-

2-26

0.04

960.

0048

0.12

40.

012

0.01

820.

0004

0.00

560.

0002

116.

22.

811

911

YZ

02-2

1-2-

270.

0551

0.00

540.

139

0.01

30.

0183

0.00

050.

0050

0.00

0211

6.9

2.9

132

12

Spot

Isot

opic

rat

ios

Age

(M

a)20

7 Pb/

206 P

b1s

m20

7 Pb/

235 U

1sm

206 P

b/23

8 U1s

m20

8 Pb/

232 T

h1s

m20

6 Pb/

238 U

1sm

207 P

b/23

5 U1s

m20

7 Pb/

206 P

b1s

m

Tabl

e 3

Con

tinu

ed

496 Y. Zhang et al.

(Chen et al. 1982) and a whole rock Rb–Sr isochronage of 185–165 Ma (Fang 1992). Most workers haveconsidered that 517 Ma is the emplacement age(Fang 1992; Liu et al. 1994).

Seven aliquots (one to five grains per aliquot) ofzircon from monzogranite sample FW00-37 wereanalyzed by the TIMS method (Table 1). The datadefine a discordant line with lower and upperintercepts at 172 ± 10 Ma and 2525 ± 51 Ma,respectively (Fig. 2a). Five analyses were concor-dant or only slightly discordant, and they give aweighted mean 206Pb/238U age of 170 ± 6 Ma, which

is identical within error to the lower intercept ageof 172 ± 10 Ma. However, if the slightly discordantspot is excluded, the weighted mean 206Pb/238U ageis 168 ± 3 Ma (inset Fig. 2a). Therefore, 168 ± 3 Mais taken to represent the emplacement age of thisrock. SHRIMP U–Pb analyses on seven zircongrains from a sample of granodiorite (FW00-40)form a tight cluster on concordia (Table 2), andyield a weighted mean 206Pb/238U age of 171 ± 5 Ma(Fig. 2b), which is similarly interpreted as theemplacement age of this sample. Therefore, it isconcluded that the Huangniling batholith (bothmonzogranite and granodiorite) was emplaced at~170 Ma.

THE DAKAI BATHOLITH

The Dakai batholith is ~1000 km2 in area (Fig. 1b).It intruded into Archean and Early Paleozoicstrata and is covered by Jurassic sedimentaryrocks and Cenozoic basalt. The batholith is sepa-rated from the Huangniling, Mengshan and othergranitic bodies by a series of faults. The majorrock types are granodiorite and monzogranite,although the contact relationships between themcannot be clearly observed, because the area isheavily forested. Mineral alignment is clearly seenin the field, but the samples do not show anydeformation signature in thin section, suggestingit might be magmatic foliation rather thangneissosity.

It was previously thought that this body was acomponent of the Precambrian Helong granite-greenstone belt, because a zircon U–Pb age of1617 Ma was obtained (no data given) (Zeng et al.1994, 2001). However, other workers have consid-ered it as ‘Caledonian’, although no isotopic ageswere presented (JBGMR 1988).

Twenty-four analyses of 24 zircons from porphy-ritic monzogranite sample YZ02-2 were obtainedby LA-ICP–MS (Table 3). Eighteen concordantanalyses yield a weighted mean 206Pb/238U age of249 ± 4 Ma (Fig. 3a), which is interpreted as theemplacement age of the monzogranite. Theremaining analyses show much higher 207Pb/206Pbages, ranging from 1842 to 1113 Ma, indicatingthat they are inherited.

Fig. 4 U–Pb concordia diagrams of laser-ablation inductively-coupledplasma–mass spectrometry data for the Gaoling batholith (a) YZ02-33,and (b) YZ02-45.

Fig. 5 U–Pb concordia diagrams of laser-ablation inductively-coupled plasma–mass spectrometry data for the Bailiping batholith. (a) YZ02-12-3,(b) YZ02-22-2, (c) YZ02-25-2, (d) YZ02-27-2, (e) YZ02-28 (from the Dadongtun pluton), (f) YZ02-16-1 (from the Huanggou pluton), (g) YZ02-18-3,and (h) YZ02-21-1.

‘Early Paleozoic’ granitoids at Yanbian 497

498 Y. Zhang et al.

THE MENGSHAN BATHOLITH

The Mengshan batholith is located near Helongcity and has an area of ~400 km2 (Fig. 1b). Itintruded into Early Paleozoic strata and is sepa-rated from the Dakai batholith by a fault.

According to the results of a regional geologicalsurvey (Fang 1992; Mao 1994), the Mengshanbatholith is composed of two major rock types:monzogranite and granodiorite. The monzograniteis greyish-white in color, has a medium-grainedhypidiomorphic texture and a weak gneissic struc-ture; it also contains a few perthite phenocrysts.The rock consists of quartz (25–30%), K-feldspar(30–35%), plagioclase (45–50%), biotite (<2%) andhornblende (<2%), with accessory magnetite, apa-tite and zircon. The granodiorite is coarse-grainedwith a hypidiomorphic-granular texture, and iseither massive or weakly foliated. Perthite pheno-crysts are present locally. The major minerals arequartz (30–35%), plagioclase (55–60%), alkali feld-spar (10–15%) and small amounts of biotite (<2%),with accessory apatite, zircon and titanite.

The published age data of this batholith areinconsistent. Fang (1992) reported a zircon U–Pbage of 517 Ma, whereas Mao (1994) obtained a zir-con U–Pb age of 326 Ma (no errors were reported).These two ages, however, are considered unreli-able, because the data are discordant. The discov-ery of Carboniferous coral in xenoliths within thegranitoid implies that the intrusion could not beany earlier than 350 Ma (Shao & Tang 1995).

Three samples from this batholith were ana-lyzed by the LA-ICP–MS method (Table 3).Twenty analyses on 20 zircon grains from monzo-granite sample YZ02-5 are concordant and definea weighted mean 206Pb/238U age of 174 ± 3 Ma(Fig. 3b). Data for granodiorite samples YZ02-7and YZ02-10 give weighted mean 206Pb/238U agesof 181 ± 2 Ma and 184 ± 2 Ma (Figs 3c,d), respec-tively; slightly older than that of monzogranitesample YZ02-5. Therefore, this batholith formedbetween 184 and 174 Ma; no inherited zircon wasidentified.

THE GAOLING BATHOLITH

The Gaoling batholith is 850 km2 in area (Fig. 1b)and is intruded into Archean strata: it containsabundant xenoliths. The batholith is composed ofgranodiorite and monzogranite, with minor quartzdiorite. The granodiorite is a greyish-white in color,with a massive structure and hypidiomorphic-granular texture. It is fresh and free of alteration

and is composed of quartz (30–35%), plagioclase(50–55%), K-feldspar (15–20%) and biotite (±5%)with accessory apatite, zircon and titanite. Themonzogranite is light red in color, with a medium-to coarse-grained hypidiomorphic texture andweak gneissic structure. The main mineral com-ponents are quartz (25–30%), plagioclase (35–40%), K-feldspar (25–30%), with minor biotite(±5%) and hornblende (±5%) and rare titanite andzircon.

An earlier geological investigation suggestedthat this batholith was late ‘Caledonian’ or late‘Hercynian’ in age, but no precise age data wereprovided (JBGMR 1988). Two samples werechosen for the LA-ICP–MS analyses (Table 3).Sixteen analyses on 16 zircon grains from grano-diorite sample YZ02-33 are concordant and givea weighted mean 206Pb/238U age of 170 ± 3 Ma(Fig. 4a), which is interpreted as its emplacementage. Of the 16 U–Pb analyses of monzogranitesample YZ02-45, 13 concordant data spots yielda weighted mean 206Pb/238U age of 192 ± 2 Ma(Fig. 4b), which is also interpreted to represent itsemplacement age. Therefore, the rocks in thisbatholith were not emplaced in a single pulse, butover a period of at least 20 Ma (from 192 Ma to170 Ma).

THE BAILIPING BATHOLITH

This granitoid is located south of Helong cityand outcrops over more than 3000 km2 (Fig. 1b); itextends into Korea, where it is called the Kwan-mosong pluton (IGSASDK 1996). It intruded intoArchean metamorphic rocks and is covered byMesozoic strata and Cenozoic basalt. Locally, thebatholith is intruded by later granitoids and is cutby veins of fine-grained granitoid. The pluton iscomposed mainly of medium- to coarse-grainedgranitoids, including granodiorite, monzogranite,quartz diorite and tonalite. Granodiorite is grey-ish-white in color with a medium-grained hypidio-morphic texture and massive structure. It iscomposed of quartz (25–30%), plagioclase (50–60%), K-feldspar (10–20%) and biotite (5%), withminor hornblende (<2%). Monzogranite is light redin color, with a medium-grained hypidiomorphictexture, massive structure, and containing localperthite phenocrysts. The mineralogy is quartz(25–30%), K-feldspar (30–50%) and plagioclase(20–30%), with minor biotite (<2%) and hornblende(<2%). The accessory minerals are magnetite, apa-tite and zircon. The quartz diorite is gray in color,with a medium-grained granular texture with

‘Early Paleozoic’ granitoids at Yanbian 499

massive structure. Plagioclase phenocrysts arepresent locally. The major mineral phases arequartz (3–5%), plagioclase (70–75%), K-feldspar(20–30%), biotite (5%) and hornblende (±5%), withaccessory apatite, zircon and titanite. Tonalite isgreyish-white in color, with a gneissic structureand hypidiomorphic-granular texture. The miner-alogy is quartz (30–35%), plagioclase (60–70%) andK-feldspar (3–5%), with minor biotite (±5%), horn-blende (<2%), titanite and zircon.

In addition to the above rock types, diorite isdeveloped in the southern part of the batholith andis called the Dadongtun pluton. This rock is graywith a medium-grained hypidiomorphic textureand massive structure. The mineralogy is mainlyhornblende (40–45%) and plagioclase (60–65%),with accessory apatite, magnetite and zircon. Inthe central part of the Bailiping batholith, there isalso a syenogranitic intrusion named the Huang-gou pluton. This is light red in color, with a coarse-grained hypidiomorphic texture and massivestructure. The mineral assemblage is quartz (20–30%), plagioclase (20–40%) and K-feldspar (50–60%), with minor biotite (<1%) and accessoryzircon and magnetite.

Li et al. (1992) reported a zircon U–Pb age of2293 Ma for the Bailiping granodiorite, so it wasthen considered to be part of the PrecambrianHelong granite-greenstone belt and the oldestgranitoid in the Yanbian area (Shen et al. 1994;Zeng et al. 1994, 2001). However, other workersconsidered the batholith as ‘Caledonian’, based onthe biotite K–Ar age (329 Ma) of the tonalite(JBGMR 1988).

Because this batholith shows a wide range oflithological types, we selected eight samples tocover the range (Table 3). Twenty analyses fromdeformed tonalite sample (YZ02-12-3; Fig. 5a)show that, except for two discordant data points,all data are concordant to slightly discordant. Theyfall into two groups: (i) nine data points have 207Pb/206Pb ages ranging from 2500 Ma to 2354 Ma,giving a weighted mean 207Pb/206Pb age of2410 ± 31 Ma, which is consistent with reportedzircon U–Pb ages (~2.5 Ga) from the Archeangneiss in this region (JBGMR 1988); (ii) the othernine data points are tightly clustered, yielding aweighted mean 206Pb/238U age of 285 ± 9 Ma. Theage of 285 ± 9 Ma is taken to represent theemplacement age of the tonalite, and 2410 ± 31 Maas either inherited from the protolith or the resultof contamination during magmatic ascent.

U–Pb analyses of monzogranite samples YZ02-22-2, YZ02-25-2 and YZ02-27-2 are shown in

Figure 5b–d. They give weighted mean 206Pb/238Uages of 245 ± 6 Ma, 245 ± 3 Ma and 248 ± 2 Ma,respectively, which are consistent within errorand are therefore interpreted as recording theemplacement age of the monzogranite.

Twenty analyses obtained from a diorite samplefrom the Dadongtun pluton (YZ02-28) yield aweighted mean 206Pb/238U age of 178 ± 2 Ma(Fig. 5e). Twelve analyses from the syenogranitesample (YZ02-16-1) from the Huanggou plutonyield a weighted mean 206Pb/238U age of 187 ± 3 Ma(Fig. 5f). These data indicate that two plutons wereemplaced in the Jurassic, but they are not coeval,because the two ages are not identical within error.

Interestingly, the analyses of granodiorite sam-ple YZ02-18-3 and quartz diorite sample YZ02-21-1 give younger ages. Twenty analyses of 20 zircongrains from YZ02-18-3 are shown in Figure 5g.The main population of 18 analyses give a tightlyconstrained 206Pb/238U age of 119 ± 2 Ma, whereas27 analyses from YZ02-21-1 yield a weighted mean206Pb/238U age of 116 ± 1 Ma (Fig. 5h). These rockswere therefore emplaced during the Cretaceous.

In summary, our age data clearly indicate thatthese batholiths were not emplaced in the EarlyPaleozoic, because no such age data have beenidentified. Some batholiths are composite with sev-eral pulses of intrusion. For example, the Bailipingbatholith formed by at least four separate pulsesof magmatism (Early Permian [285 ± 9 Ma], EarlyTriassic [248–245 Ma], Jurassic [187–178 Ma] andCretaceous [119–116 Ma]) and is thus a complexbatholith.

DISCUSSION

AGES OF THE SO-CALLED ‘CALEDONIAN’ GRANITOIDS

The assignment of a ‘Caledonian’ age to the gran-itoids in the Yanbian area was made on the basisof apparent gneissic structure and questionableage data. Our field observations indicate that thegneissic structure of most intrusions is of limitedextent, being confined to discrete shear zones. Onlythe tonalite (YZ02-12-3) in the Bailiping batholith isfoliated throughout. This indicates that most ofthese granitoids did not undergo regional meta-morphism and deformation and in some cases thegneissic structure can be interpreted as magmaticfoliation. Previous zircon U–Pb geochronologicaldata obtained by multigrain methods show highdegrees of discordance. Therefore these ages areunreliable. In this study, we selected fresh samplesthat showed typical magmatic crystallization tex-

500 Y. Zhang et al.

tures and were free of alteration. In the U–Pb dia-grams, most analyses are concordant or show onlyweak discordance. Thus the statistical average of206Pb/238U ages from these samples are likely to rep-resent their emplacement ages. These data indicatethat the emplacement of these granitoids took placefrom the Late Paleozoic to Late Mesozoic, not in theEarly Paleozoic, as previously considered.

Recently, other ‘Caledonian’ granitoids locatedalong the northern margin of the NCC have alsobeen investigated (Fig. 6). The Shichangtun plu-ton, located in Gongzhuling city, has a publishedwhole-rock Rb–Sr isochron age of 394 Ma(JBGMR 1988; no analytical details). However, arecent 206Pb/238U zircon age of 184 ± 2 Ma showsthat it formed in the Jurassic (Sun 2001). Similarly,

the Dayushan pluton, located in Panshi county,was reported to have biotite K–Ar ages of 408and 419 Ma, and an apatite U–Pb age of 400 Ma(JBGMR 1988; Fang 1992). However, our recentzircon U–Pb analyses indicate that it formed inthe Late Permian at 248 ± 4 Ma (Wu et al. 2004c).Finally the Liangjiadian pluton in Shulan county(Fig. 6) has a zircon 206Pb/238U age of 192 ± 2 Ma(Wu, unpubl. data, 2003), but not Early Paleozoicas quoted by the JBGMR (1988).

In summary, none of the so-called ‘Caledonian’granitoids along the northern margin of the east-ern NCC in Jilin Province were emplaced in theEarly Paleozoic. The present age data clearly indi-cate that they were emplaced in four episodes(Table 4, Fig. 7): (i) Early Permian (tonalite,

Fig. 6 Distribution map of so-called‘Caledonian’ granites in Jilin Province,northeast China.

Table 4 Summary of zircon U–Pb ages for granitoids from the Yanbian area

Batholith Sample Sample location Rock type Age (Ma)

Huangniling FW00-37 N42∞52¢1≤ E128∞02¢30≤ Monzogranite 168 ± 3FW00-40 N42∞55¢12≤ E127∞38¢11≤ Granodiorite 171 ± 5

Dakai YZ02-2 N42∞52¢15≤ E128∞30¢32≤ Monzogranite 249 ± 4Mengshan YZ02-5 N42∞54¢49≤ E128∞43¢20≤ Monzogranite 174 ± 3

YZ02-7 N42∞55¢56≤ E128∞42¢29≤ Granodiorite 181 ± 2YZ02-10 N42∞49¢58≤ E128∞53¢40≤ Granodiorite 184 ± 2

Gaoling YZ02-33 N42∞27¢53≤ E129∞15¢20≤ Granodiorite 170 ± 3YZ02-45 N42∞37¢16≤ E129∞12¢01≤ Monzogranite 192 ± 2

Bailiping YZ02-12-3 N42∞28¢46≤ E128∞56¢12≤ Tonalite 285 ± 9YZ02-22-2 N42∞12¢14≤ E128∞49¢21≤ Monzogranite 245 ± 6YZ02-25-2 N42∞10¢57≤ E128∞44¢58≤ Monzogranite 245 ± 3YZ02-27-2 N42∞03¢10≤ E128∞49¢32≤ Monzogranite 248 ± 2YZ02-28 N42∞04¢19≤ E128∞54¢16≤ Diorite 178 ± 2YZ02-16-1 N42∞21¢58≤ E128∞39¢38≤ Syenogranite 187 ± 3YZ02-18-3 N42∞20¢20≤ E128∞50¢15≤ Granodiorite 119 ± 2YZ02-21-1 N42∞13¢34≤ E128∞47¢55≤ Quartz diorite 116 + 1

‘Early Paleozoic’ granitoids at Yanbian 501

285 Ma); (ii) Early Triassic (monzogranite, 245–249 Ma); (iii) Jurassic (granodiorite–monzogranite,192–168 Ma); and (iv) Cretaceous (diorite–granodiorite, 119–116 Ma). Therefore, until any‘Caledonian’ ages can be verified using precisemodern geochronological techniques, we recom-

mend that this term ceases to be used for rocks inthis area.

TECTONIC IMPLICATIONS

A major controversy in the Yanbian area is thetiming of collision between the NCC and theJiamusi–Khanka Massif. Based on an isochron ageof 455 Ma (no details published) for calc-alkalinevolcanic rocks and the presence of an unconfor-mity between Middle and Upper Silurian strata,it was suggested that collision took place in theSilurian, following Ordovician subduction thatresulted in the formation of the ‘Caledonian’ gran-itoids (JBGMR 1988; Tang 1990; Zhao et al. 1996;Wang et al. 1997). However, other lines of evidence,including paleobotany, the timing of magmatismand metamorphism, argue that collision took placein the Early Triassic (Shao & Tang 1995; Peng &Su 1997; Zhang 1997; Peng et al. 2002).

In terms of granitic magmatism, it was proposedthat there were younging trends away from boththe NCC and the Jiamusi Massif (Fig. 8; Li et al.1992; Zhao et al. 1996, 1997). In the southwesternpart of the Jiamusi Massif, Neoproterozoic gran-

Fig. 7 Geochronological framework of the Phanerozoic graniticmagmatism in the Yanbian area of northeast China.

Fig. 8 Proposed tectonic evolution-ary model of northeast China in termsof granitic magmatism (after Zhao et al.1996). Arrows show proposed mag-matic younging trends away from stablecontinental blocks (see text for details).

502 Y. Zhang et al.

ites were reported, together with Early Paleozoicgranitic plutons developed along the Zhang-guangcai Range and Late Paleozoic granites fur-ther to the west (Li & Zhao 1992; HBGMR 1993).At the northern margin of the NCC, the graniteschanged from Early ‘Caledonian’ to Late Paleozoic‘Hercynian’ and Triassic ‘Indosinian’ (Zhao et al.1996; Zhao et al. 1997; Jia et al. 2004). Therefore, itwas concluded that the NCC collided with the Jia-musi–Khangka Massif during the Triassic result-ing in the development of S-type garnet-bearinggranites, such as the Dongqing pluton, along thesuture (Fang 1992; Shao & Tang 1995; Peng & Su1997; Zhang 1997; Peng & Zhao 2001). In a similarmodel, Jia et al. (2004) proposed that the collisionof the NCC and the Khanka Massif took placeduring the Late Permian to Early Triassic. Theysuggested that the collision was marked in theLate Permian molasse formation known as theKaishantun and Jiefangcun Groups, which arelocated in the western and eastern part of the Yan-bian area. In addition, Jia et al. (2004) recognizeda large scale Late Paleozoic–Early Triassic syn-collisional granitoid belt that stretches fromDunhua to Kaishantun and includes the Liang-bing, Shimen, Weizigou and Sandaogou plutons.

However, recent studies have indicated that theso-called Neoproterozoic granites within the Jia-musi Massif were formed in the late Paleozoic (Wuet al. 2001; Wilde et al. 2003) and those consideredto be Early Paleozoic were emplaced in the Meso-zoic (Wu et al. 2004c). The proposed granitic belt,therefore, cannot be syn-collisional because thegranitoids were emplaced in the Mesozoic(182 ± 2 Ma for Shimen; 170 ± 1 Ma for Weizigou;and 205 ± 1 Ma for Sandaogou; Zhang 2002).Detailed petrological, geochemical and geochrono-logical data indicate that the so-called syn-collisional Dongqing pluton is actually a JurassicI-type granite (Wu et al. 2004b). According to ourdata compilation (Sun 2001; Zhang 2002), the gran-itoids in the eastern part of northeast China weremainly emplaced in the Mesozoic, with only a fewLate Permian granitoids occurring along thenorthern margin of the NCC. Therefore, themodel advocating the Triassic collision betweenthe NCC and the Jiamusi–Khanka Massif is notsupported by the age data from the granitoid belts.

Permian granitoid rarely occurs in the Yanbianarea. The terrane collision and oceanic closure inthe CAOB probably took place at ~250 Ma. Thismight be manifested in the timing of metamor-phism of the Hulan Group at ~250 Ma and occur-rence of late Triassic A-type granites and

postorogenic mafic-ultramafic complexes (Wu et al.2002, 2004a,c). This conclusion is also supported bytectonic analyses and granitoid dating in InnerMongolia to the west (Chen et al. 2000; Xiao et al.2003). Therefore, we propose that the 285 ± 9 Matonalite from the Bailiping batholith is pre-collisional and that the Triassic granitoids aresyn-collisional. However, this collision is not theone between the NCC and the Jiamusi–KhankaMassif, because Triassic granitoids are not devel-oped along the western side of the latter. Instead,we prefer to interpret this as an arc-continent col-lision related to closure of the Paleo-Asian Ocean.

Traditionally, the collision between the Jiamusi–Khanka Massif and a continent to the west wasconsidered to be represented by the blueschistfacies Heilongjiang Complex developed along thewestern part of the Jiamusi Massif. It was consid-ered that metamorphism took place in the EarlyPaleozoic (HBGMR 1993). However, recent Ar–Aranalyses on muscovite and biotite indicate a meta-morphic age of ~180 Ma (Wu, unpubl. data, 2003),which is coeval with the Jurassic granitoids hereand in the Zhangguangcai Range (Wu et al. 2004d).Therefore, we suggest that the Jurassic granitoidswere related to subduction of the Paleo-Pacificplate and subsequent collision of the Jiamusi–Khanka Massif with the amalgamated continent,which is also supported by the development ofJurassic accretionary complexes in Japan andnortheast China (Shao & Tang 1995; Isozaki 1997).As for the tectonic regime in the Early Cretaceous,an extensional anorogenic setting is favored,because coeval A-type plutons are widely distrib-uted in northeast and eastern China along theeastern Asian continental margin (Wu et al. 2002).

CONCLUSIONS

The present U–Pb geochronological study leads tothe following conclusions:1. The granitoids from the Yanbian area, near the

northern margin of the NCC, include diorite,granodiorite and monzogranite. Their petro-graphic features suggest that they are I-types.Most granitoids are massive, with a weak mag-matic foliation, although a gneissic structure isobserved in the Bailiping tonalite.

2. Zircon U–Pb analyses indicate that these gran-itoids were emplaced in the Late Paleozoic toLate Mesozoic (285–116 Ma) in four episodes:(i) Early Permian (tonalite at 285 Ma); (ii) EarlyTriassic (monzogranite at 249–245 Ma); (iii)

‘Early Paleozoic’ granitoids at Yanbian 503

Jurassic (granodiorite–monzogranite between192 and 168 Ma); and (iv) Cretaceous (diorite–granodiorite at 119–116 Ma). None of thesegranitoids are ‘Caledonian’ in age, hence theterm should no longer be used.

3. The temporal and spatial distribution of thegranitoids indicates that the Permian tonalitewas probably emplaced during the subductionof the Paleo-Asian Ocean beneath the NCC.The Early Triassic granitoids were probablyproduced during the collision of the NCC withoceanic arcs during final closure of the Paleo-Asian Ocean. The Jurassic granitoids weremost probably related to subduction of thePaleo-Pacific Ocean and subsequent collision ofthe Jiamusi–Khanka Massif with the Asian con-tinent. However, the Early Cretaceous grani-toids formed in an anorogenic tectonic setting.

ACKNOWLEDGEMENTS

The first author thanks the laboratory staff ofNorthwest University, Xi’an, China, particularlyLiu Xiaoming and Yuan Honglin, for theirinstruction in ICP–MS analytical work. Construc-tive reviews by B. M. Jahn and B. Chen have sub-stantially improved the paper. This study wassupported financially by the National Natural Sci-ence Foundation Grants 40325006 to F. Y. Wu and40234050 to M. G. Zhai, and by a China GeologicalSurvey Grant 200113000052 to F. Y. Wu.

REFERENCES

BI S. Y., WANG D. R., JIA D. C. & SHAO J. B. 1995. [Thebasic characteristics of the structure of the terrain inJilin province.] Jilin Geology 14, 1–14 (in Chinesewith English abstract).

CHEN B., JAHN B. M., WILDE S. & XU B. 2000. Twocontrasting Paleozoic magmatic belts in northernInner Mongolia, China: petrogenesis and tectonicimplications. Tectonophysics 328, 157–82.

CHEN Z. L., ZHAO C. J., LI Z. T. & CHEN D. L. 1982.The Caledonian granite belt in southern Jilin Prov-ince. Bulletin of the Shenyang Institute of Geologyand Mineral Resources, Chinese Academy of Geo-logical Sciences 3, 29–46.

DOBRETSOV N. L., BEERZIN N. A. & BUSLOV M. M.1995. Opening and tectonic evolution of the Paleo-Asian ocean. International Geology Review 37, 335–60.

FANG W. C. 1992. [The Granitoids and their Min-eralizations in Jilin Province.] Jilin Publishing

House of Science and Technology, Changchun (inChinese).

FENG R., MACHADO N. & LUDDEN J. 1993. Lead geo-chronology of zircon by laser-inductively coupledplasma mass spectrometry (ICPMS). Geochimica etCosmochimica Acta 57, 3479–86.

HEILONGJIANG BUREAU OF GEOLOGY AND MINERAL

RESOURCES (HBGMR). (eds.) 1993. [Regional Geol-ogy of Heilongjiang Province.] Geological PublishingHouse, Beijing (in Chinese with English abstract).

HIRATA T. & NESBITT R. W. 1995. U–Pb isotope geo-chronology of zircon: evaluation of the laser probe-inductively coupled plasma mass spectrometrytechnique. Geochimica et Cosmochimica Acta 59,2491–500.

HORN I., RUDNICK R. L. & MCDONOUGH W. F. 2000.Precise elemental and isotope ratio determinationby simultaneous solution nebulization and laserablation-ICP–MS: application to U–Pb geochronol-ogy. Chemical Geology 167, 405–25.

INSTITUTE OF GEOLOGY, STATE ACADEMY OF SCI-

ENCES, DPR OF KOREA (IGSASDK). (eds.) 1996.Geology of Korea. Foreign Languages Books Pub-lishing House, Pyongyang.

ISOZAKI Y. 1997. Jurassic accretion tectonics of Japan.Island Arc 6, 25–51.

JAHN B. M., WU F. Y. & CHEN B. 2000a. Massive gran-itoid generation in central Asia: Nd isotopic evidenceand implication for continental growth in the Phan-erozoic. Episodes 23, 82–92.

JAHN B. M., WU F. Y. & CHEN B. 2000b. Granitoids ofthe Central Asian Orogenic Belt and continentalgrowth in the Phanerozoic. Transactions of theRoyal Society of Edinburgh: Earth Sciences 91, 181–93.

JILIN BUREAU OF GEOLOGY AND MINERAL

RESOURCES (JBGMR). (eds.) 1988. [Regional Geol-ogy of Jilin Province.] Geological Publishing House,Beijing (in Chinese with English abstract).

JIA D. C. 1995. [A preliminary study on the geologicfeatures of the Yanji terrain and its structural evolu-tion.] Jilin Geology 14, 40–4 (in Chinese with Englishabstract).

JIA D. C. & GUO L. 1995. [The Paleozoic granitic rocksevolutionary stages in the northern part of Jilin prov-ince and their tectonic setting.] Jilin Geology 14, 64–70 (in Chinese with English abstract).

JIA D. C., HU R. Z., LU Y. & QIU X. L. 2004. Collisionbelt between the Khanka block and the North Chinablock in the Yanbian Region, Northeast China. Jour-nal of Asian Earth Sciences 23, 211–19.

KOSLER J., FONNELAND H., SYLVESTER P., TUBRETT

M. & PEDERSEN R. B. 2002. U–Pb dating of detrialzircons for sediment provenance studies—a compar-ison of laser ablation ICPMS and SIMS techniques.Chemical Geology 182, 605–18.

KROGH T. E. 1973. A low-contamination method forhydrothermal decomposition of zircon and extraction

504 Y. Zhang et al.

of U and Pb for isotopic age determinations.Geochimica et Cosmochimica Acta 37, 485–94.

KROGH T. E. 1982. Improved accuracy of U–Pb zircondating by the creation of more concordant systemsusing air abrasion technique. Geochimica et Cosmo-chimica Acta 46, 637–49.

LI H. M., DONG C. W., XU X. S. & ZHOU X. M. 1995.[The single grain zircon U–Pb ages of the Quanzhougabbro—the origin of mafic igneous rocks in South-east Fujian Province.] Chinese Science Bulletin 40,158–60 (in Chinese).

LI X. H., LIANG X. R., SUN M., GUAN H. & MALPAS G.2001. Precise 206Pb/238U age determination on zirconby laser ablation microprobe-inductively coupledplasma-mass spectrometry using continuous linearablation. Chemical Geology 175, 209–19.

LI Z. T., ZHAO C. J. & ZHU Q. 1992. Generation andevolution of the granitoids in east Jilin andHeilongjiang Province. In Geological Society ofChina. Collection of Conference on ‘Seven-Five’ Geo-logical and Technique Study, pp. 237–40. BeijingScience and Technique Press, Beijing.

LIU D. Z., QU S. & WANG X. G. 1994. [The basic geo-logical features of the Huangniling rock body.]Jilin Geology 13, 41–9 (in Chinese with Englishabstract).

LUDWIG K. R. 1999. Isoplot/Ex (v. 2.06)—A Geochrono-logical Toolkit for Microsoft Excel. Special Publica-tion 1a. Geochronology Center, Berkeley.

MAO Q. 1994. [Petrochemistry and tectonic setting ofMengshan pluton, eastern Jilin province.] Journal ofHebei College of Geology 17, 541–6 (in Chinese withEnglish abstract).

NELSON D. R. 1997. Compilation of SHRIMP U-Pb zir-con geochronology data, 1996. Geological Survey ofWestern Australia, Record 1997/2.

PENG Y. J. & SU Y. Z. 1997. [Geotectonic characteristicsof central Jilin Province.] Memoirs of ShenyangInstitute of Geology and Mineral Resources, Chi-nese Academy of Geological Sciences 5–6, 335–76 (inChinese with English abstract).

PENG Y. J., JI C. H. & XIN Y. L. 2002. [Petrology andgeochronology of the paleo-Jilin–Heilongjiang oro-genic belt in the adjacent areas of China, Russia andKorea.] Jilin Geology 11, 65–75 (in Chinese withEnglish abstract).

PENG Y. J. & ZHAO C. B. 2001. [The evolution of thePaleo Jihei orogenic belt and accretion of the conti-nental crust.] Jilin Geology 20, 1–9 (in Chinese withEnglish abstract).

SENGÖR A. M. C. & NATAL’IN B. A. 1996. Paleotectonicsof Asia: Fragments of a synthesis. In Yin A. & Har-rison M. (eds.) The Tectonic Evolution of Asia. Cam-bridge University Press, Cambridge.

SENGÖR A. M. C., NATAL’IN B. A. & BURTMAN V. S.1993. Evolution of the Altaid tectonic collage andPalaeozoic crustal growth in Eurasia. Nature 364,299–307.

SHAO J. A. & TANG K. D. 1995. [Terranes in NortheastChina and Evolution of Northeast Asia ContinentalMargin.] Seismological Press, Beijing (in Chinesewith English summary).

SHAO J. A., MOU B. L., HE G. Q. & ZHANG L. Q. 1997.[The geological process of the northern region ofnorth China in the tectonic overprinting process ofPalaeoasia and Pacific regimes.] Science in China(D) 27, 390–4 (in Chinese).

SHEN B. F., LUO H., LI S. B. et al. (eds.) 1994. [Geologyand Metallization of Archean Greenstone Belts inNorth China Platform.] Geological PublishingHouse, Beijing (in Chinese with English abstract).

SUN D. Y. 2001. [Petrogenesis and geodynamic signifi-cance of the Mesozoic granites in the ZhangguangcaiRange.] PhD Thesis, Jilin University, China (inChinese with English abstract).

TANG K. D. 1990. Tectonic development of Paleozoicfoldbelts at the north margin of the Sino-KoreanCraton. Tectonics 9, 249–60.

TIAN Y. C. 1999. [Geological background, gold ore-forming condition and prospecting direction in thesoutheastern margin of Jiamusi uplift.] Journal ofGuilin Institute of Technology 19, 303–9 (in Chinesewith English abstract).

WANG X. W. & LIU Y. Y. 1997. [Pre-Mesozoic tectonicevolution and its relation with development of lateMesozoic basins in Northeastern China.] Geo-sciences 11, 434–43 (in Chinese with Englishabstract).

WANG Y. Q., SU Y. Z. & LIU E. 1997. [Regional Strati-graphy of Northeastern China.] University of Geo-sciences Press, China (in Chinese with Englishsummary).

WILDE S. A., WU F. Y. & ZHANG X. Z. 2003. LatePan-African magmatism in northeastern China:SHRIMP U–Pb zircon evidence from granitoids inthe Jiamusi Massif. Precambrian Research 122,311–27.

WILLIAMS I. S. 1998. U–Th–Pb geochronology by ionmicroprobe. In McKibben M. A., Shanks W. C. III &Ridley W. I. (eds.) Applications of MicroanalyticalTechniques to Understanding Mineralizing Pro-cesses. Reviews in Economic Geology 7, 1–35.

WU F. Y., JAHN B. M., WILDE S. A. & SUN D. Y. 2000.Phanerozoic crustal growth: Sr–Nd isotopic evidencefrom the granites in northeastern China. Tectono-physics 328, 89–113.

WU F. Y., SUN D. Y., JAHN B. M. & WILDE S. A. 2004b.A Jurassic garnet-bearing granitic pluton from NEChina showing tetrad REE patterns. Journal ofAsian Earth Sciences (in press).

WU F. Y., SUN D. Y., LI H. M., JAHN B. M. & WILDE

S. A. 2002. A-type granites in Northeastern China:age and geochemical constraints on their petrogene-sis. Chemical Geology 187, 143–73.

WU F. Y., WILDE S. A. & SUN D. Y. 2001. [ZirconSHRIMP ages of gneissic granites in Jiamusi Massif,

‘Early Paleozoic’ granitoids at Yanbian 505

northeastern China.] Acta Petrologica Sinica 17,443–52 (in Chinese with English abstract).

WU F. Y., WILDE S. A., SUN D. Y. & ZHANG G. L. 2004a.Geochronology and petrogenesis of post-orogenicCu, Ni-bearing mafic–ultramafic intrusions in Jilin,NE China. Journal of Asian Earth Sciences (inpress).

WU F. Y., WILDE S. A., SUN D. Y., ZHANG Y. B. &YANG J. H. 2004d. Geochronology and tectonicimplications of the Mesozoic I-type granites in theNorthern Zhangguangcai Range, NE China. Lithos(in press).

WU F. Y., ZHAO G. C., SUN D. Y., WILDE S. A. & ZHANG

G. L. 2004c. Final Closure of the Paleo-Asian Oceanin NE China: Evidence from the Hulan Group incentral Jilin Province. Chemical Geology (in press).

XIAO W. J., WINDLEY B., HAO J. & ZHAI M. G. 2003.Accretion leading to collision and the PermianSolonker suture, Inner Mongolia, China: terminationof the Central Asian Orogenic Belt. Tectonics,2002TC001484.

YUAN H. L., WU F. Y., GAO S., LIU X. M., XU P. &SUN D. Y. 2003. Determination of U–Pb age andtrace element of zircons of Cenozoic intrusion inNE by laser-ablation inductively coupled plasmamass spectrometry. Chinese Science Bulletin 48,2411–21.

ZENG Q. D., DAI X. Y. & LIU S. C. 1994. [Structuraldeformation sequence of the Jinchengdong green-stone belt.] Jilin Geology 13, 60–8 (in Chinese withEnglish abstract).

ZENG Q. D., SHEN Y. C. & DAI X. Y. 2001. [The geolog-ical and geochemical features of Proterozoic granitesin Jinchengdong regions, Jilin Province.] Geologyand Prospecting 37, 79–81 (in Chinese with Englishabstract).

ZHANG J. F. 1997. [A preliminary study on the Paleosu-ture zone between the Xingkai and Bohai Block inthe Yanbian area.] Jilin Geology 16, 30–7 (in Chinesewith English abstract).

ZHANG Y. B. 2002. [Isotopic geochronological frame-work of granitic magmatism in the Yanbian area, NEChina.] Ph.D. Thesis, Jilin University, China (inChinese with English abstract).

ZHAO C. J., PENG Y. J., DANG Z. X. et al. 1996. [Tectonicframework and crust evolution of Eastern Jilin andHeilongjiang Province.] Liaoning University Press,Shenyang (in Chinese with English abstract).

ZHAO C. J., ZHU Q., TAI C. B., DANG Z. X., DANG Y. S.& WANG C. S. 1997. [Geotectonic evolution of theZhangguangcailing tectonic belt.] Memoirs of Shen-yang Institute of Geology and Mineral Resources,Chinese Academy of Geological Sciences 5–6, 309–33(in Chinese with English abstract).


Recommended