+ All Categories
Transcript

Non-Maximal Decimated Filter Bank (NMDFB) and

Its Application in Wideband Signal Processing

Dec 6, 2012

Xiaofei Chen

2

Non-Maximal Decimated Filter Bank

3

Non-Maximal Decimated Filter Bank, Contโ€™d

4

Non-Maximal Decimated Filter Bank, Contโ€™d

๐‘Œ (๐‘ )= 1๐ท๐‘ฎ1ร—๐‘€

๐‘‡ ( ๐’ )๐•‚๐‘€ ร—๐‘€ (๐’ )โ„๐‘€ ร—๐ท ( ๐’ ) ๐‘ฟ ๐ทร—1 ( ๐’ )= 1๐ท๐‘ป๐•‚

1ร—๐ท ( ๐’ ) ๐‘ฟ๐ทร— 1 ( ๐’ )

๐‘ป๐•‚1ร—๐ท (๐’ )โ‰๐‘ฎ1ร—๐‘€

๐‘‡ (๐’ )๐•‚๐‘€ร—๐‘€ ( ๐’ )โ„๐‘€ ร—๐ท (๐’ )= [๐‘‡ ๐‘ ๐•‚ (๐‘ )๐‘ป ๐ด

๐•‚ (๐‘ ) ]๐‘Œ (๐‘ )= 1

๐ท๐‘‡ ๐‘ 

๐•‚ (๐‘ )๐‘‹ (๐‘ )+ 1๐ท๐‘ป ๐ด

๐•‚ (๐‘ ) ๐‘ฟ (๐‘ )

5

Non-Maximal Decimated Filter Bank, Contโ€™d

๐ป (๐‘๐‘Š ๐ท๐‘‘ )๐บ (๐‘ )=0 , โˆ€๐‘‘=1 ,โ€ฆ,๐ทโˆ’1

โˆ‘๐‘š=0

๐‘€โˆ’1

๐ป (๐‘๐‘Š๐‘€๐‘š )๐บ (๐‘๐‘Š๐‘€

๐‘š )=๐‘โˆ’๐‘›๐ท

Aliasing Cancellation Condition:

Perfect Reconstruction Condition:

6

Polyphase Implementation of NMDFB (AFB)

M-path Partition of the mth channel filter:

7

Polyphase Implementation of NMDFB (SFB)

M-path Partition of the mth channel synthesis filter:

8

Filtering with NMDFB

NMDFB filter:

๐‘Œ ๐‘“ (๐‘ )=๐‘‡ ๐‘ ๐•‚ (๐‘ ) ๐‘‹ (๐‘ )+๐‘ป ๐ด

๐•‚ (๐‘ ) ๐‘ฟ (๐‘ )โ‰…๐‘‡ ๐‘ ๐•‚ (๐‘ ) ๐‘‹ (๐‘ )

Time Domain filter:

๐‘Œ ๐‘ก (๐‘ )=๐‘† (๐‘ )๐‘โˆ’๐‘›๐ท ๐‘‹ (๐‘ )

9

Filtering with NMDFB, Contโ€™d

Error between two filtering models:

Error Transfer Function:

โ„ฐ (๐‘ )=๐‘Œ ๐‘ก (๐‘ )โˆ’๐‘Œ ๐‘“ (๐‘ )= [๐‘‡ ๐‘ ๐•‚ (๐‘ )๐‘๐‘›๐‘‘โˆ’๐‘† (๐‘ ) ] ๐‘‹ (๐‘ )๐‘โˆ’๐‘›๐‘‘

10

Filtering with NMDFB, Contโ€™d

Piecewise Constant Approximation:

Linear Interpolation

~h๐‘๐‘Œ๐‘„ (๐‘›)= 1๐‘€๐‘†๐ผ๐‘๐ถ2( 1๐‘€ ๐‘›) , ๐‘“๐‘œ๐‘Ÿ โˆ’๐‘›๐‘‘โ‰ค๐‘›โ‰ค๐‘›๐‘‘

~๐ป๐‘๐‘Œ๐‘„ (๐œ”โˆ’๐œ”๐‘š)={1โˆ’|๐œ”โˆ’๐œ”๐‘š

2๐œ‹ /๐‘€ |,๐œ”โˆˆ[๐œ”๐‘šโˆ’2๐œ‹๐‘€,๐œ”๐‘š+ 2๐œ‹

๐‘€]

0 , h๐‘‚๐‘ก ๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

11

Filtering with NMDFB, Contโ€™d

Piecewise Constant Approximation Performance:

|๐‘‡ โ„ฐ ,๐‘š๐‘…๐‘’ (๐œ” )|โ‰ค |๏ฟฝฬ‡๏ฟฝ๐‘…๐‘’ (๐œ” )|

๐œ”โˆˆ [๐œ”๐‘šโˆ’๐œ‹๐‘€,๐œ”๐‘šยฑ

๐œ‹๐‘€ ]Max

โˆ™๐œ‹๐‘€

=๐ตโ„ฐ ,๐‘š๐‘…๐‘’

|๐‘‡ โ„ฐ ,๐‘š๐ผ๐‘š (๐œ” )|โ‰ค |๏ฟฝฬ‡๏ฟฝ๐ผ๐‘š (๐œ” )|

๐œ”โˆˆ [๐œ”๐‘šโˆ’๐œ‹๐‘€,๐œ”๐‘šยฑ

๐œ‹๐‘€ ]Max

โˆ™๐œ‹๐‘€

=๐ตโ„ฐ ,๐‘š๐ผ๐‘š

|๐‘‡ โ„ฐ ,๐‘š (๐œ” )|โ‰คโˆš (๐ตโ„ฐ ,๐‘š๐‘…๐‘’ )2+(๐ตโ„ฐ ,๐‘š

๐ผ๐‘š )2โ‰๐ตโ„ฐ ,๐‘š

๐œ™๐‘šโ‰ค๐‘Ž๐‘ก๐‘Ž๐‘›( ๐ตโ„ฐ ,๐‘š

โˆš (๐›พ๐‘  ,๐‘š )2โˆ’ (๐ตโ„ฐ ,๐‘š )2 ) , ๐‘“๐‘œ๐‘Ÿ ๐›พ๐‘  ,๐‘š>๐ตโ„ฐ ,๐‘š

๐›พ๐‘  ,๐‘šโ‰ |๐‘† (๐œ” )|๐œ”โˆˆ[๐œ”๐‘šโˆ’

๐œ‹๐‘€,๐œ”๐‘š ยฑ

๐œ‹๐‘€ ]๐‘€๐‘–๐‘›

12

Filtering with NMDFB, Contโ€™d

Linear Interpolation Approximation Performance:

|๐‘‡ โ„ฐ ,๐‘š๐‘…๐‘’ (๐œ” )|โ‰ค |๏ฟฝฬˆ๏ฟฝ๐‘…๐‘’ (๐œ” )|๐œ”โˆˆ [๐œ”๐‘š ,๐œ”๐‘š+1]

Maxโˆ™12 ( ๐œ‹๐‘€ )

2

=๐ตโ„ฐ ,๐‘š๐‘…๐‘’

|๐‘‡ โ„ฐ ,๐‘š๐ผ๐‘š (๐œ” )|โ‰ค |๏ฟฝฬˆ๏ฟฝ๐ผ๐‘š (๐œ” )|๐œ”โˆˆ [๐œ”๐‘š ,๐œ”๐‘š+1]

Maxโˆ™12 ( ๐œ‹๐‘€ )

2

=๐ตโ„ฐ ,๐‘š๐ผ๐‘š

|๐‘‡ โ„ฐ ,๐‘š (๐œ” )|โ‰คโˆš (๐ตโ„ฐ ,๐‘š๐‘…๐‘’ )2+(๐ตโ„ฐ ,๐‘š

๐ผ๐‘š )2โ‰๐ตโ„ฐ ,๐‘š

๐œ™๐‘šโ‰ค๐‘Ž๐‘ก๐‘Ž๐‘›( ๐ตโ„ฐ ,๐‘š

โˆš (๐›พ๐‘  ,๐‘š )2โˆ’ (๐ตโ„ฐ ,๐‘š )2 ) , ๐‘“๐‘œ๐‘Ÿ ๐›พ๐‘  ,๐‘š>๐ตโ„ฐ ,๐‘š

๐›พ๐‘  ,๐‘šโ‰ |๐‘† (๐œ” )|๐œ”โˆˆ [๐œ”๐‘š,๐œ”๐‘š+1 ]๐‘€๐‘–๐‘›

13

NMDFB Design Example

M = 64, D = 32Rectangular

02

M

2

M

4

M

4

M

S ynthe s is F ilte rG (Z)

M o d u la ted Im a g eo f H (Z)

02

M

2

M

4

M

4

M

S ynthe s is F ilte rG (Z )

M o d u la ted Im a g eo f H (Z)

0 4

M

4

M

S ynthe s is F ilte rG (Z )

M o d u la ted Im a g eo f H (Z)

8

M

8

M

M = 64, D = 32Triangular

M = 64, D = 16Triangular

14

NMDFB Simulation

M = 64, D = 32 RectangularImpulse Response and Filter Spectra

690 700 710 720 730 740 750 760 770 7800

0.5

1

1.5

Analysis / Synthesis Impulse Response

Samples / n

Am

plit

ud

e

200 400 600 800 1000 1200-2

-1

0

1

2x 10

-5

X: 1121Y: -1.343e-005

Details of the Impulse Response Artifacts

Samples / n

Am

plit

ud

e

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-100

-80

-60

-40

-20

0

Frequency (fs = 64)

Log

Mag

(dB

)

Analysis Filter Spectra

H

0()

H1()

-4 -3 -2 -1 0 1 2 3 4

-100

-50

0

Frequency (fs = 64)

Log

Mag

(dB

)

Analysis Filter and Synthesis Filter Spectra

H

0()

G0()

H2()

H62

()

15

NMDFB Simulation, Contโ€™d

M = 64, D = 16 TriangularImpulse Response and Filter Spectra

450 460 470 480 490 500 510 520 530 5400

0.5

1

1.5

Analysis / Synthesis Impulse Response

Samples / n

Am

plit

ud

e

0 200 400 600 800 1000-2

-1

0

1

2x 10

-5

X: 626Y: -4.975e-006

Details of the Impulse Response Artifacts

Samples / n

Am

plit

ud

e

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-100

-50

0

Frequency (fs = 64)

Log

Mag

(dB)

Analysis Filter Spectra

H

0()

H1()

-8 -6 -4 -2 0 2 4 6 8

-100

-50

0

Frequency (fs = 64)

Log

Mag

(dB)

Analysis Filter and Synthesis Filter Spectra

H

0()

G0()

H4()

H60

()

16

NMDFB Simulation, Contโ€™d

M = 64, D = 16 TriangularImpulse Response and Filter Spectra

450 460 470 480 490 500 510 520 530 5400

0.5

1

1.5

Analysis / Synthesis Impulse Response

Samples / n

Am

plit

ud

e

0 200 400 600 800 1000-2

-1

0

1

2x 10

-5

X: 626Y: -4.975e-006

Details of the Impulse Response Artifacts

Samples / n

Am

plit

ud

e

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-100

-50

0

Frequency (fs = 64)

Log

Mag

(dB)

Analysis Filter Spectra

H

0()

H1()

-8 -6 -4 -2 0 2 4 6 8

-100

-50

0

Frequency (fs = 64)

Log

Mag

(dB)

Analysis Filter and Synthesis Filter Spectra

H

0()

G0()

H4()

H60

()

17

NMDFB Filtering Simulation 1

M = 64, D = 32 Rectangular / M = 256 Triangular Linear Phase Filtering

0 0.1 0.2 0.3 0.4 0.5

-100

-50

0

Normalized Frequency

Log

Mag

(dB

)

Magnitude Responses of Original Filter and Synthesized Filter

OriSyn

0 0.1 0.2 0.3 0.4 0.5

-100

-50

0

Normalized Frequency

Log

Mag

(dB

)

Magnitude Error between Original Filter and Synthesized Filter

Mag ErrErr Bound

0 0.1 0.2 0.3 0.4 0.5-1

0

1x 10

-4 Phase Error between Original Filter and Synthesized Filter

Normalized Frequency

Nor

mal

ized

Ang

le

Phase ErrErr Bound

0 0.1 0.2 0.3 0.4 0.5

-100

-50

0

Normalized Frequency

Log

Mag

(dB

)

Magnitude Responses of Original Filter and Synthesized Filter

OriSyn

0 0.1 0.2 0.3 0.4 0.5

-100

-50

Normalized Frequency

Log

Mag

(dB

)

Magnitude Error between Original Filter and Synthesized Filter

Mag ErrMinimax BoundSub-Opt Bound

0 0.1 0.2 0.3 0.4 0.5

-101

x 10-5 Phase Error between Original Filter and Synthesized Filter

Normalized Frequency

Nor

mal

ized

Ang

le

Phase ErrorMinimax BoundSub-Opt Bound

18

NMDFB Filtering Simulation 2

M = 64, D = 32 Rectangular / TriangularNon Linear Phase Filtering

-0.5 0 0.5

-20

0

20

Normalized Frequency

Log

Ma

g (

dB

) Magnitude Responses of Original Filter and Synthesized Filter

OriSyn

-0.5 0 0.5

-20

0

20

Normalized Frequency

Log

Ma

g (

dB

) Magnitude Error between Original Filter and Synthesized Filter

Mag ErrErr Bound

-0.5 0 0.5-0.5

0

0.5Phase Error between Original Filter and Synthesized Filter

Normalized Frequency

Norm

alize

d A

ng

le

Phase ErrErr Bound

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-20

0

20

Normalized Frequency

Log

Mag

(dB)

Magnitude Responses of Original Filter and Synthesized Filter

OriSyn

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-60

-40

-20

Normalized Frequency

Log

Mag

(dB)

Magnitude Error between Original Filter and Synthesized Filter

Mag ErrMinimax BoundSub-Opt Bound

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.01

0

0.01

Phase Error between Original Filter and Synthesized Filter

Normalized FrequencyNo

rmali

zed

Angl

e

Phase ErrorMinimax BoundSub-Opt Bound

19

NMDFB Filtering Simulation 2

M = 256, D = 64 TriangularNon Linear Phase Filtering

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-20

0

20

Normalized Frequency

Log

Mag

(dB

)

Magnitude Responses of Original Filter and Synthesized Filter

OriSyn

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-70

-60

-50

-40

Normalized Frequency

Log

Mag

(dB

)

Magnitude Error between Original Filter and Synthesized Filter

Mag ErrMinimax BoundSub-Opt Bound

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

0

1

x 10-3 Phase Error between Original Filter and Synthesized Filter

Normalized Frequency

Nor

mal

ized

Ang

le

Phase ErrorMinimax BoundSub-Opt Bound

20

NMDFB Filtering: Fractional Delay

M = 64, D = 16 TriangularFractional Delay Filtering

-0.5 0 0.5-5

0

5x 10

-3

Normalized Frequency

dB

Mag Res, Dly = 0 SMP

-0.5 0 0.5-5

0

5x 10

-3

Normalized Frequency

dB

Mag Res, Dly = 0.5 SMP

-0.5 0 0.5-5

0

5x 10

-3

Normalized Frequency

dB

Mag Res, Dly = -0.5 SMP

-10 -5 0 5 10

0

0.5

1Impz Dly = 0

SMPs / n

Am

p

ReIm

-10 -5 0 5 10

0

0.5

1Impz Dly = 0.5

SMPs / n

Am

p

ReIm

-10 -5 0 5 10

0

0.5

1Impz Dly = -0.5

SMPs / n

Am

p

ReIm

21

NMDFB Filtering Workload

=

: Analysis Filter Bank Length: Synthesis Filter Bank LengthM : Number of PathsN: Number of Intermediate Processing Elements

22

NMDFB APPLICATIONS

1. Wideband Signal Processing: Effectively reducing the hardware processing rate via NMDFB.

2. Filtering: Linear phase, Non-linear phase, Fractional delay, Masking, Cascade Filtering.

3. Support block timing varying filtering. 4. Support wideband power allocation.

23

Communication Example

Time Domain Timing Recovery & Matched Filtering

NMDFB Domain Timing Recovery & Matched Filtering

256 Real Multiplies per Output

240 Real Multiplies per Output

24

Communication Example

NMDFB Timing Recovery Simulation (Submitted to ICASSP 2013)20 dB SNR / AWGN channel / 0.25 Ts Timing Error

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-60

-40

-20

0

Normalized Freq

Mag /

dB

Spectrums: Time Domain MF, NMDFB MF

TD MF

NMDFB MF

-0.5 0 0.5-120

-100

-80

-60

-40

-20

X: 0.3125Y: -32.22

Normalized Freq

Mag /

dB

Mag Error

simulated err

err bound

-0.5 0 0.5-0.02

-0.01

0

0.01

0.02Phase Error

Normalized Freq

Radiu

s

simulated err

err bound

-2 -1 0 1 2-2

-1

0

1

2

Received Constellation = 0.25Ts

-2 -1 0 1 2-2

-1

0

1

2Timing Recovered Constellation

0 0.5 1 1.5 2

x 104

0

0.1

0.2

0.3

0.4PHASE ACCUMULATOR TIME PROFILE

Sample Index (n)

Tim

ing O

ffset

Phase Acc

Defined Timing Offset

0 0.5 1 1.5 2

x 104

-2

0

2

4

6x 10

-3 Timing Error

Sample Index (n)A

mplit

ude

10x Loop Filter Input

Loop Filter Output

25

Thanks! Open for questions Now!


Top Related