+ All Categories

Download - 266 hariharan

Transcript
Page 1: 266 hariharan

1

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6

C.Hariharan and M.GovardhanC.Hariharan and M.Govardhan

Thermal Turbomachines Laboratory

Department of Mechanical EngineeringIndian Institute of Technology Madras

Loss in Input Power due to Increase in Clearance between Inlet Duct and Impeller in an

Industrial Centrifugal Blower

Page 2: 266 hariharan

2

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Introduction

• Aayder et al. [1]

• Lee [3]

• C Hariharan et al [5]

Page 3: 266 hariharan

3

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Problem definition

• In most of the time while design we omit the clearance gap in between suction duct and impeller.

• The area of clearance is only 0.5 to 2% of inlet area.

Page 4: 266 hariharan

4

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Design

Specification:

specific work - 24000 m2/s2 Design mass flow rate - 28.5 kg/soperating range - 20 kg/s to 31.5 kg/sSpeed - 3000rpm

Page 5: 266 hariharan

5

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Dimension

Impeller:Blades - 15Inlet Diameter - 0.7 mInlet Blade angle - 32o

Exit Blade angle - 48o

Clearance gap - 1mm, 3mm and 5mm

clearance area - 0.6 %, 1.8% and 3%

Page 6: 266 hariharan

6

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6

Volute :- constant angular momentum

- tongue clearance 5% of impeller exit diameter

- Ratio between volute width and impeller exit width 5.

Page 7: 266 hariharan

7

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Fan Assembly with Ratio 5 volute

Page 8: 266 hariharan

8

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Numerical simulation

- commercial CFD code CFX 14

simplification-Steady state -Compressible (air ideal gas)

- (3-D) Full fan

Page 9: 266 hariharan

9

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6

- (3-D)-Mass-Momentum -Energy

- turbulence model (K-Ɛ)

Page 10: 266 hariharan

10

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6- Stationary domain

- suction duct- volute

-Rotating domain - impeller

Interface

Frozen Rotor Technique

Page 11: 266 hariharan

11

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Meshing

-Suction duct 0.8 million-Impeller 4.5 million-Volute 5.5 million

Y+ < 50 volume expansion factor < 25

Number of nodes in interfaces maintained almost same

Page 12: 266 hariharan

12

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Suction duct mesh

Page 13: 266 hariharan

13

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Impeller mesh

Page 14: 266 hariharan

14

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6

Impeller pasage

Page 15: 266 hariharan

15

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Volute mesh

Page 16: 266 hariharan

16

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Impeller inlet duct mesh

Page 17: 266 hariharan

17

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Clearance between impeller and

inlet duct

Page 18: 266 hariharan

18

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6

Number of nodes in clearance

circumferential 1100radial 10

Page 19: 266 hariharan

19

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Results

-Stage performance

-Component performance

Page 20: 266 hariharan

20

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Stage Pressure raise

Page 21: 266 hariharan

21

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Change in Stage Pressure raise

Page 22: 266 hariharan

22

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Stage Efficiency

Page 23: 266 hariharan

23

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Change in Stage Efficiency

Page 24: 266 hariharan

24

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Change in Total pressure at impeller

exit

Page 25: 266 hariharan

25

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Change in static pressure at impeller

exit

Page 26: 266 hariharan

26

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Increase in input power

Page 27: 266 hariharan

27

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Return mass flow rate

Page 28: 266 hariharan

28

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Flow angle at inlet to impeller for

design mass flow rate

Page 29: 266 hariharan

29

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Flow angle at inlet to impeller for

lowest mass flow rate

Page 30: 266 hariharan

30

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Static pressure at impeller exit for

design mass flow rate

Page 31: 266 hariharan

31

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Static pressure at impeller exit for

lowest mass flow rate

Page 32: 266 hariharan

32

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Total pressure at impeller exit for

design mass flow rate

Page 33: 266 hariharan

33

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Total pressure at impeller exit for

lowest mass flow rate

Page 34: 266 hariharan

34

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Flow angle at Exit of impeller for

design mass flow rate

Page 35: 266 hariharan

35

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Flow angle at Exit of impeller for

lowest mass flow rate

Page 36: 266 hariharan

36

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Stream lines in impeller for

clearance of (a) 0mm

Page 37: 266 hariharan

37

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Stream lines in impeller for

clearance of (a) 1mm

Page 38: 266 hariharan

38

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Stream lines in impeller for

clearance of (a) 3mm

Page 39: 266 hariharan

39

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Stream lines in impeller for

clearance of (a) 5mm

Page 40: 266 hariharan

40

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Volute Pressure recovery coefficient

Page 41: 266 hariharan

41

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Change in volute Pressure recovery

coefficient

Page 42: 266 hariharan

42

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Volute loss coefficient

Page 43: 266 hariharan

43

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Volute loss coefficient

Page 44: 266 hariharan

44

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Change in Total pressure at volute

exit

Page 45: 266 hariharan

45

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6Change in static pressure at volute

exit

Page 46: 266 hariharan

46

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6conclusion

-The overall stage performance at design and off design conditions, especially at higher mass flow rate is not favorable

-Stage efficiency drops considerably as the mass flow is increased and also there is an increase in input power up to 32 kW

-There is a noticeable drop in total and static pressure at exit of impeller

Page 47: 266 hariharan

47

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6conclusion

As the clearance increases, the flow is found to be more uniform at the exit of the impeller and also the possibility of flow separation gets reduced at lower mass flow rates especially near the trailing edge of impeller.

The increased pressure recovery and reduced loss at higher clearance has positive effect on volute at all mass flow rates.

Page 48: 266 hariharan

48

Ind

ian

In

stit

ute

of

Tech

nolo

gy

M

ad

ras

Ch

en

nai

– 3

6

Thank you


Top Related