+ All Categories
Transcript
  • DB 2172© British Crown Owned Copyright 2011/MOD

    1. AWE Blacknest, Brimpton, United Kingdom RG7 4RS ([email protected])2. CEA/DAM/DIF, F-91297 Arpajon, France

    Acoustic Observations of Stratospheric Solar Tides: Examples from the Eruption of Eyjafjallajökull, Iceland, April-May 2010

    David N. Green1, Julien Vergoz2, Robin S. Matoza2, Alexis Le Pichon2

    200°

    180° 160°

    140°

    100°120°

    70°

    60°

    50°

    40°

    30°

    –40°

    –20°

    0° 20°

    20°

    30°

    40°

    1. Signal Detection• TheApril-May2010summiteruptionofEyjafjallajökullvolcano,Iceland,wasrecordedacross14infrasoundarrays,including4arraysoftheInternationalMonitoringSystem(IMS)network(Figure1).

    • Arrayprocessingtechniquescansuccessfullydiscriminatebetweenvolcanicinfrasoundand ambient coherent and incoherent noise (Figure 2).

    • Quasi-continuoustimeseriesofdetectionsoveranumberofdaysprovideanopportunitytostudyvariationsindetectionparameters(backazimuth,apparentvelocity,signalfrequencycontent,andsignalamplitude)ondiurnaltimescales.

    • Timeseriesrecordedatstationslocatedalongdistinctpropagationpathsexhibitclearlyvaryingdetectionparametersondiurnaltimescales(Figures2and3,Section2).

    Figure1.LocationofinfrasonicstationsrecordingtheApril–May2010summiteruptionofEyjafjallajökull.14remoteinfrasonicarrays(greeninverted triangles) recorded the summiteruptionofEyjafjallajökull(blackdot,‘Eyjaf’),atdistancesfrom~1,745km(BKNI,UK)to~3,666km(IS48,Tunisia).BlueinvertedtrianglesshowotherIMSstationsthatdidnot record the eruption. Colorscale representsnumberofintersectingmeaninfrasonicsignalbackazimuths±3°registeredateachstationandassociatedwithEyjafjallajökull[fromMatozaetal.,(2011)].

    Figure2.Eyjafjallajökullassociateddetections:identificationandtimeseries.TheupperplotsshowresultsforBKNI,withtherighthandpanelshowinga2Dhistogramofdetectionsinfrequency-azimuthspaceovertheperiod2010/4/10to2010/6/15inclusive.TheareaenclosedwithinthewhitedashedlineindicatesthedetectionsidentifiedasassociatedwiththeEyjafjallajökulleruption.Thelargertimeseriesplotshows10daysofEyjafjallajökullassociatedarrivalamplitudesbetween18/04/2010and28/04/2010,withthemedianamplitudein30minutebinsprovidedasaredline.TheinsettimeseriesshowstheextentofthedetectionsacrossAprilandMay2010,withthegreyshadedareaindicatingaperiodofdataloss.ThelowerthreepanelsshowresultsforIS18.Themapshowstherelativearraylocationsandconfigurations.

    Figure3.Identifyingperiodicitiesintheunevenlysampled detection timeseries at BKNI, using the CLEANalgorithm(aniterativedeconvolutionofthesamplingfunction,e.g.,HeslopandDekkers,2002).Methodologyallowsthesignificanceofthespectralpeaks(left-handpanels)tobedetermined.Ontheright-handsidereconstructedsignalsfromtheCLEANspectraatthe80%and95%confidencelevelsareoverlainondetectiondensityplotsfor(top to bottom) signal RMS amplitude, backazimuth, apparentvelocity(Vapp)andcentralsignalfrequency.Darker shades represent higher detection densities. At BKNI, signal amplitudes and backazimuth estimates exhibit clear diurnal variations.

    2. Identifying Periodicities• Toidentifythefrequencyofvariationsindetectionparameters,atechniquethatisapplicabletonon-evenlysampledtimeseriesisrequired(Figure3).

    • SignificantdiurnalvariationsinsignalamplitudeandbackazimuthareobservedatBKNI,andinamplitude,apparentspeedandsignalfrequencyobservationsatIS18.

    • AtBKNIvariationsinthesignalamplitudeareinphasewithstratosphericalong-pathwindvariations,whereasbackazimuthvariationsareapproximatelyinphasewithcross-windvariations(Figure4).

    3. Cause of Variations - Stratospheric Tides?• Significantdiurnalvariationsindetectioncharacteristicsareobserved–whatgeneratesthesevariations?Twoplausiblesources:

    1.Diurnalstratosphericwindvariationscausedbythesolardiurnaltideleadingtoperiodicvariationsinacousticwaveguidecharacteristics(e.g.,Donnetal.,1975).

    2.Variationsinnear-receiver(boundarylayer)atmosphericstabilityleadingtodifferencesin detection characteristics and pressure noise levels.

    • Observeddiurnalvariationsinbackazimuthareindicativeofaprocessthatmustactoverasignificantpropagationpathlength–suggestingtidalmotionsinstratosphereassourceofobservedvariations(Figure5).

    4. Propagation Modelling• 3Dray-tracinghasbeenusedtoidentifyacousticpropagationpathsthroughECMWFmeteorologicalprofilesbetween2010/04/18and04/30(Figure6).

    • OnpathfromEyjafjallajökulltoBKNIthestudyofhowstratospherictidesinfluencethepropagationiscomplicatedbythepresenceofstrongtroposphericducts.Fortimeperiodstudied,33%ofrayspropagatedthroughonlyastratosphericwaveguide.

    • OnpathfromEyjafjallajökulltoIS1893%ofrayspropagatewithinthestratosphericduct.Theraydensityreachingthestationexhibitsadiurnalvariation(Figure6)withthecorrectphasetoexplaintheobservedsignalamplitudeanddetectiondensityvariations.

    5. Conclusions• InfrasoundsignalsclearlyrecordedfromEyjafjallajökulleruptionatrangesofupto3600km.

    • Detectionsexhibitdiurnalvariationsinsignalcharacteristics–andthesearecorrelatedwithdiurnalvariationsinECMWF-modelstratosphericwindspeeds.

    • Identifyingdiurnalcomponentsinresultsofray-tracingisdifficult,duetocomplicationsarisingfromspatialandtemporalmeteorologicalvariations.

    ReferencesDonn,W.L.,N.K.Balachandran,andD.Rind(1975),TidalWindControlofLong-RangeRocketInfrasound,J.Geophys.Res.,80(12),1662–1664.

    Gudmundsson,M.T.,etal.(2010),EruptionsofEyjafjallajökullVolcano,Iceland,Eos,91(21),190–191.

    Heslop,D.,andM.J.Dekkers(2002),SpectralAnalysisofUnevenlySpacedClimaticTimeSeriesusingCLEAN:SignalRecoveryandDerivationofSignificanceLevelsusingaMonteCarloSimulation,Phys.EarthPlanet.Int.,130,103–116.

    Matoza,R.S.,etal.(2011b),Long-rangeAcousticObservationsoftheEyjafjallajökullEruption,Iceland,April-May2010,Geophys.Res.Lett.,38(L06308),doi:10.1029/2011GL047019.

    Figure6.Effectsoftemporaland spatial variations in the effectivesoundspeedonacousticpropagationpredictions,forpathsfromEyjafjallajökulltoa)BKNIand b) IS18.

    Thelargeleft-handpanelsshowthe temporal variation in along-patheffectivesoundspeed,whiletherighthandpanelsshowalong-pathspatialvariabilityineffectivesoundspeedbetweenthesource(range=0km)andthestation(whitetriangle)attimesshownontheleft-handpanel.ThetimeschosenforBKNI highlight the complications generatedbytroposphericwaveguides(timeB)andelevatedstratosphericwaveguides(timeC).ThetimeschosenforIS18showthestrengtheningofthestratosphericwaveguideacrossoneday,reflectedinthenumberofraysreachingthestation.Here,thechangesinwaveguidestrength are related to the stratospheric tidal variations.

    Amp. Azi.

    Data

    ECMWF modelwind speeds at45km altitude

    12:00 18:00 00:00 06:00 12:00Hour of Day (U.T.)

    12:00 18:00 00:00 06:00 12:00Hour of Day (U.T.)

    12:00 00:00 12:00Hour of Day (U.T.)

    12:00 00:00 12:00Hour of Day (U.T.)

    6

    4

    2

    0

    –2

    4

    2

    0

    –2

    x 10–3

    Amp.

    -mea

    n[Am

    p]da

    y (Pa

    )

    Azi.-

    mea

    n[Az

    i] day

    (°)

    Along-Path Wind Cross-Path Wind

    Win

    d sp

    eed

    - mea

    n[W

    ind

    Spee

    d] (m

    /s)

    –1.*

    Win

    d sp

    eed

    - mea

    n[W

    ind

    Spee

    d] (m

    /s)

    BKNI

    IS18

    0.05

    0.04

    0.03

    0.02

    0.01

    0

    0.04

    0.03

    0.02

    0.01

    0

    RMS

    Amp

    (Pa)

    RMS

    Amp

    (Pa)

    RMS

    Amp

    (Pa)

    04/18 04/20 04/22 04/24 04/26 04/28

    04/10 04/30 05/20

    Date 2010. (mm/dd)

    04/18 04/20 04/22 04/24 04/26 04/28Date 2010. (mm/dd)

    Date 2010. (mm/dd)

    0.02

    0

    RMS

    Amp

    (Pa)

    04/10 04/30 05/20Date 2010. (mm/dd)

    0.05

    0

    1

    0.5

    0

    –0.5

    –1

    Log 1

    0 Fre

    q. (H

    z)

    1

    0.5

    0

    –0.5

    –1

    Log 1

    0 Fre

    q. (H

    z)

    270 315 0 45Azimuth (°)

    45 90 135 180Azimuth (°)

    40

    30

    20

    10

    0

    No.

    of D

    etec

    tions

    Mod

    ulus

    (x10

    –3) 1

    0.5

    00 1 2 3 4 5

    Mod

    ulus

    (x10

    –3)

    0.6

    0.4

    0.2

    00 1 2 3 4 5

    Mod

    ulus

    (x10

    –3) 2

    1

    0

    3

    2

    1

    0 1 2 3 4 5

    Mod

    ulus

    (x10

    –3) 0.1

    0.05

    0

    0.02

    0.01

    0

    0 1 2 3 4 5Freq (cpd)

    Freq

    (Hz)

    Amp

    (Pa)

    Azim

    uth

    (°)

    04/18 04/19 04/20 04/21 04/22

    04/18 04/19 04/20 04/21 04/22

    04/18 04/19 04/20 04/21 04/22

    04/18 04/19 04/20 04/21 04/22Date 2010. (mm/dd)

    336

    334

    332

    330

    328

    0.38

    0.36

    0.34

    0.32

    V app

    (km

    /s)

    95

    80

    95

    80

    95

    80

    95

    80

    a) BKNI

    b) IS18

    120

    100

    80

    60

    40

    20

    0

    120

    100

    80

    60

    40

    20

    0

    Altit

    ude

    (km

    )

    Altit

    ude

    (km

    )

    Altit

    ude

    (km

    )

    A B C

    04/17 04/22 04/27Date 2010. (mm/dd)

    Eff. Sound Speed (km/s)0.29 0.32 0.35

    A B C

    04/17 04/22 04/27Date 2010. (mm/dd)

    Eff. Sound Speed (km/s)0.29 0.32 0.35

    80

    60

    40

    20

    0 0 500 1000 150080

    60

    40

    20

    00 500 1000 1500

    80

    60

    40

    20

    00 500 1000 1500

    Range (km)

    Altit

    ude

    (km

    )

    80

    60

    40

    20

    00 500 1000 1500

    80

    60

    40

    20

    00 500 1000 1500

    80

    60

    40

    20

    00 500 1000 1500

    Range (km)

    A :2010-04-17 21:00

    B :2010-04-20 06:00

    C :2010-04-25 12:00

    A :2010-04-21 00:00

    B :2010-04-21 09:00

    C :2010-04-21 18:00

    120

    100

    80

    60

    40

    20

    0

    Altit

    ude

    (km

    )

    0 20 40 60 80 100Max. Ceff Occillation (m/s)

    120

    100

    80

    60

    40

    20

    0

    Altit

    ude

    (km

    )

    0 5 10 15 20Time of Ceff Maximum (Hour)

    a) b)

    Figure4.Superimposedepochanalysisofamplitude and backazimuth estimates at BKNI for2010/04/16-05/07,showingthediurnalcycleinbothparameters(upperpanels).Forcomparison,superimposedepochanalysesofECMWFmeteorologicalmodelwindsaregivenforthesameperiodataltitudesof45km(lowerpanels).Thealong-pathstratosphericwinds(left-handpanel)varyinphasewiththeamplitudevariationsandthecross-pathwinds(right-handpanel)varyapproximatelyinphasewiththebackazimuthvariations.

    Amp. Azi.

    Data

    ECMWF modelwind speeds at45km altitude

    12:00 18:00 00:00 06:00 12:00Hour of Day (U.T.)

    12:00 18:00 00:00 06:00 12:00Hour of Day (U.T.)

    12:00 00:00 12:00Hour of Day (U.T.)

    12:00 00:00 12:00Hour of Day (U.T.)

    6

    4

    2

    0

    –2

    4

    2

    0

    –2

    x 10–3

    Amp.

    -mea

    n[Am

    p]da

    y (Pa

    )

    Azi.-

    mea

    n[Az

    i] day

    (°)

    Along-Path Wind Cross-Path Wind

    Win

    d sp

    eed

    - mea

    n[W

    ind

    Spee

    d] (m

    /s)

    –1.*

    Win

    d sp

    eed

    - mea

    n[W

    ind

    Spee

    d] (m

    /s)

    Figure5.The(a)amplitudeand(b)phaseofthedailyoscillationsintheeffectiveacousticspeedalongtheEyjafjallajökulltoBKNIpath,takenfromtheECMWFmeteorologicalmodelfor15/04-30/04/2010.Thediurnaloscillationsaregeneratedbysolartides:global-scaleatmosphericoscillationsexcitedbysolarinsolation, observed as periodic variations in temperature,densityandwindspeed.


Top Related