+ All Categories
Transcript
Page 1: An Overview of the NASA Space Radiation Laboratory

NASA  Space  Radia*on  Laboratory  A.  Rusek  

Bldg.  911B  Brookhaven  Na*onal  Laboratory  

Upton,  NY  11973  

[email protected],  (631)344-­‐5830  

FISO  Telecon    4/1/15                  hRp://spirit.as.utexas.edu/~fiso/archivelist.htm  

Page 2: An Overview of the NASA Space Radiation Laboratory

Origins  

•  Mo*va*on:  Ground  based  ion  source  for  simula*ng  solar  and  cosmic  ray  radia*on  to  study  its  affects  on  biology.  –  Assess  the  risks.  –  Study  countermeasures.  

•  Funding:  NASA  ($33M)  •  Know  how:  BNL  (DOE)  •  Project  started  2000,  commissioned  2003.  •  On  *me,  on  budget.  

NSRL Brookhaven National Laboratory 1  

Page 3: An Overview of the NASA Space Radiation Laboratory

Beam  Design  

•  Designed  based  on  the  experience  gained  through  work  at  LBL  and  BNL  (AGS)  (dose-­‐based  cutoff)  –  Beam  as  uniform  as  possible  (±10%  was  typical)  

–  Usually  round  beam  

–  Cutoff  achieved  by  means  of  ion  chambers/computer/extrac*on  controls  

 

•  NSRL  beam  is  geared  towards  (but  not  restricted  to)  biology  work  (dose-­‐based  cutoff)  –  Beam  uniformity  in  the  useful  area  is  ±2.5%  

–  Square  beam  (during  biology  work)  

–  Cutoff  achieved  by  means  of  ion  chambers/computer/extrac*on  controls          

NSRL Brookhaven National Laboratory 2  

Page 4: An Overview of the NASA Space Radiation Laboratory

Beam  

•  Tandem/Linac/EBIS  to  Booster  •  Booster  to  NSRL  beam  line  by  slow  extrac*on  

•  Beam  shaped  in  the  100  m  beam  line  and  •  Delivered  to  the  NSRL  target  room  (300ms  spill  every  4  sec)  

EBIS  (ions,  20  MeV)  

Tandem  (ions,  20  MeV/n)  

Slow  extrac*on  into  NSRL  

Booster  synchrotron  

(up  to  1000  MeV/n)  

Shape  and  deliver  to  the  target  room  

NSRL Brookhaven National Laboratory

Linac  (protons,  200  MeV)  

3  

Page 5: An Overview of the NASA Space Radiation Laboratory

Schedule  

•  3  runs,  or  campaigns  a  year:  Spring,  Summer  and  Fall  •  6-­‐9  weeks  each  

–  Total  of  about  24  weeks  per  year,  typically.    

–  spring  and  summer  have  been  run  as  one  16  week  long  run  for  the  past  3  years  

•  Irradia*ons  take  place  during  1-­‐2  shiis  daily,  on  week  days  only  (almost  true)  –  Leave  a  cushion  for  machine  down  *me  

–  Allow  for  lab  *me  following  irradia*on  

NSRL Brookhaven National Laboratory 4  

Page 6: An Overview of the NASA Space Radiation Laboratory

0.1  

1  

10  

100  

1000  

10000  

0.1   1   10   100   1000   10000  

Range  in  water  (m

m)  

LET  in  water  (KeV/µm)  

H 1500  

1000  800  700  600  500  400  

300  

200  

100  80  70  60  50  

40  

30  

20  

10  

He

C O Ne

Si Cl Ar Ti Fe

Kr Nb

Xe Ta

Au

5  

Page 7: An Overview of the NASA Space Radiation Laboratory

NSRL Brookhaven National Laboratory 6  

Page 8: An Overview of the NASA Space Radiation Laboratory

NSRL  NASA  Space    Radia*on  Laboratory  

RHIC  Relatevis*c  Heavy  Ion  Collider  

AGS  Alterna*ng  Gradient  Synchrotron  

TANDEM  Ion  Source    

LINAC  Linear  Accelerator  Proton  Source  

BOOSTER  Synchrotron  

EBIS  Electron      Beam  Ion    Source  

Medical  Department  Labs  and  User  Support  

NSRL Brookhaven National Laboratory 7  

Page 9: An Overview of the NASA Space Radiation Laboratory

Support  Building  

•   Beam  and  dosimetry  control  center  •  Experiment  staging  area  

•  Cell  labs  (3)  separated  from  animal  labs  (2)  •  Physics  support  lab  (1)    

NSRL Brookhaven National Laboratory

C    

C    

C   A   A  

A  

D  

P  

8  

Page 10: An Overview of the NASA Space Radiation Laboratory

12”  beam  pipe  

8”  beam  pipe  

R-­‐Line:  From  Booster  to  NSRL  

9  

Page 11: An Overview of the NASA Space Radiation Laboratory

1.0  -­‐  5.0  cm  (fwhm)  

5cm  x  5cm  -­‐  20cm  x  20cm  

NSRL Brookhaven National Laboratory

NSRL  Beam  Shapes  and  Sizes  

Beams  can  be  both  slow-­‐extracted  (300  –  500  ms)  Or  fast-­‐extracted  (<1µs),  once  per  2-­‐4  s  cycle  

10  

Page 12: An Overview of the NASA Space Radiation Laboratory

NSRL Brookhaven National Laboratory

Target  Room  

Size:  20’  x  20’  

11  

Page 13: An Overview of the NASA Space Radiation Laboratory

Calibra*on  

•  NIST-­‐traceable  calibra*on  chambers  •  Self  calibra*on  against  scin*lla*on  counters  – Use  heavy  ions  where  overlap  is  good  – Contact  made  through  dE/dx  tables  

– Agreement  with  NIST-­‐traceables  within  2%  

12  

Page 14: An Overview of the NASA Space Radiation Laboratory

P,  200  MeV  

C,  300  MeV/n  

Ti,  1000  MeV/n  

NSRL Brookhaven National Laboratory 13  

Page 15: An Overview of the NASA Space Radiation Laboratory

Digital  Beam  Imager  

Beam    

NSRL Brookhaven National Laboratory 14  

Page 16: An Overview of the NASA Space Radiation Laboratory

NSRL Brookhaven National Laboratory 15  

Page 17: An Overview of the NASA Space Radiation Laboratory

NSRL Brookhaven National Laboratory 16  

Page 18: An Overview of the NASA Space Radiation Laboratory

300  MeV/n  Fe  

Binary  Filter  

PlasRc  caps  Water-­‐filled  

Empty  

DBI  Screen  

Beam  view  

NSRL Brookhaven National Laboratory 17  

Page 19: An Overview of the NASA Space Radiation Laboratory

Fe  300  

0.0  mm   35.5  mm  

37.0  mm  36.5  mm  

36.0  mm  

37.5  mm  

38.5  mm   39.5  mm   41.5  mm  18  

Page 20: An Overview of the NASA Space Radiation Laboratory

Single  Eye  Exposure  

•  Right  eyes  of  three  rats  at  a  *me.  

 

collimator  

NSRL Brookhaven National Laboratory 19  

Page 21: An Overview of the NASA Space Radiation Laboratory

Single  Eye  Exposure  

•  Right  eyes  of  three  rats  at  a  *me.  •  Two  plates,  9  tubes,  for  

streamlined  opera*on.  

•  Lots  of  flexibility,  easy  alignment.  

NSRL Brookhaven National Laboratory 20  

Page 22: An Overview of the NASA Space Radiation Laboratory

Special  Beams  

•  Time-­‐structured  beams  •  “smooth”  beam  •  10-­‐60Hz  beam  

•  Fast-­‐extracted  beam    •  Beam  extracted  in  one  booster  

cycle,  in  about  800  ns.  

20 Hz

“Smooth”

60 Hz

20 Hz

FEB

FEB 800 ns

Ion    Chamber  

Scin*llator   NSRL Brookhaven National Laboratory 21  

Page 23: An Overview of the NASA Space Radiation Laboratory

Space  Environment  

Requirements  

•  Lower  dose  rates  •  Longer  exposures  (chronic)  •  Mixed  fields  and  energies  •  Higher  upper  energy    

Response  

•  Specialty  imaging  and  dosimetry  

•  Exposure  incubtors  •  Rapid  energy  changing  •  Rapid  ion  changing  •  Beam  line  upgrade  to  1.5  

GeV/n  

NSRL Brookhaven National Laboratory 22  

Page 24: An Overview of the NASA Space Radiation Laboratory

 •   Can  image  the  beam  at  very  low  fluence  

• 2  Fe/cm2  

• 1,000  p/cm2  

•   Coupled  with  schin*lla*on  counter  cutoff  • can  deliver  “homeopathic”  doses  –  100tracks/cm2  

30,000  p/cm2  22,500  Fe/cm2  

Pixel  Ion  Chamber  with  Gain  

23  

Page 25: An Overview of the NASA Space Radiation Laboratory

Large  Beam  

•  60x60  cm2  (50x50  cm2  useful  area).  

•  Large  pixel  chamber  (8x8)  to  monitor  beam  uniformity.  

•  Exposure  incubator  for  long  exposures.  

 

NSRL Brookhaven National Laboratory 24  

Page 26: An Overview of the NASA Space Radiation Laboratory

SPE  SimulaRon  

Requires  

•  Fast  energy  changing  –  Directly  from  the  booster  

–  By  binary  filter  •  Large  beam  

–  For  long,  low  dose-­‐rate  exposures  

 

“spin-­‐off”  

•  Fast  energy  changes  –  Easier  opera*ons  –  Easier  scheduling  

 

NSRL Brookhaven National Laboratory 25  

Page 27: An Overview of the NASA Space Radiation Laboratory

0.0000001  

0.000001  

0.00001  

0.0001  

0.001  

0.01  

0.1  

1  

0   50   100   150   200   250  

 FracRon

 of  Total  Dose  

Energy  (MeV)  

August  1972  SPE  

NSRL  1972  SPE  

An  SPE  SimulaRon  

Used  50  MeV  to  represent  0  –  50  MeV  60  MeV  to  represent  50  –  60  MeV  70  MeV  to  represent  60  –  70  MeV  80  MeV  to  represent  70  –  80  MeV  And  so  on….  

NSRL Brookhaven National Laboratory 26  

Page 28: An Overview of the NASA Space Radiation Laboratory

0

1

2

3

4

5

6

7

0 50000 100000 150000 200000 250000 3000000

1

2

3

4

5

6

7

0 5 000 1 0000 1 5 000 2 0000 2 5 000 3 0000

Depth  (µm)  

Dose  (arbitrary)  

27  

Page 29: An Overview of the NASA Space Radiation Laboratory

GCR  SimulaRon  

Requires  

•  Fast  ion  changes.  •  Availability  of  many  ion  

species.  

•  Upper  energy  of  at  least  1.5  GeV/n.  

•  Large  beam.  –  For  long,  low  dose-­‐rate  

exposures  

 

“spin-­‐off”  

•  Ul*mately  we  should  be  able  to  change  ions  from  NSRL  dosimetry  room(!)    

NSRL Brookhaven National Laboratory 28  

Page 30: An Overview of the NASA Space Radiation Laboratory

Type  of  Studies  and  InvesRgaRons  

•  Biology  >90%  –  Tending  more  and  more  to  the  lower  doses  now  –  Ion,  LET,  Energy  studies  –  Cancer,  CNS,  Cardio-­‐Vascular,  BPO,  Acute  effects…..    

•  Shielding  •  Materials  (radia*on  hardness  etc.)  •  Electronics  (radia*on  hardness  etc.)  

–  NASA,  NRO,  others  •  Instrument  tes*ng  and  calibra*on  

–  NASA,  others.  •  Therapy  research      

–  Limited  to  physics  and    biology  

NSRL Brookhaven National Laboratory 29  

Page 31: An Overview of the NASA Space Radiation Laboratory

When  not  providing  service  

•  Fragmenta*on  Cross  sec*ons.  –  4He,  3He,  C,  O,  on  elemental  targets  and  water  

•  Detector  and  readout  developments.  –  Specialty  ion-­‐chambers,  adapta*on  of  commercial  readout  for  medical  

imaging  to  mul*-­‐channel  ion  chamber.  

•  Calibra*on  and  tes*ng.    –  Example:  ZDC’s,  water-­‐based  liquid  scin*llator  (BNL  development)  

NSRL Brookhaven National Laboratory 30  

Page 32: An Overview of the NASA Space Radiation Laboratory

ExisRng  CapabiliRes    

Beam  •  Variety  of  shapes  and  sizes  

–  Square  beam  from  5  to  50  cm  

–  Round  beam  from  0.5  to  10  cm  

•  Good  uniformity  (>95%)  •  Many  ions  available  

•  Wide  energy  range  available  

•  Slow-­‐extracted  beam  

•  Fast-­‐extracted  beam  

Dosimetry  •  Good  dynamic  range    

–  1  –  2000  rads/min  (ion  chambers)  

–  <  1  rad/min  (scin*llator)  

•  Self  calibra*on  capabili*es  •  Cutoff  within  >1%  of  total  dose  

•  Good  imaging  methods  –  DBI  

–  Ion  chambers  with  gain  

   

NSRL Brookhaven National Laboratory 31  

Page 33: An Overview of the NASA Space Radiation Laboratory

Missing  CapabiliRes    

Beam  •  Sub  cm  pencil  beam  

•  Scanning  capability  •  Exposure  vacuum  chamber  

Dosimetry  

   

NSRL Brookhaven National Laboratory 32  

Page 34: An Overview of the NASA Space Radiation Laboratory

Thanks  for  your  aaenRon!    

NSRL Brookhaven National Laboratory


Top Related