+ All Categories
Transcript
Page 1: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

Challenges at Circuits Designs for

Nonvolatile Memory and Logics in

Dependable Systems

Dec. 6, 2013 @ JST DVLSI, Tokyo, Japan

Prof. Meng-Fan (Marvin) Chang

Memory Design Lab. (MDL)

Department of Electrical Engineering

National Tsing Hua University (NTHU), Taiwan

Page 2: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 2

Outline

Nonvolatile memory (NVM) and logics (nvLogics)

in dependable systems

Challenges at designing ReRAM

Challenges at designing Flash

Challenges at designing 3D NVM & nvLogics

Summary

Page 3: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 3

Volatile vs. Nonvolatile Memory

0.0 0.5 1.0 1.5 2.010

-1

100

101

102

103

104

Access

tim

e(n

s)

VDDmin(V)

SRAM

MRAM

ReRAM

PCM

Flash

(charge-pump)

Power-off

Data

storage

Volatile:

High

Speed

operation

Low VDDmin

NVM

DRAM

Volatile memory:

Fast, low VDDmin

High endurance

Working memory

Non-volatile memory (NVM):

Slow, high write-voltage

Limited endurance

Power-off storage

Two-macros (volatile+ NVM) structure in SoCs

Page 4: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 4

NVM in Dependable Systems

Typical Chips:

SRAM+ NVM + Logics

Logics

NVM

SRAM

NVM enables power-off operations

Provides power-off storage for program and data (RAM)

Provides states storage for selected logics (flip-flops)

Reduce standby power

Reduce thermal effect

Reduce voltage/thermal stress time

Pow

er

Time

Power-off

Data stored

to NVM Program read

+ computing Data restored

to SRAM

Page 5: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 5

Systems Using NVM - Challenges

Today’s challenges

Large store power + long store time

=> Limited power on/off frequency

=> Vulnerable to sudden power failure

Slow restore (wake-up/read) time

Lost local states/data for logics

Time P

ow

er

Power-off

Data stored to NVM

(slow & large power) Program read

+ computing Data restored to

SRAM (slow)

Idle period: Wasted Power &

Voltage/Thermal stress

Typical Chips:

SRAM+ NVM + Logics

Logics

NVM

SRAM

Page 6: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 6

Using Nonvolatile Logics (nvLogic)

Two-Macro solution

Complex interface

Serial data transfer

– Slow store/restore

Large area penalty

Lost local states

Nonvolatile SRAM + Flip-flop

SRAM + NVM within a cell

– Direct connect (nvSRAM)

Flip-Flop + NVM (nvFF)

Fast power on/off

– parallel store/restore operations

nvSRAM

Macro

cell

NVM

cell

SRAM

cell

Logic Chip

eFlash

SRAM

nvLogic Chip

nvSRAM

Flip-Flop

NVM

NVM

Page 7: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 7

Using Emerging NVM and nvLogics

Preferred NVM

Low-power write

Low write-voltage

eliminate HV devices

Fast read and write

Low-voltage read

Using nvLogics

Fast store/restore

Store local states

=> Enable frequent

power interrupts

Time Regular-voltage operation

Po

wer

Time

Power-off

Frequent on/off + Low-VDD operation

computing + store +

restore

Pow

er

Power-off

Data stored to NVM

(Slow & Large power) computing

Data restore

(slow)

Low-voltage nvLogic

Reduce V/T stress

Page 8: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 8

Low

Voltage

SRAM

NVM &

ReRAM ISSCC

2011

ISSCC

2010

3D

Memory

0.29V

NAND-ROM

100nA

CSA

OTP

7.2ns

4Mb

ReRAM

0.5V

4Mb

ReRAM

ISSCC

2011

ISSCC

2012 VLSI

2013

1Mb BJT-

ReRAM

(4.2ns)

VLSI

2013

VLSI

2011

VLSI

2010

ReRAM+

SRAM 3D (TSV)

SRAM

3D NAND

(MXIC)

VLSI

2013

VLSI

2011

VLSI

2010

VLSI

2009

540mV

A2P8T

230mV

Z8T

210mV

D2AW8T 260mV

L7T

VLSI

2012

SRAM

Char.

(TSMC)

ISSCC

2014

0.27V

ReRAM

ISSCC

2014

eNose L7T

Recent Researches in MDL, NTHU

Page 9: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

Challenges at ReRAM Designs

Examples:

High-Speed ReRAM

Area-Efficient ReRAM

Low-Voltage ReRAM

Page 10: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 10

Recent ReRAM Devices

Larger write current is required for

High uniformity, long data retention,

Rapid write => Large-area switches

Page 11: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 11

Recent ReRAM Macros

~2010 2013 2011 2012

1Mb BJT-ReRAM

(0T1R, 4.2ns-Read)

VLSI Symp.

64Mb ReRAM

(3D Cross-point)

ISSCC 2010

(Unity)

2Mb ReRAM

(1T1R)

JSSC 2007

4Mb ReRAM

(1T1R, 7.2ns-R/W)

ISSCC

(ITRI+NTHU)

4Mb ReRAM

(1T1R)

ISSCC

1Mb ReRAM

(1T1R, 0.27V-R)

ISSCC

8Mb ReRAM

(Cross-point)

ISSCC

Embedded (1T1R)

Mass-storage (Cross-point)

32Gb ReRAM

(Cross-point)

ISSCC

ISSCC

2014

4Mb ReRAM

(1T1R, 0.5V-R)

ISSCC

16Gb ReRAM

ISSCC

Page 12: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 12

ReRAM Challenges: Disturb vs. Bias Write operation

Set: HRS (Hi-R) to LRS

Reset: LRS (Low-R) to HRS

Read operation

Large VR cause read disturb

=> Requires low BL bias (VBL-R)

SET RESET Read

WL VG_SET VDD VDD

BL 0 VBL-R

SL 0 VRESET 0

State LRS( R L ) HRS( R

H ) ‘ 1 ’ / ‘ 0 ’

0

) ‘ ’ ‘ 0 ’

I ILRS IHRS ICELL

Lee, H. Y., VLSI-TSA 2010

VSET

Page 13: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 13

Wide resistance distribution Large resistance (R) and ILRS variation

Ultra-small-R reference cells cause large/tail IREF

ReRAM Challenges – R Variation

0

500

1,000

1,500

2,000

2,500

3,000

-10 0 10 20 30 40 50 60 70 80 90 100

Nu

mb

er

of

Sa

mp

les

LRS Cell / Ref. Current (uA)

1-cell Reference

2-cell Reference

RH+RL Ref.

LRS Cell

HRS Cell

2-cell Ref.

VREAD

RL RL

VDD

RH+RL Avg.

VREAD

RH RL

VDD

1-cell Ref.

VREAD

RL

VDD

RH+RL Avg.

Read Fail

IHRS

Sensing Window

IREF

ILRS

Page 14: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 14

ReRAM Challenges: Bias & Speed

Bitline bias fluctuation BL-bias cannot exceed 0.3V

Conventional dynamic VBL generation

Sensitive to process and Temp. variation

Read access time Small ICELL

MLC, low VBL

Read vs. write speed

Slow read speed for long BL (large capacity)

Page 15: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 15

A High-Speed ReRAM Device - ITRI

BL

WL

SL

MSEL

Resistive Device

1T-1R configuration

MLC

Page 16: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 16

Example: High-Speed ReRAM

Parallel-Series Reference-Cell

(PSRC)

Narrow reference current (IREF)

distribution

Process-Temperature-Aware

Dynamic BL-bias circuit (PTADB)

Stable BL bias to avoid read

disturb

Page 17: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 17

4Mb High-Speed ReRAM:

7.2ns random read/write

access time

Small reference variation

High-speed read circuit

Read disturb, R-variation

0

10

20

30

40

50

0.1 1 10 100

Capacity

Acce

ss T

ime

(ns)

1Mb 100Mb

PCM

(ISSCC 2010)

This Work

MRAM

(2008)

MRAM

(ISSCC 2010)

10Mb100Kb

MRAM

(ISSCC 2009)

MRAM (2007)

STT-RAM (2010)

CBRAM

(2007)

300

SS Sheu & MF Chang, ISSCC, 2011

Example: High-Speed ReRAM

Page 18: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 18

Low-VDD Read Challenges

CM/Diode (M1)

Headroom

BDD-CSA CM-CSA w/o BLC CM-CSA + BLC

Lower VDD

BL Bias (VBL)

VD

D

RRCS

BL Clamper (BLC)

Headroom

Dynamic & Higher

VBL(0.35V~ 0.2V)

1V

0.6V

0.4V (high yield)

0.75V

RRCS + BDD-CSA

0.3V

0.05V

0.25V

Use RRCS for read

=> Removal of BL clamper

Body-Drain-Driven CSA

(BDD-CSA)

=> Reduced SA headroom

Page 19: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 19

Standby mode

SE=0, VMAT = VREF = VDD

BL=DBL= 0V

Active mode (Ymux on) :

BL-VMAT charge sharing

causes drop in VMAT

M1/M2 precharge BL/DBL

(Dummy BL)

IBL IREF

Body-Drain-Driven (BDD): 1st-stage (M1/M2)

M3 M4

Example: Low-VDD Read Scheme

Page 20: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 20

Faster read speed at low VDD

2.9x faster than voltage-mode SA (VSA) at VDD=0.5V

2.1x faster than conventional CSA (CM-CSA) at VDD=0.5V

Example: Low-VDD Read Scheme

Page 21: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 21 MF Chang, ISSCC 2012

Example: Low-VDD ReRAM Macro

Page 22: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 22

Examples: High-Density ReRAM Cells

Vertical Parasitic-BJT (VPBJT)

Logic process, npn

Emitter: NLDD implant

Base: thin self-aligned P-pocket

Collector: N-Well (SL)

Min. 4F2

Page 23: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 23

VPBJT-ReRAM vs. NMOS-ReRAM

Larger current density

>10x than NMOS

Enable smaller cell area +

sufficient write current

• Smaller macro area

– 4~7x reduction

– Larger capacity, greater

reduction

(Measured results)

Page 24: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 24

Thermal-Aware Bitline Bias (TABB)

Dynamic bitline (BL) bias voltage (VBL-R)

Track VBE across temperatures (T)

Constant VR across T

=> Larger ICELL

MF Chang, VLSI 2013

Page 25: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 25

Technology 0.18um Logic 65nm Logic

Capacity 1Mb (8b-IO) 2Mb (16b-IO)

Sub-blocks 256Kb x 4 1Mb X 2

RRAM Cell HfO2 RRAM

(NTHU+ITRI)

TION RRAM

(NTHU+TSMC)

Read Power 6.3mA @

100Mhz

2.8mA @

100MHz

Read Speed 4.2ns 4.7ns

Write Speed < 5ns <10us

Testchip Size

(w/ test-modea)

3157um x

3907um

1900um x

2580um

Interface Asyn. NOR Asyn. NOR

Features 1. Fast Write

2. BEOL RRAM

1. Pure logic

process

2. Contact layer

• Cross-process scalability

MF Chang, VLSI 2013

Examples: High-Density ReRAM Macros

Page 26: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

Challenges for Fast-Read NOR-

Flash

Example: Calibration-based

CSA

Page 27: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 27

Point-B

Point-A

Cu

rre

nt

Point-A Point-B

IREF

IPRE

ICELL0-TAIL

ICELL1-TAIL

IOS-SUM

ISM0 <0

ISM1

ΔICELL

ICELL0-TAIL

IPRE

Time

Cu

rre

nt

ISM1ISM0 >0

Current-Mode Sense Ampliier (CSA)

ICELLIREF+ -

Current-Mirror (CM) Pairs

Reference

CellArray

Cell

Current

Mirror

SA

DoutCell

current

Reference

current

Cell Mismatch

DeviceMismatch

Current

Mirror

Read-path input offsets

Variations in BL bias, SA

device, Icell and Iref

(Icell) (Iref)

Page 28: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 28

Concept of High-Speed CSA - AVB

Summed Read-path offset ( IOS-SUM) = (1) +(2) + IOS-SA

= (1) + (2) + (3) +(4)

Asym. Voltage

Bias (AVB) +

Short TPEE

VTH Nulling for (4)

VTH -nulling CSA

(1) VBL, CBL variations (3) ( Input-stage

VTH mismatch)(4) (VTH mismatch)

(2) IREF variationsCSA Offset

Sources

Proposed

AVB-CSA

CSA

OperationIREF

IREF

generation

VCP

VRP

IV-Conversion

(current-

mirror,current-

load,etc.)

Comparator

(VCMP)

Digital

Out

ICELLVBL, Bias

BL Precharge Sensing Operation

Conventional

CM-CSA Long TPEE to

suppress (1)

Use ΔVAP to

compensate

(1)~(4)

• Asymmetric-Voltage-Biased (AVB)

Page 29: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 29

Schematic of Proposed AVB-CSA Use inactive sub-array to provide dummy BLs for IREF

With ΔIAP-OS = –IOS-SUM to compensate offset

ΔVAP option unit (VOU) provides trimmed ΔVAP to each

AVB-CSA. (ΔVAP =VAP-CP –VAP-RP) B

L

ICELL

WL

Tim

er

WL

Dri

ve

rs

Du

mm

y

BL

(D

BL

)

Selected cell

AVB-CSAk VAP-CP

Programmable Dummy WL-driver

Voltage

generator

WE-/WP-/REF-Pages

eFlash Array1

eFlash Array2

VOUVAP-CP [K-1:0] VAP-CP

VAP-CP VAP-RP

RPCP

ICELL

BL

IREF

DBL

+ -

M1M3 M4

M2

M5 M6

+

+

Shared with all I/O Trimming for each I/O

Page 30: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 30

0

2

4

6

8

10

12

512-rows, VDD=1.2V

512-rows, VDD=0.9V

2048-rows, VDD=1.2V

2048-rows, VDD=0.9V

AVB Diasbled AVB Enabled

TA

C (

ns

)

1.15X

1.16X1.48X

1.52X@ ICELL ~=3.1σ

1.15x improvement

@ 512-cells/BL, VDD=0.9V

1.52x improvement

@ 2048-cells/BL,VDD=0.9V

High-Speed CSA - Measured Results

TAC=4.5nsCLK/

SE

TAC_

Scan

DOUT

TAC=3.9ns

Chip-delay(CLK-DOUT) = TAC + Path delay(CLK_DFF-DOUT)

w/o AVB w/ AVB (ΔVAP=150mV)

1Mb

Super

Flash

MF Chang, A-SSCC 2013

Less than 0.5% test time overhead compared to regular test operations

8.7%86.3% 5.3%(Erase) (Prog.)

Calibration time

(<1% of test-time)

TSMC 90nm

eFlash process

Page 31: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

Challenges at 3D NVM

Examples:

1. 3D Vertical-Gate (3DVG)

NAND

2. 3D Sequential Layered NVM

3. 3D Nonvolatile Logics

Page 32: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 32

Published 3D NAND ~2006 2007 2008 2009 2010 2011

Stacked NAND

IEDM 2006

Multi-layer TFT

IEDM 2006

BiCS

VLSI Symp

P-BiCS

VLSI Symp

VSAT

VLSI Symp

VG-NAND

VLSI Symp.

Island-gate

SSL

decoded 3D

VG

VLSI Symp.

S-SGT

IEDM 2001

Univ. of Tokyo 3D FG: DC -SF

IEDM

Hybrid-

channel 3D

VG

IMW

SO

NO

S/T

AN

OS

F

G

PN diode

decoded

3DVG

VLSI

Symp.

2012

IDG SSL decoded

3D VG

VLSI Symp

Metal control

gate 3D FG

VLSI Symp

B

L

Bit Line

DSL PWL WL63

n+

n+ junctionoxidepoly channel

WL00 PWL

CSL

Simply

stacked

one etch

Concept Various 3D NAND innovations

Split-page

3DVG

IEDM

TCAT

VLSI Symp

Page 33: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 33

3D Vertical-Gate (3DVG) NAND

Source: Hung and Lue (MXIC), IEDM 2013

Etching is not perfectly vertical

i.e. 500mV top-bottom Vth difference.

Page 34: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 34

Cross-Layer Variation

=> Require layer-aware scheme

Slide 34

Challenges of 3DVG NAND

• Higher failure rate than

2D NAND due to the

process complexity

– Need more ECC bits

=> Need faster fail-bit-

detection scheme

Layer Top Bottom

Cell Vth Lower Higher

Program speed Slower Faster

PGM&RD Disturb less more

Forward Read Vt comparison of PL1 and PL2

VT(V)

-3 -2 -1 0 1 2 3 4 5

Co

un

ts (

A. U

.)

Page0 (PL1, bot)

Page1 (PL1, bot)

Page2 (PL1, bot)

Page3 (PL1, bot)

Page0 (PL2, top)

Page1 (PL2, top)

Page2 (PL2, top)

Page3 (PL2, top)

~0.5V Layer[k]

Disturbance Layer[1]

Disturbance

Bit C

ou

nts

Layer[k]

“P” VTHLayer[1]

“P” VTH

VTH

Faster PGM

Speed

Larger

Disturbance

VLSI 2013, MXIC+NTHU

Page 35: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 35

Example: Layer-Aware-Program-Verify & Read

Conventional PV

Same target threshold voltage

(VTHP) across layers

Top layer (Layer[k]) program

to higher VTHP which causes

endurance degradation

Proposed LA-PV & R

Different VTHP across

layers

Lower VTHP for Layer[k]

to reduce endurance

degradation

Slide 35 SM: Sensing Margin

Bit C

ou

nts

Layer[1]

“E”

Layer[k] “E”

Layer[1] “P”

Layer[k] “P”

VTHP[1]

VTHP[k]VTHSM2'

Bit C

ou

nts

Layer[1] “E”Layer[k] “E”

“P”

VTHP

VT

H

SMSM2

VT

H D

istr

ibu

tio

n

afte

r D

istu

rba

nce

SM2 > SM SM2' = SMSM

Page 36: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 36

Example: Measurement Result of 3DVG-NAND

MLC cell Vth distribution with LA-PV & R

Bit

Co

un

t(A

.U.)

Vth (a.u.)

MLC W/ LAPV

Bit

Co

un

t(A

.U.)

Vth (a.u.)

MLC W/o LAPV

Page 37: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 37

3D Sequential Layered (3DSL) NVM

37 NDL/NTHU, IEDM 2013

A low-thermal process: Less impact on gate

dielectrics, S/D structures

Available in NDL, Taiwan

Design & Test Challenges Different cell performance

across layers

Different thermal-effect

across layers

In-process monitor/testing

- Full function test?

- At-speed test ?

To be appear in 2013 IEDM

(highlight paper)

100 nm 3D hybrid chip

TaN

Epi-like Si

Eu+3-APS dielectricLayer 1

Layer 2

FE-like metal-oxide (Eu+3-APS) NVM

0.8 μm 3D hybrid chip

Layer 1

Layer 2

Page 38: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 38

Example: 3D nvSRAM/nvLatch Cell

BL/RRAM-CL sharing

Two 3D-stacked resistive device

2T RRAM

switch:

RL RR

RSWL RSWR

Q QB

SWL

6T SRAM

Chou & Chang, NTHU/ITRI, Symp. VLSI 2010 / JSSC 2012

6T

SRAM

Rnv8T

w/o RFS

Rnv8T

w/ RFS

WM

RSNM

VDDmin Write margin improves 1.64~2.4x

Trade WM for RSNM

RSNM is improved 1.42x at TT corner

=> improves VDDmin

Page 39: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 39

On/Off Energy:

Store/re-store energy

Standby time vs. on/off frequency

Example: 3D nvSRAM/nvLatch Cell

Page 40: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 40

A 16Kb 8T2R nvSRAM macro

ITRI’s RRAM + 0.18um CMOS

Low-VDDmin & Fast power-on/off speed

Enable Logic-in-Memory

16Kb Rnv8T macro

10-1

100

101

102

103

104

105

10-1

100

101

102

103

104

105

106

Stor

e ti

me

(a.u

.)

Store Energy (a.u.)

SRAM+

MRAM

SRAM+

PCM

SRAM+

Flash

12T-SONOS

106X

105X

100

101

102

0

2

4

6

8

10

12

14

16

Stor

e ti

me

(nor

mal

ized

)

Store Energy (normalized)

100

101

102

0

2

4

6

8

10

12

14

16

Stor

e ti

me

(nor

mal

ized

)

Store Energy (normalized)

This work

Chou & Chang, NTHU/ITRI, Symp. VLSI 2010 / JSSC 2012

Example: 3D nvSRAM Macro

Page 41: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

# 41

Summary – NVM in Dependable Systems

Nonvolatile memory is one of the enablers for DS Power interrupts to reduce voltage and temp. stress

Against sudden power failure

Emerging memories X-RAM (STT, ReRAM, ..), 3D memory

Low power and fast read/write operations

Enable nonvolatile logics

Challenges for designing NVM Read disturbance, resistance variation, reference current

generations, area/speed vs. write current … etc.

Silicon examples

ReRAM: high-speed, low-voltage & area-efficient

3D-Memory: TSV-RAM, 3D-VG NAND, 3D-SL NVM

Nonvolatile latch and SRAM

Collaboration of system, circuit and device is needed

Page 42: Challenges at Circuits Designs for Nonvolatile Memory and ......2013/12/06  · 100Kb 10Mb MRAM (ISSCC 2009) MRAM (2007) STT-RAM (2010) CBRAM (2007) 300 SS Sheu & MF Chang, ISSCC,

Thank You for Your Attentions

Acknowledgements

NTHU, ITRI, NDL, TSMC and

MXIC


Top Related