+ All Categories
Transcript
Page 1: Chapter 6.  Bipolar Junction Transistors (BJTs)

Chapter 6. Bipolar Junction Transistors (BJTs)

Page 2: Chapter 6.  Bipolar Junction Transistors (BJTs)

Bipolar Junction Transistor • Three terminal device

• Voltage between two terminals to control current flow in third terminal

• Invented in 1948 at Bell Telephone Laboratories

• Dominant until late 1980’s

• Reliable under harsh operating conditions– High frequency applications

– High speed designs

– High power applications

Page 3: Chapter 6.  Bipolar Junction Transistors (BJTs)

npn transistor•n-type emitter (E) region, p-type base (B) region, n-type collector (C) region •Two pn junctions (naming basis for bipolar junction transistor)•Modes

- Active: used for amplifier design- Cutoff - Saturation: used for logic design- Reverse active: limited operation

Page 4: Chapter 6.  Bipolar Junction Transistors (BJTs)

pnp transistor – dual of npn transistor

Page 5: Chapter 6.  Bipolar Junction Transistors (BJTs)

Active Mode of npn Transistor

Page 6: Chapter 6.  Bipolar Junction Transistors (BJTs)

2

Collector current: (independent of )

: Saturation current

: Cross sectional area of base-emitter junction

: Magnitude of electron charge

: Electron diffusivity i

BE

T

v

VC S CB

E n iS S

A

E

n

i I e v

A qD nI I

N W

A

q

D

15 18

n base

: Effective width of base

: Intrinsic carrier density

: Doping concentration in base

10 A < < 10 A

i

A

S

W

n

N

I

Thermal Voltage:

25 mV (room temperature)T

T

V

V

Page 7: Chapter 6.  Bipolar Junction Transistors (BJTs)

Emitter current:

1 1

1

: Common-base current gain

BE

T

BE

T

E

E B C

v

VE C S

C E

v

VSE

i

i i i

i i I e

i i

Ii e

2

Base current:

: Common-emitter current gain

1

12

50 < <200

: Hole diffusivity in emitter

: Hole diffusion length

: Doping concentration in em

BE

T

v

VC SB

p A

n D p n b

p

p

D

i Ii e

D N W WD N L D

D

L

N

itter

: Minority carrier lifetimeb

Page 8: Chapter 6.  Bipolar Junction Transistors (BJTs)

Circuit Models for Active Mode npn Transistor

Page 9: Chapter 6.  Bipolar Junction Transistors (BJTs)

Practical Implementation

E and C are not symmetrical.

pnp transistors works dual to npn transistors much inthe same way PMOSFET works dual to NMOSFET.(In this class, we will concentrate on npn transistors.)

Page 10: Chapter 6.  Bipolar Junction Transistors (BJTs)

Circuit Symbols for npn Transistors

Biasing in active modeDirections of current flow

Page 11: Chapter 6.  Bipolar Junction Transistors (BJTs)

Example: Given 100. When 1 mA, 0.7 .

Design to achieve 2 mA when 5 V.

Since 5 V 5 V (reverse biased)

Transistor is in active mode.

15 55 k

2

ln

A

BE

T

C BE

C C

C B C

C

v

V CC S BE T

S

i v V

i V

V V V

R

ii I e v V

I

1t 1 mA, 0.7 ln .... (1)

2At 2 mA, ln .... (2)

Subtract (1) from (2)

20.7 ln 0.717 25 mV

1

100Given 100 0.99

100 12

2.02 mA0.99

0.717 ( 15)

2.0

C TS

C BE TS

BE T T

CE

C

i VI

i v VI

v V V

ii

R

7.07 k

2

Page 12: Chapter 6.  Bipolar Junction Transistors (BJTs)

iC – vBE Characteristics

Temperature Dependence

is typically 0.6 V to 0.8 V

BE

T

v

VC S

BE

i I e

v

Page 13: Chapter 6.  Bipolar Junction Transistors (BJTs)

Common Base Characteristics

Base voltage is fixed at zero.In active region, vCB ≥ - 0.4 V

Large signal Small signal C C

E E

i i

i i

Page 14: Chapter 6.  Bipolar Junction Transistors (BJTs)

Dependence of iC on Collector Voltage

50 V to 100 V (Early Voltage)

1BE

T

A

v

V CEC S

A

V

vi I e

V

Page 15: Chapter 6.  Bipolar Junction Transistors (BJTs)

0A CE

C

V Vr

I

Circuit Models with Output Resistance ro

Page 16: Chapter 6.  Bipolar Junction Transistors (BJTs)

Common Emitter Configuration

constant

Large signal Small signal CE

CQ Cdc

BQ B v

I i

I i

Page 17: Chapter 6.  Bipolar Junction Transistors (BJTs)

sat

satforced

forced

forced

In saturation, <

: current ratio in saturation

: overdrive factor

C B

C

B

I I

I

I

Page 18: Chapter 6.  Bipolar Junction Transistors (BJTs)

off 0.1 VCEV

Common Emitter Saturation Model

sat off sat sat

sat

sat

is typically 0.1 V to 0.3 V.

is much larger than typical triode voltages of .

BJT is less attractive than CMOS for logic circuits.

CE CE C CE

CE

CE DS

V V I R

V

V V

Page 19: Chapter 6.  Bipolar Junction Transistors (BJTs)

Designing Linear Amplifiers (Active Region)

and

cutoff if 0.5 VBJT is

active if > 0.5 V

Initially after BJT turns on, large.

Further increase of , gets small.

BE I I

T T T

O CE CC C C I BE

I

I

CE

I CE

v v v

V V VC S S O CC C S

v v V R i v v

v

v

v

v v

i I e I e v V R I e

satsat

sat

In saturation,

0.1 V to 0.2 V

CC CEC

C

CE

V VI

R

V

Page 20: Chapter 6.  Bipolar Junction Transistors (BJTs)

Amplifier Gain

max

1

BE

T

BE

T

I BE

V

VC S

CE CC C C

V

VOv S C

I TV V

C Cv

T

CCv

T

I I e

V V R I

vA I e R

v V

R IA

V

VA

V

Page 21: Chapter 6.  Bipolar Junction Transistors (BJTs)

15

3 15 0.025

3

Example: Common Emitter Circuit

Given 10 A, 6.8 k and 10 V

Find and for 3.2 V.

10 3.21 mA

6.8

1 10 1 10

690.8 10 V

10 3.2

0

BE BE

T

S C CC

BE C CE

CC CEC

C

V VV

C S

BE

CC CEv

T

I R V

V I V

V VI

R

I I e e

V

V VA

V

3

272 V/V.025

Assume at the edge of saturation 0.3 V.

10 0.31.617 mA

6.8

new 1.617ln 0.025ln 12 10 V

old 1

CE

CC CEC

C

CBE T

C

v

V Vi

R

iv V

i

Page 22: Chapter 6.  Bipolar Junction Transistors (BJTs)

Graphical Analysis

Get from the graph

BE

T

CE CC C C CC C B

v

VC SB

B

v V R i V R i

i Ii e

i

Page 23: Chapter 6.  Bipolar Junction Transistors (BJTs)

Use (we found from the previous slide).

Then, read and from the graph.B

C CE

i

i v

Page 24: Chapter 6.  Bipolar Junction Transistors (BJTs)

To determine iB, iC and vCE, you need to use both graphs.

Page 25: Chapter 6.  Bipolar Junction Transistors (BJTs)

Quiescent point must be selected to give a symmetric output swing.

Page 26: Chapter 6.  Bipolar Junction Transistors (BJTs)

(EOS

Switching Operation

0.5 V (cutoff) 0, 0 and

0.5 V and 0.4 (active)

, and

0.5 V and = 0.4

(edge of saturation - EOS)

I B C C CC

I C B

I BEB C B C CC C C

B

I C B

C

v i i v V

v v v

v vi i i v V R i

R

v v v

i

(EOS)) (EOS) (EOS) (EOS)

satsat

satforced

0.3, and

0.5 V and < 0.4 (saturation)

In deep saturation:

CCCB I B B BE

C

I C B

CC CEC

C

C

B

ivi V I R V

R

v v v

V VI

R

I

I

Page 27: Chapter 6.  Bipolar Junction Transistors (BJTs)

sat

forced

When the transistor is on:

0.7 V

0.2 V

In active mode: 0.4

In saturation mode: 0.4

Check: for active mode,

DC Analysis Model

BE

CE

CB

CB

C C

B B

V

V

V

V

I I

I I

for saturation mode

Page 28: Chapter 6.  Bipolar Junction Transistors (BJTs)

Example:

Given =100.

Assume 0.7 V.

4 0.7 3.3 V

3.31 mA

3.3

Assume active mode.

1001 0.99 mA

100 110 10 0.99 4.7 5.3 V

5.3 4 1.3 0.4

The transistor is in ac

BE

E B BE

EE

E

C E

C C C

CB C B

V

V V V

VI

R

I I

V I R

V V V V

tive mode (check).

Page 29: Chapter 6.  Bipolar Junction Transistors (BJTs)

What if 6 V?

5.36 0.7 5.3 V 1.6 mA

3.3

Assume active mode.

1001.6 1.58 mA

100 110 10 1.58 4.7 2.56 V

2.56 6 3.44 V 0.4 (Not OK)

Assume saturation mode.

B

EE B BE E

E

C E

C C C

CB C B

V

VV V V I

R

I I

V I R

V V V

V

sat

forced

5.3 0.2 5.5 V

10 5.50.96 mA 1.6 0.96 0.64 mA

4.70.96

1.5 100 (check)0.64

C E CE

C B E C

C

B

V V

I I I I

I

I

Page 30: Chapter 6.  Bipolar Junction Transistors (BJTs)

What if 0 V?

Transistor is cutoff.

0 V

0 V

10 V

0 A

B

E

B

C

B C E

V

V

V

V

I I I

Page 31: Chapter 6.  Bipolar Junction Transistors (BJTs)

Example:

Given =100.

Assume active mode.

0.7 V.

5 5 0.70.043 mA

100

100 0.043 4.3 mA

10 10 4.3 2 1.4 V

1 101 0.043 4.3 mA

1.4 0.7 0.7 V 0.4

The transistor is in a

B

BB

B

C B

C C C

E B

CB C B

V

VI

R

I I

V I R

I I

V V V

ctive mode (check).

Page 32: Chapter 6.  Bipolar Junction Transistors (BJTs)

2

1 2

1 2

Example: Given =100.

Note that 0.

Thus we need to find an equivalent

circuit for the input part.

15 5 V

|| 33.3 k

B

BBB

B B

BB B B

I

RV

R R

R R R

Input part

+_ VBB_

+

10 V

RB1

RB2

10 V RB2VBB

RB1

+_VBB

RBB

Page 33: Chapter 6.  Bipolar Junction Transistors (BJTs)

Assume active mode.

1

5 0.71.29 mA

33.33

1011

1.290.0128 mA

1 101

0.7 1.29 3 4.57 V

0.99 1.29 1.28 mA

15 15

BB B BB BE E E

EBB BE E E

BB BEE

BBE

EB

B BE E E

C E

C C C

V I R V I R

IR V I R

V VI

RR

II

V V I R

I I

V I R

1.28 5 8.6 V

> 8.6 4.57 4.04 0.4

The transistor is in active mode (check).CB C BV V V

Page 34: Chapter 6.  Bipolar Junction Transistors (BJTs)

Biasing BJT• Determining a quiescent point for linearization

• Active mode operation

• Considerations– Stable with respect to manufacturing parameters

(e.g., ro, β)

– Desired gains– Acceptable output swing

Page 35: Chapter 6.  Bipolar Junction Transistors (BJTs)

Biasing with Single Power Supply

• Fix VBE or IB.

• Output directly depends on β• Unstable with respect to temperature variation

Page 36: Chapter 6.  Bipolar Junction Transistors (BJTs)

Addition of Degeneration Resistor

2 1 21 2

1 2 1 2

|| =

1

To stablize the design: and 1

1Good rule of thumb:

3

BB BEBB CC B E

BE

BBB BE E

BB CB C C CC

R R R V VV V R R R I

RR R R R R

RV V R

V V I R V

Page 37: Chapter 6.  Bipolar Junction Transistors (BJTs)

1 2

1 2

Example: Given =100 and 12 V.

Find a design for 1 mA.

4 V3

4 3.3 V

3.33.3 k

1

1 1 mA 0.01 mA (very small)

Arbritrarily set 120 k .

80 k and 40 k

Note

CC

E

CCBB

E BE

EE

E

E B B

V

I

VV

V V

VR

I

I I I

R R

R R

that the above design yields 0.93 mA 1 mA.

One might need to go back and fine tune the design to

achieve 1 mA.

E

E

I

I

Page 38: Chapter 6.  Bipolar Junction Transistors (BJTs)

Biasing with Two Power Supplies

0

1 1

To stablize the design: 1

BE EE EE BEE

B BE E

BE

V V V VI

R RR R

RR

Page 39: Chapter 6.  Bipolar Junction Transistors (BJTs)

Biasing with Feedback Resistor

1

1

If , is stable.1

ECC E C B B BE E C B BE

CC BEE

BC

BC E

IV I R I R V I R R V

V VI

RR

RR I

Page 40: Chapter 6.  Bipolar Junction Transistors (BJTs)

Biasing with Current Source

1 2

1

1

1 2

and are matched.

has base and collector shorted.

is a diode.

Since 's are the same for and

CC EE BEREF

BE

CC EE BEREF

Q Q

Q

Q

V V VI

RV Q Q

V V VI I

R

Page 41: Chapter 6.  Bipolar Junction Transistors (BJTs)

Small Signal Analysis

• A quiescent point has been determined by biasing.

• Active mode operation– Forward biasing for base-emitter junction by VBE

– Reverse biasing for collector-base junction by RC and VCC

Page 42: Chapter 6.  Bipolar Junction Transistors (BJTs)

Consider dc first.

0.4 (active mode)

BE

T

V

VC S

CE

CB

C CE CC C C

C B

I I e

II

II

V V V R I

V V

Page 43: Chapter 6.  Bipolar Junction Transistors (BJTs)

1 for

Above approximation is valid if 10 mV.

where (Transconductance)

BE be beBE BE

T T T T

be

T

BE BE be

V v vv V

V V V VC S S S

v

V beC C C be T

T

be

CC C be

T

C Cc be m be m

T T

v V v

i I e I e I e e

vi I e I v V

V

v

Ii I v

V

I Ii v g v g

V V

Page 44: Chapter 6.  Bipolar Junction Transistors (BJTs)

The transistor performs as a voltage controlled current source with gain gm when input varies by 10 mV or less.

Page 45: Chapter 6.  Bipolar Junction Transistors (BJTs)

1

Input resistance between base and emitter

C C CB be

T

mb be

be T

b m B

i I Ii v

V

gi v

v Vr

i g I

Page 46: Chapter 6.  Bipolar Junction Transistors (BJTs)

1

1

Input resistance between base and emitter

1

1

C C CE be

T

C Ee be be

T T

be Te

e E m m

ebe b e e e e

b

i I Ii v

V

I Ii v v

V V

v Vr

i I g g

iv i r i r r r r

i

Page 47: Chapter 6.  Bipolar Junction Transistors (BJTs)

C CC C C

C CC C c C

C CC C C c C

C C c C

c c C m be C

c m C be v be

c C Cv m C

be T

v V i R

v V I i R

v V I R i R

v V i R

v i R g v R

v g R v A v

v I RA g R

v V

Page 48: Chapter 6.  Bipolar Junction Transistors (BJTs)

Hybrid π Model

• Short circuit voltage sources• Open circuit current sources• Short circuit capacitors

Page 49: Chapter 6.  Bipolar Junction Transistors (BJTs)

1

1

1

be bee m be m

be be bee

e

m be m b

m b b

v vi g v g r

r r

v v vi

rr r

g v g i r

g r i i

Page 50: Chapter 6.  Bipolar Junction Transistors (BJTs)

T Model

Page 51: Chapter 6.  Bipolar Junction Transistors (BJTs)

1. Determine the quiescent point.

2. Determine , , and .

3. Eliminate dc and ac sources.

4. Replace transistors with small signal mode

Analysis of Small Signals

C Tm e

T m E m

I Vg r r

V g I g

ls.

5. Analyze the circuit.

Page 52: Chapter 6.  Bipolar Junction Transistors (BJTs)

Example: Given =100 and 10 V.

Assume 0 V.

0.991

3 0.70.023 mA

100

100 0.023 2.3 mA

10 2.3 3 3.1 V

3.1 V > 0.3 V Transistor in active mode

25 mV2.

CC

i

BB BEB

BB

C B

C CC C C

CE

Te

E

V

v

V VI

R

I I

V V I R

V

Vr

I

10.8 3 mA0.992.3 mA

92 mA/V25 mV

1001.09 k

92

Cm

T

m

Ig

V

rg

Page 53: Chapter 6.  Bipolar Junction Transistors (BJTs)

Now ac analysis

1.090.011

101.09

92 0.011 3 3.04

3.04

be i i iBB

o m be C i i

ov

i

rv v v v

r R

v g v R v v

vA

v

Page 54: Chapter 6.  Bipolar Junction Transistors (BJTs)

Hybrid π Model with Early Effect

||

A CE Ao

C C

o m be C o

V V Vr

I I

v g v R r

Page 55: Chapter 6.  Bipolar Junction Transistors (BJTs)

Structure of Single Stage Amplifier

Page 56: Chapter 6.  Bipolar Junction Transistors (BJTs)

Common Emitter Amplifier

Page 57: Chapter 6.  Bipolar Junction Transistors (BJTs)

sig sig sig

sig sig sig

|| where .

if .

|| if .

||

iin B ib ib

i

in B

Bini B

in B

i

vR R R R r

i

R r R r

R rR rv v v v R r

R R R r R r R

v v

Page 58: Chapter 6.  Bipolar Junction Transistors (BJTs)

sig sig

|| ||

|| ||

|| if .

|| if .

for unilateral amplifier.

|| ||

||

o m o C L

ov m o C L

i

vo m o C m C o C

out o C C o C

o out

Lv vo

o L

Bov m o

B

v g v r R R

vA g r R R

v

A g r R g R r R

R r R R r R

R R

RA A

R R

r RvG g r

v r R R

sig

sig

||

|| || if

|| || if .

C L

o C LB

m o C L

R R

r R RR r

r R

g r R R R r

Page 59: Chapter 6.  Bipolar Junction Transistors (BJTs)

Common Emitter Amplifier with RE

Page 60: Chapter 6.  Bipolar Junction Transistors (BJTs)

||

1

1

1

iin B ib

i

i i iib e E

eb i

e E

vR R R

i

v v vR r R

ii v

r R

Page 61: Chapter 6.  Bipolar Junction Transistors (BJTs)

sig sig

sig

|| ||

|| ||

||

1

||

|| if

1

o c C L e C L

e C L C Lov

i e e E e E

C Lv

e E

C m Cvo

e E m E

out C

C Lo inv

in e E

C Lv E ib

e E

v i R R i R R

i R R R RvA

v i r R r R

R RA

r R

R g RA

r R g R

R R

R Rv RG

v R R r R

R RG R R

R r R

Page 62: Chapter 6.  Bipolar Junction Transistors (BJTs)

Common Base Amplifier

Page 63: Chapter 6.  Bipolar Junction Transistors (BJTs)

iin e

i

vR r

i

Page 64: Chapter 6.  Bipolar Junction Transistors (BJTs)

sig sig sig sig

||

|| ||

|| || ||

o e C L

ie

e

ov C L m C L

i e

vo m C

out C

C L C Lo ev m C L

e e e

v i R R

vi

r

vA R R g R R

v r

A g R

R R

R R R Rv rG g R R

v R r R r R r

Page 65: Chapter 6.  Bipolar Junction Transistors (BJTs)

Common Collector Amplifier

Page 66: Chapter 6.  Bipolar Junction Transistors (BJTs)

||

1 ||

iin B ib

i

iib e o L

b

vR R R

i

vR r r R

i

Page 67: Chapter 6.  Bipolar Junction Transistors (BJTs)
Page 68: Chapter 6.  Bipolar Junction Transistors (BJTs)

sig sig sig

sig sig

sigsig

sig

1 ||

|| 1 ||

||

|| ||

1

if and .

1

1 if and .1

o Lo Bv

B B e o L

o LB

B B

e o L

LB o L

e L

L e L

r Rv RG

v R R R R r r R

r RR

R R R Rr r R

RR R r R

Rr R

RR r R

sig sig sig

|| || || || if >> .

1 1 1B B B

out o e e o e

R R R R R RR r r r r r

Page 69: Chapter 6.  Bipolar Junction Transistors (BJTs)

Digital Logic Inverter

Transistor is in saturation mode.

Logic 1: vI ≈ VCC → vO =VCEsat ≈ 0.2 V Logic 0: vI ≈ 0 → vO =VCC

Page 70: Chapter 6.  Bipolar Junction Transistors (BJTs)

vI – vO Transfer Function

VCC = 5 VRB = 10 kΩRC = 1 kΩβ = 50

Page 71: Chapter 6.  Bipolar Junction Transistors (BJTs)

sat

sat

1. If 0.2 V 5 V

2. 0.7 V

3. Transistor in active region

1 50 V/V

10

4. Edge of saturation

I OL CE O OH CC

IL

IL I IH

o C Cv

i B B

I IH

CC CE

CB

v V V v V V

V

V v V

v R RA

v r R R

v V

V V

RI

sat

sat

forced

0.096 mA

1.66 V

5. 5 V

4.8 11 50

0.43

6. 5 1.66 3.44 V

0.7 0.2 0.5 V

CC CE

C

IH B B BE

I OH

CC CE

C

OH BE

B

H OH IH

L IL OL

V V

R

V I R V

v V

V V

RV V

R

NM V V

NM V V


Top Related