+ All Categories
Transcript
Page 1: charge-charge, charge-dipole, dipole-charge, dipole-dipole ... · 01-12-2008 · charge-charge, charge-dipole, dipole-charge, dipole-dipole interaction Masahiro Yamamoto Department

charge-charge, charge-dipole, dipole-charge, dipole-dipole interaction

Masahiro YamamotoDepartment of Energy and Hydrocarbon Chemistry,

Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan(Dated: December 1, 2008)

In the bulk and at the interface of polar solvents and/or ionic liquids, molecules feel the strong electric field andthis strong field distort the electron cloud of molecule and induces dipole around atoms. To consider this polarizationeffect we should consider charge-charge, charge-dipole, dipole-charge, dipole-dipole interaction.

I. CHARGE-CHARGE (C-C) INTERACTION

The coulomb potential φ from the point charge zie at ri is given by

� 1 0 � 5 0 5 1 0 � 1 0 � 5 0 5 1 0� 1� 0 . 8� 0 . 6� 0 . 4� 0 . 20

FIG. 1: Coulomb potential of negative charge

φC(|r − ri|) =zie

4πϵ0

1|r − ri|

(1)

The electric field is given by the gradient of the potential

EiC(r) = −∇φC(|r − ri|) =

zie

4πϵ0

r − ri

|r − ri|3(2)

If we put the other point charge zje at at rj the electrostatic energy Vcc is given by

Vcc = zjeφC(|rj − ri|) =zizje

2

4πϵ0

1|ri − rj |

(3)

II. CHARGE-DIPOLE (C-D) INTERACTION

In this interaction we consider two cases, i.e. (I) the coulomb potential interact with dipole µj = ezjpj and (II)dipole field interact with point charge.

In the case of (I), the C-D interaction becomes

Vcd =zi(−zj)e2

4πϵ0

1|rj − ri|

+zizje

2

4πϵ0

1|rj + pj − ri|

(4)

rj − ri ≡ rji, |rji| = rji, (1 + x)−1/2 ≅ 1 − x/2 + 3x2/8... (5)

Vcd = −zizje2

4πϵ0

1rji

− 1√r2ji + 2rji · pj + p2

j

= − zizje2

4πϵ0rji

[1 − 1

(1 + 2rji · pj/r2ji + p2

j/r2ji)1/2

]

Page 2: charge-charge, charge-dipole, dipole-charge, dipole-dipole ... · 01-12-2008 · charge-charge, charge-dipole, dipole-charge, dipole-dipole interaction Masahiro Yamamoto Department

2

�++ �dipole fieldichargejcharge fieldidipolej

FIG. 2: charge-dipole(C-D) and dipole-charge(D-C) interaction

≅ − zizje2

4πϵ0rji

[1 − 1 +

12

2rji · pj

r2ji

+12

p2j

r2ji

− 38(2rji · pj/r2

ji + p2j/r2

ji)2

](6)

if we assume rji >> pj

Vcd = −zizje2

4πϵ0

rji · pj

r3ji

=zizje

2

4πϵ0

rij · pj

r3ij

=zie

4πϵ0

rij · µj

r3ij

, µj ≡ zjepj (7)

In the ordinary method the potential is given by −µ · EC

EiC(r) = −∇φC(|r − ri|) =

zie

4πϵ0

r − ri

|r − ri|3(8)

Vcd = −µj · EiC(rj) = − zie

4πϵ0

rji · µj

r3ji

=zie

4πϵ0

rij · µj

r3ij

(9)

which gives the same results.In the case of (II), the D-C interaction becomes

Vdc =(−zi)zje

2

4πϵ0

1|rj − ri|

+zizje

2

4πϵ0

1|rj − ri − pi|

(10)

= −zizje2

4πϵ0

1rji

− 1√r2ji − 2rji · pi + p2

i

= − zizje2

4πϵ0rji

[1 − 1

(1 − 2rji · pi/r2ji + p2

i /r2ji)1/2

]

≅ − zizje2

4πϵ0rji

[1 − 1 +

12−2rji · pi

r2ji

+12

p2i

r2ji

− 38(−2rji · pi/r2

ji + p2i /r2

ji)2

]. if we assume rji >> pj

=zizje

2

4πϵ0

rji · pi

r3ji

= −zizje2

4πϵ0

pi · rij

r3ij

= − 14πϵ0

µi · rijzje

r3ij

, µi ≡ ziepi (11)

Please note that C-D and D-C interaction the sign is different. Since the interaction energy is given by zjeφ(|rj −ri|),the dipoler field is given by

φD(r − ri) =1

4πϵ0

µi · (r − ri)|r − ri|3

(12)

Page 3: charge-charge, charge-dipole, dipole-charge, dipole-dipole ... · 01-12-2008 · charge-charge, charge-dipole, dipole-charge, dipole-dipole interaction Masahiro Yamamoto Department

3

� 1 0 � 5 0 5 1 0� 1 0� 5051 0� 0 . 4� 0 . 200 . 20 . 4FIG. 3: dipole field

� �dipole field dipole i jFIG. 4: dipole-dipole interaction

III. DIPOLE-DIPOLE(D-D) INTERACTION

The dipole-dipole(D-D) interaction can be obtained in the same way. Again we assume rij >> pi, pj .

Vdd =(−zi)(−zj)e2

4πϵ0

1|rj − ri|

+(−zi)zje

2

4πϵ0

1|rj + pj − ri|

+zi(−zj)e2

4πϵ0

1|rj − ri − pi|

+zizje

2

4πϵ0

1|rj + pj − ri − pi|

(13)

=zizje

2

4πϵ0

1rji

− 1√r2ji + 2rji · pj + p2

j

− 1√r2ji − 2rji · pi + p2

i

+1√

r2ji − 2rji · pi + 2rji · pj + p2

i + p2j − 2pi · pj

=

zizje2

4πϵ0rji

[1 − 1

(1 + 2rji · pj/r2ji + p2

j/r2ji)1/2

− 1(1 − 2rji · pi/r2

ji + p2i /r2

ji)1/2

+1

(1 − 2rji · pi/r2ji + 2rji · pj/r2

ji + p2i /r2

ij + p2j/r2

ji − 2pi · pj/r2ji)1/2

]

=zizje

2

4πϵ0rji

[1 − 1 +

12

2rji · pj

r2ji

+12

p2j

r2ji

− 38(2rji · pj/r2

ji + p2j/r2

ji)2

−1 +12−2rji · pi

r2ji

+12

p2i

r2ji

− 38(−2rji · pi/r2

ji + p2i /r2

ji)2

+1 − 12−2rji · pi

r2ji

− 12

2rji · pj

r2ji

− 12

p2i

r2ji

− 12

p2j

r2ji

+12

2pi · pj

r2ji︸ ︷︷ ︸

survive

+38(−2rji · pi

r2ji

+2rji · pj

r2ji︸ ︷︷ ︸

cross term survive

+p2

i

r2ji

+p2

j

r2ji

− 2pi · pj

r2ji

)2

=

zizje2

4πϵ0rji

[pi · pj

r2ji

− 3(rji · pi)(rji · pj)

r4ji

]

Vdd =1

4πϵ0r3ij

[µi · µj − 3

(µi · rij)(rij · µj)r2ij

](14)

Page 4: charge-charge, charge-dipole, dipole-charge, dipole-dipole ... · 01-12-2008 · charge-charge, charge-dipole, dipole-charge, dipole-dipole interaction Masahiro Yamamoto Department

4

If electric field EiD from i-th dipole can be calculated from φD given above, and the interaction energy can be obtained

by −µj · EiD(rj).

EiD = −∇φD(r − ri) = −

(i

∂x+ j

∂y+ k

∂z

)φD(r − ri)

φD(r − ri) =1

4πϵ0

µix(x − xi) + µiy(y − yi) + µiz(z − zi)[(x − xi)2 + (y − yi)2 + (z − zi)2]3/2

−∇φD(r − ri)|x = − 14πϵ0

1|r − ri|3

µixi[(x − xi)2 + (y − yi)2 + (z − zi)2]3/2

− 14πϵ0

µi · (r − ri)[(x − xi)2 + (y − yi)2 + (z − zi)2]5/2

−32

2(x − xi)i

EiD(r) = − 1

4πϵ0|r − ri|3

[µi − 3

µi · (r − ri)(r − ri)|r − ri|2

](15)

Vdd = −µj · Eid(rj) =

14πϵ0r3

ij

[µi · µj − 3

µi · (ri − rj)(ri − rj) · µj

r2ij

](16)

This equation is the same as the equation given above.

IV. UNIFIED DEFINITION OF C-C, C-D, D-C, AND D-D INTERACTIONS

The total electrostatic potential is given by [check sign→OK]

4πϵ0Vtot =∑i>j

qiTijqj︸ ︷︷ ︸C−C

−qi

∑α

Tαijµj,α︸ ︷︷ ︸

C−D

+∑α

µi,αTαijqj︸ ︷︷ ︸

D−C

−∑α,β

µi,αTαβij µj,β︸ ︷︷ ︸

D−D

(17)

qi = ezi, µi = (µix, µiy, µiz) = ezipi = ezi(pix, piy, piz) (18)

Here the interaction tensors are given by [check this→OK]

Tij =1rij

(19)

Tαij = ∇αTij = −rij,αr−3

ij (20)

Tαβij = ∇α∇βTij = (3rij,αrij,β − r2

ijδαβ)r−5ij (21)

Tαβγij = ∇α∇β∇γTij = −[15rij,αrij,βrij,γ − 3r2

ij(rij,αδβγ + rij,βδγα + rij,γδαβ)]r−7ij (22)

Here ∇α means ∂∂rij,α

for α = x, y, z. Tαβγij will be used in the force formulation.

V. POLARIZATION

When a strong electric field is applied to an atom i, the electrons around atom i starts to deform and a dipolemoment may be induced.

The dipole moment of atom i in the α direction may be written as the superposition of the electric field EjC generated

by the charge of atom j and that EjD by the dipole of atom j

µi,α = µstati,α + µind

i,α ≅ µindi,α (23)

Usually we take µstatici,α = 0. The electric field at atom i can be written as

E(ri) =∑j(=i)

[EjC(ri) + Ej

D(ri)] (24)

Page 5: charge-charge, charge-dipole, dipole-charge, dipole-dipole ... · 01-12-2008 · charge-charge, charge-dipole, dipole-charge, dipole-dipole interaction Masahiro Yamamoto Department

5

������ ++++++d i p o l ei n d u c e d

+ +� �FIG. 5: What’s polarization?

=1

4πϵ0

∑j(=i)

{zje

ri − rj

|ri − rj |3− 1

|ri − rj |3

[µind

j − 3µind

j · (ri − rj)(ri − rj)|ri − rj |2

]}(25)

Eα(ri) =1

4πϵ0

∑j(=i)

−Tαijqj +

∑β

Tαβij µind

j,β

(26)

The induced dipole moment µindi,α is given by

µindi,α = αi

α,βEβ(ri) (27)

Here αiα,β polarizability tensor of atom i. If we assume

[αi] =

αi 0 00 αi 00 0 αi

(28)

then, we have

µindi = αiE(ri), µind

i,α = αiEα(ri) (29)

µindi,α (out) =

αi

4πϵ0

∑j( =i)

−Tαijqj +

∑β

Tαβij µind

j,β (input)

(30)

µindi,x (out) =

αi

4πϵ0

∑j( =i)

−T xijqj +

∑β

T xβij µind

j,β (input)

(31)

=αi

4πϵ0

∑j( =i)

xij

r3ij

qj +∑

β

[3xijrij,β

r5ij

− δxβ

r3ij

]µindj,β (input)

(32)

=αi

4πϵ0

∑j( =i)

xij

r3ij

qj +3xij

r5ij

∑β

rij,βµindj,β (input) −

µindj,x (input)

r3ij

(33)

The last equations should be solved self-consistently.In the fixed charge model the interaction of C-C is calculated by Ewald method. Then when we consider the induced

dipoles at the atom sites we should C-D, D-C, and D-D interaction. The total C-C, C-D, D-C, D-D interaction isgiven by [check this]

4πϵ0Vtot =∑i>j

qiTijqj − qi

∑α

Tαijµ

indj,α +

∑α

µindi,αTα

ijqj −∑α,β

µindi,αTαβ

ij µindj,β

(34)

Page 6: charge-charge, charge-dipole, dipole-charge, dipole-dipole ... · 01-12-2008 · charge-charge, charge-dipole, dipole-charge, dipole-dipole interaction Masahiro Yamamoto Department

6

From Bottcher’s book (Theory off Electric Polarization vol 1 Dielectrics in static field 2nd ed. p110), the energy Uof the induced dipole system

U = −µindi · E(ri) + Upol (35)

where Upol is the work of polarization. At equilibrium, the energy will be minimal with an infinitesimal change ofinduced moment

dU = 0, for all dµindi (36)

Then we have

dUpol = −d[−µindi · E(ri)] = E(ri) · dµind

i =µind

i

αi· dµind

i =1

2αid[(µind

i )2] (37)

The induced dipole is formed in a reversible process

Upol =∫

dUpol =1

2αi

∫ µiind

0

d[(µindi )2] =

12αi

(µindi )2 (38)

If we count all the cotribution

Upol =∑

i

12αi

µindi · µind

i (39)

The MD code with this polarization scheme is available, e.g. Amber or Lucretius.

Page 7: charge-charge, charge-dipole, dipole-charge, dipole-dipole ... · 01-12-2008 · charge-charge, charge-dipole, dipole-charge, dipole-dipole interaction Masahiro Yamamoto Department

7

FIG. 6: long-range electrostatic interaction

Page 8: charge-charge, charge-dipole, dipole-charge, dipole-dipole ... · 01-12-2008 · charge-charge, charge-dipole, dipole-charge, dipole-dipole interaction Masahiro Yamamoto Department

8

FIG. 7: Ewald sum convergence


Top Related