+ All Categories
Transcript
Page 1: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

Hideyasu SHIMADZURitei SHIBATA

Toshinobu SHIMOIKotaro OKA

(Keio University, JAPAN)

Cherry Bud Workshop 2006Building Models from Data

Keio University, Yokohama, JAPAN

Data Modelling ofData Modelling ofNeuron Neuron MembraneMembrane PotentialPotential

Page 2: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 2

Neuron membrane potential

First part of observed data

Page 3: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 3

Outline

BackgroundAction potential

DataIdeas for data modelling

Instantaneous change, gradual change

ModelConclusion

Page 4: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 4

Overview

Membrane potential change are caused by exchange of ions across the neuron membrane.

Neuron Membrane

K+

Na+

Page 5: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 5

Hodgkin-Huxley model(Hodgkin & Huxley 1952)

Their ideas:Membrane Condenser;Ion channel Resistance and Battery.

http://nobelprize.org/

K+

Na+

Page 6: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

Izhikevich (2003, 2004), Rose and Hindmarsh (1989), Wilson (1999) etc.

Membrane potential changes conductance

Page 7: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 7

Data

Earthworm’s neuronMembrane potential 879000 observations (44 s per 0.05 ms)

Electrode

Page 8: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 8

Words

Spike(s): instantaneous jumpCluster: dense spikesTrend: gradual change

Spike(s) Cluster Trend

Page 9: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 9

Appearance of whole data

Page 10: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 10

Basic ideas for modelling

Trend (second)Dynamic model

A spike (mili second)Dynamic model

Occurrence points of spikes(in a wink)

Stochastic model

Time scale

long

short

Page 11: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 11

Trend

=+

Page 12: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 12

Spike

Page 13: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 13

Electric circuit model

Page 14: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.
Page 15: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 15

Parameter estimation

Page 16: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 16

Occurrence points of spike

Point process model (Cox and Isham 1980)

↓occurrence point of activation

(Kass and Ventura 2001, Ventura et al. 2002 etc.)

Point process model is applied for each cluster

Page 17: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.
Page 18: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.
Page 19: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 19

Estimation of intensity function

Intensity function

Likelihood

↓occurrence point of activation

Page 20: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 20

Estimated intensity (ex. Cluster 2)

Intensity

Page 21: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 21

Simulation

Page 22: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 22

What the model tells us?

Relationship between intensity and trend

Parameter changes of intensity function among clusters

Page 23: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 23

Relationship between intensity and trend

1500 2000 2500 3000

-2

02

46

8

time (ms)

membrane potential (mV)

1500 2000 2500 3000

-1

01

23

4

time (ms)

Trend

1500 2000 2500 3000

0.00

0.02

0.04

0.06

0.08

time (ms)

intensity

Trend

Intensity

Page 24: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 24

Parameters changes of intensity function among clusters

Page 25: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 25

Future works

We just have a model for a cluster

What is the trend?

How build a model of relationship between clusters?

Page 26: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 26

References (1)Cleveland and Devlin (1988). Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. Journal of the American Statistical Association, 83(403):596-610.Cox and Isham (1980). Point Processes. Chapman and Hall, London.Hodgkin and Huxley (1952). A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve. Journal of Physiology, 117:500-544.Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.Izhikevich (2004). Which model to use for cortical spiking neurons? IEEE Transactions on neural networks15(5):1063-1070.

Page 27: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 27

References (2)Ogata (1981). On Lewis’ Simulation Method for Point Processes. IEEE Transactions on Information Theory IT-27(1):23-31.Kass and Ventura (2001). A spike-train probability model. Neural Computation, 13: 1713-1720.Rose and Hindmarsh (1989). The assembly of ionic currents in a thalamic neuron I. the three-dimensional model. Proceedings of the Royal Society of London. Series B, Biological Sciences 237:267–288.Ventura et al. (2002). Statistical analysis of temporal evolution in single-neuron firing rates. Biostatistics 3(1): 1-20.Wilson, H. (1999). Simplified dynamics of human and mammalian neocortical neurons. Journal of Theoretical Biology 200:375–388.

Page 28: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

Thank you for kind attention.Thank you for kind attention.Comments and suggestions are welcomed!Comments and suggestions are welcomed!

Hideyasu SHIMADZU(Keio University)


Top Related