+ All Categories
Transcript
Page 1: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

Prove theorems about isosceles and equilateral triangles.Apply properties of isosceles and equilateral triangles.

Objectives

Demostrar teoremas sobre triángulos isósceles y equiláteros.Aplicar las propiedades de los triángulos isósceles y equiláteros.

Page 2: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

12.0 Students find and use measures of sides and of interior and exterior angles of triangles and polygons to classify figures and solve problems.

15.0 Students use the Pythagorean theorem to determine distance and find missing lengths of sides of right triangles.

California Standards

12.0 Los estudiantes encontrar y usar medidas de lados y de ángulos interiores y exteriores de triángulos y polígonos para clasificar figuras y resolver problemas.15.0 Los estudiantes utilizan el teorema de Pitágoras para determinar la distancia y encontrar las longitudes faltantes de los lados de triángulos rectángulos.

Page 3: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

legs of an isosceles triangle

vertex angle

Base

base angles

Vocabulary

piernas de un triángulo isósceles

ángulo del vértice

Base

ángulos de la base

Page 4: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

Corollary: The measure of an exterior angle of a triangle is greater than the measure of either of its remote angles.

4 1 and 4 2m m m m

La medida de un ángulo exterior de un triángulo es igual a la suma de la medida de los dos ángulos interiores remotos.Corolario: La medida de un ángulo exterior de un triángulo es mayor que la medida de cualquiera de sus ángulos remotos.

Page 5: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

La suma de las medidas de los ángulos de un triángulo es 180 grados.

Page 6: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

Los ángulos agudos de un triángulo rectángulo son complementarios.La medida de cada ángulo de un "equilátero" (equiangular) triángulo es de 60 grados.

Page 7: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

Recall that an isosceles triangle has at least two congruent sides. The congruent sides are called the legs.

The vertex angle is the angle formed by the legs. The side opposite the vertex angle is called the base, and the base angles are the two angles that have the base as a side.

3 is the vertex angle.

1 and 2 are the base angles.

Page 8: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

un triángulo isósceles tiene al menos dos lados congruentes. Los lados congruentes se llaman las piernas.El ángulo del vértice es el ángulo formado por las piernas. El lado opuesto al ángulo del vértice se llama la base, y los ángulos de la base son los dos ángulos que tienen la base como un lado.

3 is the vertex angle.

1 and 2 are the base angles.

Page 9: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

If , then B C.AB AC

If E F, then .DE DF

Page 10: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

Si dos lados de un triángulo son congruentes, entonces los ángulos opuestos a los lados son congruentes.

Si dos ángulos de un triángulo son congruentes, entonces los lados opuestos a los ángulos son congruentes.

If , then B C.AB AC

If E F, then .DE DF

Page 11: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

The bisector of the vertex angle of an isosceles triangle is the perpendicular bisector of the base.

Bisector of the Vertex

If and bisects C,

then and bisects .

AB BC BD AB

BD AC BD AC

La bisectriz del ángulo del vértice de un triángulo isósceles es el bisector perpendicular de la base.

Page 12: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

Si un triángulo es equilátero, entonces es equiangular.

Page 13: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

Si un triángulo es equiangular entonces es equilátero.

Page 14: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

A coordinate proof may be easier if you place one side of the triangle along the x-axis and locate a vertex at the origin or on the y-axis.

Remember!

Una prueba de coordenadas puede ser más fácil si se coloca uno de los lados del triángulo a lo largo del eje x y localizar un vértice en el origen o en el eje y.

Page 15: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

Prove that the segment joining the midpoints of two sides of an isosceles triangle is half the base.

Example 5: Using Coordinate Proof

Given: In isosceles ∆ABC, X is the mdpt. of AB, and Y is the mdpt. of BC.

Prove: XY = AC.12

Demostrar que el segmento que une los puntos medios de dos lados de un triángulo isósceles es la mitad de la base.

Page 16: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

Proof:

Draw a diagram and place the coordinates as shown.

Example 5 Continued

By the Midpoint Formula, the coordinates of X are (a, b), and Y are (3a, b).

By the Distance Formula, XY = √4a2 = 2a, and AC = 4a.

Therefore XY = AC.12

Dibuja un diagrama y colocar las coordenadas como se muestra.

Page 17: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

By the Midpoint Formula, the coordinates of X are (a, b), and Y are (3a, b).

By the Distance Formula, XY = √4a2 = 2a, and AC = 4a.

Therefore XY = AC.12

Por la fórmula del punto medio, las coordenadas de X son (a, b), e Y son (3a, b).

Page 18: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

TEACH! Example 5 The coordinates of isosceles ∆ABC are A(0, 2b), B(-2a, 0), and C(2a, 0). X is the midpoint of AB, Y is the midpoint of AC, and Z(0, 0), .

Prove ∆XYZ is isosceles.

x

A(0, 2b)

B (–2a, 0) C (2a, 0)

y

X Y

Z

Proof:

Draw a diagram and place the coordinates as shown.

Page 19: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

Check It Out! Example 6 Continued

By the Midpoint Formula, the coordinates. of X are (–a, b), the coordinates. of Y are (a, b), and the coordinates of Z are (0, 0) . By the Distance Formula, XZ = YZ = √a2+b2 .

So XZ YZ and ∆XYZ is isosceles.

x

A(0, 2b)

B(–2a, 0) C(2a, 0)

y

X Y

Z

Page 20: Geometry CH 4-2 Isosceles & Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral.

Geometry

CH 4-2 Isosceles & Equilateral Triangles

Por la fórmula del punto medio, las coordenadas. de X son (-a, b), las coordenadas. de Y son (a, b), y las coordenadas de Z son (0, 0). Por la fórmula de la distancia, XZ = YZ = √ a2 + b2.Así XZ y YZ & ΔXYZ es isósceles.

Check It Out! Example 6 Continued

x

A(0, 2b)

B(–2a, 0) C(2a, 0)

y

X Y

Z


Top Related