+ All Categories
Transcript
  • LinearAlgebraSummaryofResults Compareresultswithsyllabusoutline(numbersrefertosyllabusTopic1)1.Matricesandoperationswiththem,includinguseofGDC.

    Payparticularattentionandthinkthroughthedifferentwaysofrepresentingmatrixmultiplication(seeHowardAnton,p.2934).Theywillbehelpfulfortheoreticalinterpretationofmatrices,systemsoflinearequationsandvectorspaces.

    Bycolumns,seeformula(6)onp.31.Thisisthemosthelpfulandimportantone

    inthetopic!Itwillbeused(amongotheruses)alsointheEigenvaluespart.

    MatrixproductAXasalinearcombinationofthecolumnsofmatrixA,(seebelow(10)andExample8fromp.32.)

  • Matricesasrepresentationoflineartransformations(seeparagraph1.8,p.76)

  • 2. Matricesinsystemsoflinearequations Matrixofcoefficients,augmentedmatrixofthesystem. MethodofGaussianelimination,rowechelonform,reducedrowechelonform

    useofGDCtofindthem.Useofelementarymatrices,includingwithGDC. Numberofsolutionsfromrowechelonformsolutionofsystemswithinfinitely

    manysolutions. Homogeneoussystem andthesetofitssolutions(thenullspaceorthexA = 0

    kernelspaceofmatrixA).LetAbeamatrixofdimension .m n isasubspaceinthedomain(A) ull(A) er(A) x |Ax }N = N = K = { Rn = 0

    ofthelineartransformationrepresentedbymatrixA. representstheranknullitytheoremimN(A) ullity(A) ank(A)d = n = n r

    (box1.6ofsyllabus).Itisalsoequaltothenumberoffreevariablesinthesolutionofthehomogeneoussystem.

    ThenullspaceN(A)andtherowspace are(A) pan(a , , .., )R = S 1 a2 . am orthogonalcomplements.

    Solutionofthesystem .xA = b Thesystemisconsistent(hassolution)if,andonlyif,

    (A) ange(A) pan(a , , .., ) x|x a a .. a }b C = R = S 1 a2 . an = { = m1 1 + m2 2 + . + mn n i.e.bisalinearcombinationofthecolumnvectorsofA.

    Thesolutionofthesystem canberepresentedasxA = b (box1.7syllabus).particularsolution" (A)x = " + N

    Example1:3. Someimportantspecialcases ConsiderasquaresystemoflinearequationsAX=B,whereAisa matrix.Thenthen n

    followingstatementsareequivalent(partofthemTheorem1.6.4,p.63)a) Aisinvertible(hasinverse,isnotsingular,)b) etA =d / 0 c) ThehomogeneoussystemAx=0hasonlytrivialsolution.d) ThereducedrowechelonformofAistheidentitymatrixIn.e) Aisexpressibleasaproductofelementarymatrices.f) ThesystemAx=bisconsistent(hassolution)forevery matrixb(righthandn 1

    sideofthesystem).g) ThesystemAx=bhasexactlyonesolutionforevery matrixb(righthandn 1

    sideofthesystem).

  • h) ThelineartransformationTdefinedbythematrixAisbijective(onetoone).i) TherangeofTisRn.Thekernel(orthenullspace,thesetofallvectorsmapped

    tothezerovector)consistsonlyofthe0vector,i.e.is{0}.j) Thesetofthecolumnvectors(andtherowvectors)ofthematrixAislinearly

    independent.k) Thesetofthecolumnvectors(andtherowvectors)ofthematrixAisabasisin

    Rn.

    ConsidernowasquarematrixAwhichisnotinvertible(discussthepossibilitiesandformulateasimilarsequenceofequivalentstatementsasabove)

    a) Aisnotinvertible(doesnothaveinverse,issingular,)b) etAd = 0 c) ThehomogeneoussystemAx=0hasnontrivialsolutions,i.e.hasinfinitelymany

    solutions.d) ThesystemAx=bisconsistent(hassolution)onlywhentherighthandsidevector(n 1

    matrixb.)isfromtherangeofthetransformationdefinedbyA,i.e.bisfromC(A)thecolumnspaceofthematrixA.

    e) ThereducedrowechelonformofAwillhaveatleastonerowofzeroesi.eitwillhave

    theform (withpossiblyrearrangementofthecolumns).ThentherankofthematrixAisr

  • anditsreducedrowechelonformfromtheGDCis .Theinformationthatwecanreadfromtherrefis:

    Column3ofthematrixisalinearcombinationofcolumns1and2,moreprecisely(checkit!) .Inotherwordscolumns1and2forma 6c 8cc3 = . 1 . 2 basisforthecolumnspaceC(A)andthethirdcolumnhascoordinates 6, .8)( . T

    inthisbases. Thesystemofthelinearequationsisconsistent(hassolution),asitsrighthand

    sidethevector isinthecolumnspaceC(A).Indeedtherreftells , 4, 2)b = ( 1 T usthat(checkit!) ..4c .2cb = 1 1 + 1 2

    Thegeneralsolutionofthesystemis .Itisx, , ) 1.4, .2, ) (.6, .8, 1)( y z T = ( 1 0 T + t T thesumofthesolutionofthehomogeneoussystem(orthenullspaceofthematrixA) ,andtheparticularsolution(any(A) t(.6, .8, 1) , t }N = { T R particularsolution),inourexample ofthesystem .Thisis1.4, 1.2, 0)( T xA = b ageneralresult(theorem)trueforallsystemsoflinearequations.

    4. Matricesasrepresentationsoflineartransformations

    Definitionofvectorspace.SpecificexamplesRn,Cn,P2,M22,etc.

    Themostimportantis .Rn Wecanvisualize,orinterpretgeometricallyresultsin orthecoordinateplaneR2

    .the3 imensionalspaceR3 d Whatarethepossiblesubspacesin ?R2 Whatarethepossiblesubspacesin ?R3

    Lineardependenceandbasis.(Seeparagraph4.3and4.4inbook).

    Example3:

    Tocheckthatasystemofvectorsisindependent1.Determinewhetherthevectorsarelinearlydependentin iftheyarenotfindanexpressionR3 forthelinearcombinationequaltozero.

    a) , 0, 4) , (5, , 2) , (1, , )( 3 T 1 T 1 3 T

    MakethematrixAconsistingofthegivenvectorsasrespectivecolumns,i.e.

  • Thequestionaboutthelineardependenceofasystemofvectorsisequivalentto:

    findingoutwhetherthehomogeneoussystem hasnontrivialsolutions.AnonxA = 0 trivialsolutionwillprovidethelinearcombinationofvectorsequaltozeroandwillmakethevectorslinearlynonindependent.

    Anotherpossibleformulationis ?Ifyes,thenthesystemofvectorsisetA =d / 0 linearlyindependent(andformsbasesinthecorresponding(sub)space.

    InthecaseofarectangularmatrixthequestioncanberewordedaswhethertherankofthematrixAisfull(equaltotheminimumdimensionofthematrix).

    Inalldifferentrewordingsofthequestion,asusual,ourmaintoolistherrefofA.Inthiscase

    ,(i.e. ,or ),thereforethesystemofvectorsisindependentandref(A)r = I etA =d / 0 ank(A)r = 3 formsabasisin .R3 2. Considernowthesystemofvectorsfrom givenasR4

    .Thecorrespondingmatrixof(2, , 3, 0) , , 1, 0, ) , (7, , 6, 6) }{ 1 T ( 1 2 T 5 T

    columnvectorsis anditsreducedrowechelonformis

    .Fromtherrefwededucethat:

    TherankofAis2,thisissmallerthan3(thenumberofvectorsinthesystem),thereforethesystemofvectorsislinearlydependent.Indeedtherreftellsusthat .c cc3 = 2 1 3 2

    Thusthereareonly2independentvectorsinthesystem andtheyformabasisc , c }{ 1 2 fora2dimensionalsubspace,Sin (ortheyspana2dimensionalsubspaceS)namelyR4

    m(2, , 3, 0) ( , 1, 0, ) m, }S = { 1 T + n 1 2 T n R

    b) Changeofbases(notincludedinsyllabusexplicitly,couldbeasked?)Example4.Giventhevector inthestandardbasisof ,finditscoordinates6, , 3)v = ( 1 T {e , , }R3 1 e2 e3 inthenewbases ,whereb , , }{ 1 b2 b3

    eb1 = e1 + e2 + 2 3 eb2 = 2 1 e2

    .b3 = e1 + e2 + e3

  • Thequestioncanberewordedasoneaboutasystemoflinearequations,(asalmostalways!)i.e.wearesearchingforscalars suchthat ,where, ,m n t b b b (m, , )v = m 1 + n 2 + t 3 = B n t

    T

    thematrix iscalledthetransitionmatrix frombasis totheB = T be b , , }{ 1 b2 b3 standardbasis .Inthetransitionmatrixeachcolumnrepresentsthecoordinatesof{e , , } 1 e2 e3 correspondingvectoroftheoldbasisthroughthenewone.Itiseasytoseethatthesolutionofthesystemis ,sothecoordinatesofvinthenewbasisarem, n, t) v 1, , )( T = B1 = ( 3 1 T 1, , )( 3 1 T

    (Checkit!).Notethatthematrix .B1 = T eb

    Lineartransformationsandmatrices Definitionandpropertiesoflineartransformation(operator)

    Tofindthematrixrepresentingalineartransformation

    Example:Considerthetransformation Reflectionintheline (thisistheMy=x y = x geometricdescriptionofthetransformation)

    TofindthematrixArepresentingthistransformation: Findtheimagesofthecoordinatevectorsunderthetransformation

    and .ThematrixofthetransformationAisformedbytheimagevectorsascorrespondingcolumnvectors,i.e. .e |e )A = ( 1 2

    So andthetransformationisrepresentedbythematrixasfollows

    (thisisthematrixrepresentationofthetransformation).

    Whatcanyoureadfromthematrixofatransformation?

  • Theimagesofthecoordinatevectors. Thescalefactorbywhichtheareaoftheoriginalistransformed.

    rea etA reaA image = d A original Compositionoftransformations(transformationaftertransformation)

    Likeinthecaseoffunctionsweconsidertransformationsthataretheresultofothertransformationsperformedoneaftertheother.LetthetransformationTArepresentedbythematrixA,beperformedafterthetransformationTB representedbythematrixB.Thenthecompositetransformation followedbyTB

    or after isdenotedby andisrepresentedbythematrixTA TA TB TA TB .Notetheorder!(fromrighttoleft)BA

    Famoustransformationsin wearesupposedtorecognizeandknowtheR2

    matricesofthefamoustransformationsintheplane

    Geometry Determinant Matrix

    Rotationbyangleclockwise

    etRd = 1

    Reflectioninlinean.xy = t

    etM d = 1

    Projectiononlinean.xy = t

    etPd = 0

    Projectiononlinexy = m

    etPd m = 0

  • Enlargementw.r.t.O(0,0),scalefactork

    etEd k = k2

  • KernelandRangeofLinearTransformations

    Example:Findthekernelofthetransformation projectionontotheline .T = Pm xy = m Geometricallythekernelconsistsofallvectorsfrom whoseimageisthezerovector,ortheR2 origin .Thusthekernelconsistsofallvectorsonthelinepassingthroughtheoriginand(0, 0)O perpendiculartothelineontowhichweproject.

    er(P ) (x, ) |y /m)x}K m = { y T = ( 1 Therangeofthetransformationcoincideswiththecolumnspaceofthematrixandconsistsofthevectorsonthelineontowhichweproject.

    ange(P ) (P ) (x, ) |y x}R m = C m = { y T = m

    EigenvaluesandEigenvectorsEigenvalueisaGermanword,notevennearlypronouncedasifitwasanEnglishone.Itstandsforownvalue.Eigenvectorsformamatrix,whichdiagonalizesthecoefficientmatrix.Theeigenvalueproblem:Foranysquare matrixA,findthevaluesofthescalar suchthatthesystemofequationsn n

    x xA = hasnonzerosolutions.

    Thesevaluesof arecalledeigenvaluesofthematrixA. Thesolutionsofthesystemofequations(infinitelymany!WHY?)corresponding

    tothevaluesof ,arecalledeigenvectorsofthematrixA. Thesystem canberewrittenas .Thereforethesystemisax xA = x x A I)xA = ( = 0 homogeneousoneandwillhavenonzerosolutionsif,andonlyif

    et(A I)d = 0

  • ThisiscalledthecharacteristicequationofmatrixA.Itisapolynomialequationofdegreen.Wearerequiredtosolveonlycaseswhen withreal,distinctroots.n = 2

    Example

    Giventhematrix .Thecharacteristicpolynomial is()P

    Thecharacteristicequationis anditssolutions,theeigenvaluesofthematrix,are()P = 0

    .or 1 = 5 2 = 2 Propertiesofcharacteristicequationandeigenvaluesproveandthinkthrough!

    .Inotherwords,thesumofeigenvaluesequalsthesumofa race(A)1 + 2 = 11 + a22 = T thediagonalelementsofthematrix(thetraceofthematrix).Trueforalln,weneedtoknowandunderstanditforn=2.

    et(A)1 2 = d ThematrixAsatisfiesitscharacteristicequation,i.e. (A) A 0IP = A2 3 1 = 0

    Thecorrespondingsolutionsare: and .Sothe/4x, wheny = 3 = 5 , when y = x = 2 eigenvectorsare,e.g. and .4, ) when( 3 T = 5 1, ) when ( 1 T = 2 ThematrixPcontainingtheeigenvectorswilldiagonalizethematrixA.Finishtheexample!..Somesynonymsglossary

    Topic(context) Systemsoflinearequations

    Matrices Lineartransformations

    Solution(s)of xA = 0 Nullspace (A)N KernelofthelineartransformationrepresentedbythematrixA,Ker(A)

    Setofvectorsbforwhich hasxA = b solution(isconsistent)

    ColumnspaceofmatrixA, (A)C

    RangeofthelineartransformationrepresentedbymatrixA

  • Linearindependenceofasystemofvectors

    SystemAx=0hasonlytrivialsolution.

    MatrixAofthevectorsascolumnshasfullrank.


Top Related