+ All Categories
Transcript
Page 1: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Non‐Aqueous Vanadium Redox Flow Batteries1st International Flow Battery Forum (IFBF)

June 16th, 2010

Charles Monroe, Levi Thompson, Alice Sleightholme, and Aaron ShinkleUniversity of Michigan Department of Chemical Engineering

Christian Doetsch, Sascha Berthold, Birgit BrosowskiFraunhofer Institute UMSICHT

Jens Tuebke, Jens NoackFraunhofer Institute ICT

Page 2: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

• Framework: Cooperation between University of Michigan (United States) and Fraunhofer Gesellschaft (Germany) established

• Project Partners:University of Michigan: Department of Chemical Engineering(Prof. Levi Thompson, Prof. Charles Monroe)

Fraunhofer Institute UMSICHT and ICT(Dr. Christian Doetsch, Dr. Jens Tuebke)

• Project Aim:Examination, developing and testing of materials and stack design for a non‐aqueous redox flow battery

Project Outline 1/2

Page 3: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

•Main advantages of non‐aqueous systems:‐ Higher Voltage level‐ No Hydrogen/oxygen production‐ Higher energy densitiy

•Work plan:‐ Redox‐Chemistry, materials, membranes: University of Michigan‐ Prototype development: Fraunhofer ICT‐ Scale up, test bench: Fraunhofer UMSICHT

• Time Frame: Start End of 2009 / Duration 24 months

Project Outline 2/2

Page 4: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Single‐metal Redox Flow Batteries

• Aqueous all‐vanadium redox flow battery (RFB)

Performance depends on

• Half‐cell potentials(power density)

• Active‐species concentration(energy density)

• Electrolyte reservoir volume(charge capacity)

Page 5: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Existing RFBs mostly use aqueous electrolytes:

• Iron/chromium

• Bromine/polysulfide

• Zinc/bromine

• All‐vanadium

Multi‐metal chemistries susceptible to crossover

Cell potential limited by water electrolysis (E° = 1.23 V)

ZBB Energy Corp, 500kWh Zn‐Br RFB

Commercial Redox Flow Battery Chemistry

Non‐aqueous electrolytes enable higher cell potentials

Page 6: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Non‐Aqueous Vanadium RFB

Tester et al. The MIT Press. 2005.; http://www.eia.doe.gov; http://rredc.nrel.gov

V(III)e(IV) V

Separator

CatholyteTank

AnolyteTank

Electrodes

eV(III)V(II)

Source

• Single metal RFB mitigates cross contamination

Energy density dependent on:

– Cell potential

– Electrolyte concentration

– Electrolyte reservoir volume

Energy density dependent on:

– Cell potential

– Electrolyte concentration

– Electrolyte reservoir volume

Vanadium Acetylacetonate

Page 7: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Equation of the solvent

• Non‐aqueous0.01 M V(acac)3 (active species)

[vanadium‐actetylacetonate]              

0.1 M TEABF4/CH3CN (support)[Tetra‐ethyl‐ammonium‐tetrafluoroborate]

Glassy carbon working electrode

• Aqueous0.01 M VOSO4 (active species)

[vanadyl‐sulfat]

2 M H2SO4/ultrapure H2O (support)

Glassy carbon working electrode

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

VIII/VIV

VII/VIII

2.2V

Cur

rent

den

sity

/mA

cm

- 2

Potential/V vs.SHE-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-15

-10

-5

0

5

10

VIV/VV

VII/VIII

1.4V

Cur

rent

den

sity

/mA

cm -

2

Potential/V vs. SHE

Page 8: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Progress: Redox Chemistry

• Presence of Cl‐ ions (from membrane manufacturing) produces extra peak close to VIII/VIV redox couple

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

10 mV/s300 K

a)

Cur

rent

den

sity

/mA

cm2

Potential/V vs. SHE-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-10

-5

0

5

10

15

500 mV/s300 K

Cur

rent

den

sity

/mA

cm-2

Potential/V vs. Ag/Ag+

• Peak circled in red corresponds to oxidation of V(acac)3 to VO(acac)2 produced from active species in presence of air

Page 9: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Linear Sweep Voltammetry (LSV)

Composition:0.01M V(III) (acac)30.05M TEABF4in CH3CN

• Quasi‐reversible Model

– Butler‐Volmer1

– Small reductant concentration 

– Microelectrode (Steady State)

– io (Exchange current density) and φ (Standard Potential) are fit parameters

ff

cLo

eieii

ii )1(

,

11

• Current normalized by limiting current

• Diffusion Coefficient1

D = 1.8 x 10‐5 ± 3.5 x 10‐6 cm2/s 

(1)  Bard and Faulkner. Electrochemical Methods. 2001

Page 10: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Linear Sweep Voltammetry:V(III) / V(IV) Redox Couple

Carbon Gold

io= 170 A/m2io= 3 A/m2

Scan rate: 1 mV/s  Scan rate: 0.5 mV/s 

Page 11: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Linear Sweep Voltammetry:V(III) / V(IV) Redox Couple

Platinum All

io= 90 A/m2

Scan rate: 0.5 mV/s 

Page 12: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Progress: Membrane diagnostics• Implementation of proposed one‐dimensional test cell

Critical system variables: liquid solutions

membranes(or MEA)

electrodematerials

(or endcaps)

Page 13: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Progress: Membrane diagnostics• Charge/discharge with anion‐exchange membrane (Neosepta AHA) underway Au electrodes, flow‐by mode, 0.1 M V(acac)3 [vanadium‐actetylacetonate] and

0.5 M TEABF4/CH3CN [Tetra‐ethyl‐ammonium‐tetrafluoroborate / Acetonitrile]

• Charge current 0.4 mA, discharge –0.05 mA; Burn‐in complete after 3 cycles

• 85% Coulombic efficiency

40 60 80 100 120 140-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.0

0.5

1.0

1.5

2.0

2.5

Cur

rent

/mA

Time/hours

Vol

tage

/V

20 40 60 800.0

0.5

1.0

1.5

2.0

2.5

Volta

ge/V

Time/hours

Page 14: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Progress: Prototype development task

Redox Flow Test Cell – First Results

‐10 cm² active area‐ Graphite felt (COS1006)‐ Bipolar plate (Schunk GmbH, Germany)‐Microporous membrane (Scimat)‐ 0.1 M V(Acac)3‐ 0.05 M TEABF4‐ Acetonitrile

Rct = 1590 

Rs = 5 

C = 1.02 mF

Impedance spectroscopy

Page 15: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Progress: Prototype development task

Redox Flow Test Cell – Charge / Discharge

‐ 20 mA (2 mA/cm²) galvanostatic charge up to 2 V, 2.2 V, 2.4 V, 2.6 V‐ 5 min OCV‐Measurement‐ 5 mA (0.5 mA/cm²) galvanostatic discharge down to 0.3 V

0 1 2 3 4 5

0,0

0,5

1,0

1,5

2,0

2,5

Cur

rent

[A]

Voltage Current

Vol

tage

[V]

Time [h]

-0,02

-0,01

0,00

0,01

0,02

0,03

0 1 2 3 4 5

-0,01

0,00

0,01

0,02

0,03

0,04

0,05

0,06

Cha

rge

[Ah]

Pow

er [W

]

Time [h]

0

10

20

30

40

50

22 %64 %0.292.4

23 %66 %0.232.2

24 %80 %0.192

EECEPout [mW/cm²]

Voltage [V]

Page 16: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Progress: Scale‐upCell / Stack Design 

cell data (for a liquid, aqueous system)

number of cells 2

membrane area 1600 cm²

Voltage (charge)  

3,3 V (2 x 1.65 V)

Current

0 – 200 A

Currently testing

materials, sealings, 

glue for 

non‐aqueous‐system

Page 17: Non Aqueous Vanadium Redox Flow Batteries

»Non-Aqueous Vanadium Redox Flow Batteries«1st International Flow Battery Forum (IFBF)

Scale‐up and test benchDesign and erecting a first test facility as a mobile test bench

• 15 kW power

• Electrolyte tank:2 x 40 l 2 kWh

• Stack size up to1 x 0.8 x 0.3 m200 kg

• Charge0 – 40 V0 – 375 A

• Discharge< 40 V0 – 440 A

• Flow rate0.35 – 5 l/min


Top Related