+ All Categories
Transcript
Page 1: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Nuclei  specified  by  §  Z  –  atomic  number:  number  of  

protons  §  N  –  neutron  number:  number  of  

neutrons  §  A  =  Z+N  –  mass/nucleon  number:  

number  of  nucleons  ¡  Nucleus  charge:  +Ze  ¡  Nuclides:  AZY  –  Y:  chemical  

symbol  for  element  §  Same  Z  à  isotopes  (12C,  13C,  14C:  

Z=6)  §  Same  N  à  isotones  §  Same  A  à  isobars  

23/03/14   F.  Ould-­‐Saada   1  

¡  Not  necessary  to  consider  nuclear  physics  in  terms  of  quarks  and  gluons,  even  if  protons  and  neutrons  are  made  of  quarks.  

¡  In  classical  nuclear  physics,  the  existence  of  quarks  can  be  ignored  as  well  as  the  existence  of  meson  and  hadron  resonances.    

¡  A  nucleus  consists  of  nucleons  that  somehow  behave  as  almost  free  particles,  although  they  are  in  a  high  density  medium  (about  1038  nucleons/cm3).  

¡  Average  kinetic  energies  of  nucleons  in  the  nucleus  are  of  the  order  of  20MeV  <<  energy  scale  of  elementary  particles  

Page 2: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Nucleus  mass:    §  Fundamental  measurable  

quantity  uniquely  defining  nuclide  

§  As  test  of  nuclear  models  and  models  of  short-­‐lived  exotic  nuclei      

¡  Measure  of  mass  §  Deflection  spectrometers  §  Kinematic  analysis  §  Penning  Trap  

measurements  

23/03/14   F.  Ould-­‐Saada   2  

>1500  unstable  nuclei  

Page 3: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Mass  measurement  by  passing  ion  beams  through  crossed  B,E  fields  

23/03/14   F.  Ould-­‐Saada   3  

! F = q! v ×

! B 1 + q

! E

! E ⊥! B 1⇒ F = qvB1 − qE

F = 0⇒ v =EB1

§  Isotopes  separated  and  focused  onto  a  detector  (photographic  plate)  

§  In  practice,  to  achieve  higher  accuracy,  measure  mass  differences    

§  ΔM/M  ~  10-­‐6  

mv 2

ρ= qvB2

qm

=E

B1B2ρ=

EB2ρ

Page 4: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Masses  from  kinematics  of  nuclear  reactions  §  Inelastic  reaction  

A(a,a)A*  ,  short-­‐lived  nucleus  

§  Non-­‐relativistic  kinematics  à  mass  difference    ΔE  

¡  ΔE  iteratively  from  formula  from  measurements  of  kinetic  energies  Ei  and  Ef  è  mass  of  A*    

23/03/14   F.  Ould-­‐Saada   4  

a(Ei,!pi )+ A(mAc

2,!0)→ a(Ef ,

!pf )+ A*( !E, !"p)

Etot (initial) = Ei +mac2 +mAc

2

Etot ( final) = Ef + !E +mac2 + !mc2

ΔE ≡ ( !m−mA )c2 = Ei −Ef − !E =pi

2

2ma

−pf

2

2ma

−!p2

2 !mp− conservation→ pi = pf cosθ + !px; 0 = pf sinθ − !py

ΔE = Ei 1− ma

!m%

&'

(

)*−Ef 1+ ma

!m%

&'

(

)*+

2ma

!mEiEf cosθ

Page 5: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  General  reaction  A(a,b)B  à  mass  difference  with  Q  kinetic  energy  released  in  reaction  

¡  Kinetic  energies  in  formula  measured  in  Laboratory  frame  ¡  In  centre-­‐of-­‐mass  (See  appendix  B  for  CM  vs  Lab)  

23/03/14   F.  Ould-­‐Saada   5  

ΔE ≡ ( ˜ m −mA )c 2 = Ei 1−ma

˜ m %

& '

(

) * − E f 1+

ma

˜ m %

& '

(

) * +

2ma

˜ m EiE f cosθ

ΔE = Ei 1−ma

mB

$

% &

'

( ) − E f 1+

mb

mB

$

% &

'

( ) +

2mB

mambEiE f cosθ +Q€

ECM = Elab 1+ma

mA

"

# $

%

& '

−1

Page 6: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Shape  and  size  of  Nucleus  obtained  from  scattering  experiments  §  Electrons  as  projectiles:  EM  force  à  Charge  distribution  §  Hadrons  as  projectiles:  nuclear  strong  interaction  in  addition  à  

Matter  density  ▪  Neutrons  à  EM  effects  absent    

▪  Let  us  first  derive  Rutherford  scattering  (Appendix  C)  

23/03/14   F.  Ould-­‐Saada   6  

Page 7: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Momentum  &  energy  conservation  

23/03/14   F.  Ould-­‐Saada   7  

t = e⇒ mt =me <<mα ⇒ no large angle scattering (las)t = Au⇒ mt >>mα ⇒ LAS

Coulomb  scattering  neglected  

!vi =mα

!vf +mt!vt

mαvi2 =mαvf

2 +mtvt2

!"#

$#⇒

mαvi2 =mαvf

2 +mt2

vt2 + 2mt

!vf ⋅!vt( )

vt2 1− mt

(

)*

+

,-= 2!vf ⋅!vt

Page 8: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

23/03/14   F.  Ould-­‐Saada   8  

Coulomb  scattering:  M>>m  

b:  impact  parameter   py due to Coulomb force: F=dp/dt[ ]

⇒Δp = zZe2

4πε0r2 cosφ

−∞

+∞

∫ dt

(5) ⇒ 2mvsin(θ / 2) = zZe2

4πε0

1bv"

#$

%

&' cosφ−(π−θ )/2

+(π−θ )/2

∫ dφ Impact parameter: b = zZe2

8πε0

⋅1Ekin

cot θ2"

#$%

&'

Angular momentum conservation : mvb = mr2 dφdt

(5)

Scattering symmetric about y - axis →along y pi = −mv sin(θ /2) = −pf = p ⇒ Δp = 2mv sin(θ /2)

Page 9: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

23/03/14   F.  Ould-­‐Saada   9  

b =zZe2

8πε 0

⋅1Ekin

cot θ2&

' ( )

* +

⇒ dσdΩ&

' (

)

* + Rutherford

=zZe2

16πε 0Ekin

&

' (

)

* +

2

cosec4 θ2&

' ( )

* + =

zZe2

16πε 0Ekin

&

' (

)

* +

21

sin4 θ2&

' ( )

* +

initial flux of particles : Jintensity between b and b + db : 2πbJ dbequal to rate of scattered particles into dΩ = 2π sinθ dθdW = 2πbJ db

dW = 2πbJ dbsingle target particle : (see 1.60)

dW = J dσdΩ

dΩ = 2πJ sinθ dθ dσdΩ

dσdΩ

=b

sinθ⋅dbdθ

d(cot x) = −(sin x)−2dx

Page 10: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Previous  (classical)  formula    adequate  for  α-­‐scattering  

¡  For  e-­‐  (z=-­‐1)  –Nucleus  (Z)  scattering,  quantum  mechanics  and  relativity  necessary  §  Use  eq.  1.69  –  neglecting  spin  

¡  integral  diverges  à  introduce  charge  screening  at  large  distances  through  term    e-λr    

§  Integral  twice  by  parts  §  and  let λ à  0  after  

integration  

23/03/14   F.  Ould-­‐Saada   10  

dσdΩ

=1

4π 2!4p'2

vv'M(" q 2)

2 " q = " p − " p '

M(" q ) = V (" r )ei" q ⋅" r !∫ d3" r

V (" r ) = VC (" r ) = −

αZ(!c)r

MC (! q ) = limλ→ 0

−αZ("c)e−λr

r&

' (

)

* + e

i! q ⋅! r "∫ d3! r

! q along z − axis : ! q ⋅ ! r = qrcosθ

MC (! q ) = −4π ("c)αZ"

qlimλ→ 0

e−λr sin(qr"

)dr0

MC (! q ) = −4π ("c)αZ"2

q2

Page 11: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Rutherford  formula  §  Scattering  angle  θ  small  

23/03/14   F.  Ould-­‐Saada   11  

dσdΩ

=1

4π 2!4p '2

vv 'M ("q2 )

2MC (!q) = − 4π ("c)αZ"

2

q2

⇒dσdΩ

= 4Z 2α 2(!c)2 p'2

vv'q4

p2 = p'2 = 2mEkin ; v = v '= 2Ekin /m ; q = 2psin(θ /2)⇒ previous Rutherford formula (C.13)p = p';E = E ';v = v'≈ c;E ≈ pc

⇒dσdΩ(

) *

+

, - Rutherford

=Z 2α 2 !c( )2

4E 2 sin4 θ /2( )

Page 12: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  EM  scattering  of  a  charged  particle  in  the  Born  approximation  à  Appendix  C  §  Assume  Zα=1  and  use  plane  waves  for  initial  and  final  

states  §  Single  photon  exchange:  à  α2    §  Rutherford:  scattering  of  spin-­‐0  point-­‐like  projectile  of  

unit  charge  from  fixed  point-­‐like  target  with  charge  Ze  (charge  distribution  of  target  neglected)  

§  Take  into  account  electron-­‐spin  à  Mott  

§  Recoil  of  target  at  HE  (factor  E’/E)  à  spin-­‐1/2  formula  

23/03/14   F.  Ould-­‐Saada   12  

dσdΩ$

% &

'

( )

spin−1/ 2

=dσdΩ$

% &

'

( )

Mott

E 'E

1+ 2τ tan2 θ2$

% & '

( )

-

. /

0

1 2

τ = −q2

4M 2c 2 ; M target - mass

q2 = p − p'( )2= 2me

2c 2 − 2(EE ' /c 2 −! p ! p ' cosθ )

me ≈ 0 → pc ≈ E ⇒ q2 ≈ −4EE '

c 2 sin2 θ2$

% & '

( )

Q2 = −q2

dσdΩ$

% &

'

( ) Rutherford

=Z 2α 2 !c( )2

4E 2 sin4 θ2$

% & '

( )

dσdΩ$

% &

'

( ) Mott

=dσdΩ$

% &

'

( ) Rutherford

1− β2 sin2 θ2$

% & '

( )

.

/ 0

1

2 3

β = v /c

Nucleus P =Mc!P

!

"#

$

%& ; electron p =

E / c!p!

"#

$

%& ; p ' =

E '/ c!p '!

"#

$

%&

4−momentum transfer q2 = p− p '( )2

Page 13: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Summary     ¡     

23/03/14   F.  Ould-­‐Saada   13  

Page 14: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Spherically  symmetric  charge  distribution  §  integrate  over  angles  à  radial  ρ(r)    

¡  Final  form  of  experimental  cross-­‐section  takes  into  account  form  factor  due  to  spatial  extension  of  nucleus  §  charge  distribution  within  nucleus  f(r)  §  form  factor  as  Fourier  transform  (magnetic  interaction  neglected  here)  

23/03/14   F.  Ould-­‐Saada   14  

F(! q 2) ≡ 1Ze

ei! q ⋅! r " f (! r )d3! r ∫

Ze = f (! r )d3! r ∫

dσdΩ$

% &

'

( ) exp t

=dσdΩ$

% &

'

( )

Mott

F(! q 2)2

d3! r = r2drsinθdθdφ

F(! q 2) ≡ 4π"Zeq

rρ(r)sin qr"

'

( )

*

+ , dr

0

Page 15: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

23/03/14   F.  Ould-­‐Saada   15  

From  Thomson  

Page 16: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Spherically  symmetric  charge  distribution  §  integrate  over  angles  à  radial  ρ(r)    

è  minima  in  elastic  cross-­‐sections  

23/03/14   F.  Ould-­‐Saada   16  

Simple example, hard sphereρ(r) = constant , r ≤ a = 0 , r > a⇒ F(! q 2) = 3 sin(b) − b(cos(b)[ ]b−3

b ≡ qa"

b = tan(b)⇒ F(! q 2) = 0

F(!q2 ) ≡ 4π"Zeq

rρ(r)sin qr"

"

#$

%

&'dr

0

data  for  58Ni  and  48Ca    

Page 17: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  dσ/dσΩ=f(θ)  §  minima  due  to  spatial  distribution  of  

nucleus  §  In  practice, ρ(r)  not  a  hard  sphere  à  

modifications  of  the  “zeros”  §  Minimaà  information  about  size  of  

nucleus  

¡  Measure  at  fixed  E  and  various  θ  (hence  various  q2)  à  Form  factor  extracted  from  cross-­‐section  measurements  

23/03/14   F.  Ould-­‐Saada   17  

dσdΩ$

% &

'

( ) exp t

=dσdΩ$

% &

'

( )

Mott

F(! q 2)2

Page 18: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Radial  charge  distributions  of  various  nuclei  §  a:  value  of  radius  where  ρ≥ρ0/2  

23/03/14   F.  Ould-­‐Saada   18  

ρch (r) =ρch

0

1+ e(r−a ) / b

a ≈1.07A1/ 3 fm;b ≈ 0.54 fmρch

0 in range 0.06 − 0.08

¡  Charge  density  ~constant  in  nuclear  interior  and  falls  rapidly  to  zero  at  nuclear  surface  

Page 19: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Mean  square  charge  radius  §  Useful  quantity  stemming  from  

form  factor  

23/03/14   F.  Ould-­‐Saada   19  

r2 ≡1Ze

r2∫ f (!r )d3!r = 4πZe

r4∫ f (r)dr

F(!q2 ) ≡ 1Ze

ei!q⋅!r" f (!r )d3!r∫ ; Ze = f (!r )d3!r∫

Expansion : F(! q 2) =1Ze

f (! r ) 1n!n =0

∑ i ! q rcosθ"

%

& '

(

) *

n

d3! r ∫

Angular integrations : F(! q 2) =4πZe

f (r)r2dr0

∫ −4π! q 2

6Ze"2 f (r)r4dr + ...0

¡  Derivation  §  See  problem  2.3  

F(! q 2) =1−! q 2

6"2 r2 + ...

r2 = −6"2 dF(! q 2)d! q 2 !

q 2 =0

r2 = 0.94A1/ 3 fm constant from a fit range of data

R2 =53

r2 ⇒ R =1.21A1/ 3 fm

¡  For  medium  to  heavy  nuclei  §  Nucleus  often  

approximated  to  homogeneous  sphere  of  Radius  R  

Page 20: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Electrons  not  suitable  for  getting  distribution  of  neutrons  in  nucleus  §  Presence  of  neutrons  taken  into  account  by  

multiplying ρ by  A/Z  …  §  à  Effective  nuclear  matter  radius  Rnuclear    (medium  

to  heavy  nuclei)  

23/03/14   F.  Ould-­‐Saada   20  

ρch (r)→ρch (r) * A /Zρnucl ≈ 0.17nucleons / fm

3

Rnuclear ≈1.2A1/ 3 fm

52  MeV  deuterons  on  54Fe  

§  Differential  cross  section  has  diffraction  pattern  with  peaks  and  valleys  ▪  qR~pr θ  for  small θ ▪  J1:  1st  order  Bessel  function  

dσdΩ

=J1(qR)qR

$

% &

'

( )

2

; qR ≈ pRθ;

J1(qR)[ ]2≈

2πqR-

. /

0

1 2 sin2 qR − π

4-

. /

0

1 2

→zeros at intervals :Δθ =πpR

¡  To  probe  nuclear  (matter)  density  of  nuclei  experimentally  §  Hadron  as  projectile  §  At  high  energies  -­‐    elastic  scattering  small  –  nucleus  behaves  

more  like  absorbing  sphere  ▪  λ=h/p  will  suffer  diffractive-­‐like  effects  as  in  optics    

§  Nucleus  as  black  disk  of  radius  R    

 

Page 21: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

23/03/14   F.  Ould-­‐Saada   21  

Elastic  scattering  of  30.3  MeV  protons:  data  vs  optical  model  calculations  using  2  potentials  

Matter  density ρ(r)  =  f(R)      

Page 22: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Force  binding  nucleons  in  nuclei  contribute  to  atom  mass  M(Z,A)  §  Mass  deficit:  ΔM  §  Binding  energy:  B=  -­‐ΔM  c2  

23/03/14   F.  Ould-­‐Saada   22  

M(Z,A) < Z(Mp +me ) + N Mn

ΔM(Z,A) ≡ M(Z,A) − Z(Mp +me ) − N Mn

¡  Binding  energy  per  nucleon:  B/A  §  For  stable  or  long-­‐lived  

nuclei,  B/A  peaks  at  8.7  MeV  for  M~56  (iron)  

§  Excluding  very  light  nuclei,  B/A~7-­‐9  MeV    

Page 23: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Nuclear  drop  model    §  a  collective  model  of  the  nucleus    §  describes  the  nuclear  binding  energy  with  a  few  parameters  

§  uses  analogies  with  a  liquid  droplet  §  based  on  the  following  assumptions:  ▪  interaction  energy  independent  on  the  nucleon  type  ▪  Interaction  attractive  at  a  short-­‐range  ▪  Interaction  repulsive  at  large  distances  ▪  binding  energy  of  the  nucleus  proportional  number  of  nucleons.  

23/03/14   F.  Ould-­‐Saada   23  

Page 24: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Atomic  mass  §  6  terms  

§  f0  –  mass  of  constituent  nucleons  and  electrons  

23/03/14   F.  Ould-­‐Saada   24  

M(Z,A) = fi(Z,A)i=0

5

f0(Z,A) = Z(Mp +me ) + (A − Z)Mn

¡  SEMF  §  Few  parameters  from  fits  to  

experimental  data  §  Some  theoretical  basis  

¡  Properties  common  to  most  nuclei,  except  those  with  very  small  A  values  §  (1)  Interior  mass  densities  ~equal  §  (2)  Total  B  ~proportional  to  masses  

¡  Analogy  with  classical  model  of  liquid  drop  §  (1)  interior  densities  are  the  same  §  (2)  latent  heats  of  vaporization  

proportional  to  their  masses  

Page 25: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

f5(Z,A) =

− f (A) Z even, A − Z even0 Z even, A − Z odd (vice - versa)f (A) Z odd, A − Z odd

#

$ %

& %

f (A) = a5A−1/ 2 empirical

¡  f0  –  mass  of  constituent  nucleons  and  electrons  

23/03/14   F.  Ould-­‐Saada   25  

f3(Z,A) = a3Z(Z −1)A1/ 3

≈ a3Z 2

A1/ 3

M(Z,A) = fi(Z,A)i=0

5

f0(Z,A) = Z(Mp +me ) + (A − Z)Mn¡  f1  –  volume  term  §  Short-­‐range  attractive  force;  R~A1/3  à  V~A  

¡  f2  –  surface  term  §  Nucleons  at  surface  not  surrounded  à  correction  to  volume  

¡  f3  –  Coulomb  term  §  Protons  repel  each  other  

¡  f4  –  asymmetry  term  §  Tendency  for  nuclei  to  have  Z=N;  Pauli  principle  §  p  from  level  3  &  n  to  level    4  à  (N-­‐Z)/2àΔ

§  Transfer  of  (N-­‐Z)/2  nucleons  à  decrease  of  B  by      Δ(N-­‐Z)2/4    §  Δ  not  constant  but  propto  1/A    

¡  f5  –  pairing  term:  empirical  §  Tendency  of  like  nucleons  in  same  spatial  state  

to  couple  pair-­‐wise  to  configs  with  spin  =0  

f1(Z,A) = −a1A f2(Z,A) = a2A2 / 3

f4 (Z,A) = a4(Z − A /2)2

A

Page 26: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  VSCAP  

av = a1, as = a2, ac = a3, aa = a4 , ap = a5

15.56, 17.23, 0.697, 93.14, 12. MeV /c 2

23/03/14   F.  Ould-­‐Saada   26  

¡  Fit  to  binding  energy  data  (solid  circles)  for  A>20    §  Good  fit  for  a  simple  formula  (open  circles)  §  Some  enhancements  not  reproduced  ▪  Due  to  shell  structure  of  nucleons  within  the  

nucleus  à  see  section  7.3  

¡  SEMF  gives  correct  B  for  some  200  stable  and  many  more  unstable  nuclei  §  Used  to  analyse  stability  of  nuclei  wrt  β-­‐

decay  and  fission    

Page 27: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Contribution  to  binding  energy  /nucleon  as  function  of  mass  number  for  odd-­‐A  

¡  Is  B/A  equivalent  to  energy  needed  to  remove  nucleon  from  nucleus?  

¡   Ep  and  En  are  only  equal  to  B/A  in  an  average  sense  §  In  practice,  measurements  show  that      Ep  and  En  

can  substantially  differ  from  average  and  from  each  other  at  certain  values  of  (Z,A)  ▪  One  reason  is  shell  structure  for  nucleons  within  nuclei  –  

ignored  in  liquid  drop  model  à  chapter  7  23/03/14   F.  Ould-­‐Saada   27  

§  To  remove  a  neutron  –  separation  energy  En    

§  To  remove  a  proton  –  Ep    

ZAY→ Z

A −1X + n

En = M(Z,A −1) + Mn −M(Z,A)[ ]c 2

= B(Z,A) − B(Z,A −1)

ZAY→Z −1

A −1X + p

Ep = M(Z −1,A −1) + Mp +me −M(Z,A)[ ]c 2

= B(Z,A) − B(Z −1,A −1) +mec2

From  Braibant  

Page 28: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Distribution  of  stable  nuclei  –  Segré  plot  §  Close  to  N=Z  §  All  other  nuclei  are  unstable  and  decay  

spontaneously  in  various  ways  ▪  Isobars  with  large  surplus  of  n’s:  nàp  (β-­‐

decays);  β+: ”p”àn+e+νe  ▪  (atomic)  e-­‐  capture  (pàn)  

¡  Fe,  Ni  most  stable  nuclides  §  maximum  of    B/A  curve  §  Heavier  nuclei  –  B/A  larger  due  to  Coulomb  

repulsion  §  Still  heavier  nuclei  –  spontaneous    decay  to    

lighter  nuclei    à  Q-­‐value  ▪  2-­‐body:NàD1  +  α (α=  4He=2p2n)  ▪  Fission  (spontaneous  or  induced):  D1  and  D2    

~similar  mass.          Z>=110  

§  Photon  emission  –  EM  decays  23/03/14   F.  Ould-­‐Saada   28  

Distribution  of  stable  Nuclei.  Stable  and  long-­‐lived  occurring  in  nature  –  squares  

Qα = (Mp −MD −Mα )c2 = ED + Eα

http://www.nndc.bnl.gov/nudat2/    

Page 29: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡     

23/03/14   F.  Ould-­‐Saada   29  http://www.nndc.bnl.gov/nudat2/      

Page 30: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Decay  law  §  Decay  constant  λ  vs  activity  Α  :  §  Mean  lifetime  τ  and  half-­‐life  t1/2    

Α = −dNdt

= λN 1Bq ≡1decay / s

Α(t) = λN0e−λt 1Ci ≡ 3.7×1010decay / s

x ≡xf (x)dx∫f (x)dx∫

τ ≡t dn(t)dt∫dn(t)dt∫

=te−λt

0

∫ dt

e−λt0

∫ dt=1λ

t1/2 =ln2λ

= τ ln2

23/03/14   F.  Ould-­‐Saada   30  

¡  Dating  ancient  specimen  §  Organic  specimen  –  radioactive  14C  ▪  14C:  produced  in  atmosphere  cosmic  rays  

on  Nitrogen    ▪  For  constant  cosmic  ray  activity,  14C:

12C~1:1012  in  leaving  organism  ▪  When  organism  dies,  ratio  slowly  

changes  with  t      14Cà  14N  –  β-­‐decay τ=8.27x103y  

Page 31: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

A→λAB→

λBC→

λC...

dNA (t)dt

= −λANA ⇒ NA (t) = NA (0)e−λA t

dNB (t)dt

= −λBNB + λANA

NB (t) =λA

λB − λANA (0) e

−λA t − e−λB t[ ]

NC (t) = λAλBNA (0)e−λA t

(λB − λA )(λC − λA )+

e−λB t

(λA − λB )(λC − λB )+

e−λC t

(λA − λC )(λB − λC )&

' (

)

* +

3879Sr→37

79Rb + e+ +ν e (2.25min) →36

79Kr + e+ +ν e (22.9min) →35

79Br + e+ +ν e (35.04hr)

¡  λA>λB>λC  –  D  stable  ¡  ΝA(t)+ΝB(t)+ΝC(t)+ΝD(t)=constant!  

¡  Chains  with  decay  constants  λi    

23/03/14   F.  Ould-­‐Saada   31  

Page 32: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  SEMF  (2)  §  Mass  parabola:  new  form  ▪  M(Z,A)  is  quadratic  in  Z  for  fixed  A  ▪  Minimum  for  Z=β/2γ

§  For  odd-­‐A  (δ=0),  SEMF  is  single  parabola  

¡     

23/03/14   F.  Ould-­‐Saada   32  

M(Z,A) = αA − βZ + γZ 2 +δA1/ 2

α = Mn − av +asA1/ 3

+aa4

β = aa + (Mn −Mp −me )

γ =aa4

+acA1/ 3

δ = ap

§  For  even  A,  even-­‐even  and  odd-­‐odd  nuclei  lie  on  2  distinct  vertically  shifted  parabolas  (pairing  term)  

§  Isobaric  spectrum  (same  A)  ▪  Smallest  mass  stable  (against  β  decay)  ▪  Other    nuclei  decay  if  Z  not  at  

minimum  

§  τ=f(Q-­‐value,  Spin,  …):  ms  à  106y  

Page 33: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Mass  parabola  –  odd  A  §  Even-­‐N,  odd-­‐Z  or  even-­‐Z,  odd-­‐N    §  Experimental  mass-­‐excess  from  

data:  M(Z,A)-­‐A  ▪  1a.m.u.=M(12  6  C)/12  

§  Curve:  theoretical  SEMF  prediction  ▪  Minimum:    11148  Cd  

23/03/14   F.  Ould-­‐Saada   33  

45111Rh→ 46

111Pd + e− +νe (11sec)

46111Pd→ 47

111Ag+ e− +νe (22.3min)

47111Ag→ 48

111Cd + e− +νe (7.45d)

45111Rh, 46

111Pd, 47111Ag →β − decay

n→ p + e− +ν eM(Z,A) > M(Z +1,A)

Page 34: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Mass  parabola  –  odd  A  

23/03/14   F.  Ould-­‐Saada   34  

51111Sb, 50

111Sn, 49111In →β+ − decay

" p"→n + e+ +ν e

M(Z,A) > M(Z −1,A) + 2me

e− + p→ n+νe (e− capture)M (Z,A)>M (Z −1,A)+εe− + 51

111Sb→ 50111Sn+νe (75sec)

e− + 50111Sn→ 49

111In+νe (35.3min)e− + 49

111In→ 48111Cd +νe (2.8d)

Excitation  energy  of  atomic  shell  of  daughter  nucleus  

Page 35: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

23/03/14   F.  Ould-­‐Saada   35  

¡  Mass  parabola  –  even  A  §  Even-­‐N,  even-­‐Z  or  odd-­‐Z,  odd-­‐N  §  Nearly  all  stable  even-­‐mass  nuclei  are  

of  even-­‐even  type    §  Experimental  mass-­‐excess  data:  

M(Z,A)-­‐A  ▪  Open  circles:  eve-­‐even,  closed:  odd-­‐odd  

§  Curve:  theoretical  SEMF  prediction  ▪  Lowest  isobar:    102  44Ru  ▪  Neighbour  isobar:    102  46Pd  

2β − decay (1019−20 yr)

3482Se→36

82Kr + 2e− + 2ν e40Ca, 76Ge,82Se,96Zr,100Mo,116Cd,128Te,130Te,150Nd, 238U

§  Small  number  of  even-­‐even  nuclei,  although  beta-­‐decay  energetically  forbidden,  (A,Z)à(A,Z+2)  occurs  

§  Double  beta  decay  :  2nd  order  weak  process  à  Observed  

2e − capture : (A,z) →(A,Z - 2)

46102Pd + 2e−→44

102Ru + 2νe§  2e-­‐capture  possible  but  not  observed    

Page 36: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡     

23/03/14   F.  Ould-­‐Saada   36  

From  Braibant  

Page 37: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Binding  energy  curve  à  spontaneous  fission  energetically  possible  for  A>100  

 §  154  MeV  released  carried  by  fission  

products,  usually  some  way  from  stability  line,  and  decay  in  steps    

¡  Spontaneous  fission:  §  Parent  nucleus  breaks  into  2  daughter  nuclei  of  

~equal  masses.  Equal  masses  unlikely.    §  SEMF  predicts  max  release  energy  for  exactly  

equal  masses  ▪  Isotope  254Fm  -­‐  mass  distribution  of  fission  

fragments  ¡  Fission  can  also  be  induced  by  low-­‐energy  

neutrons  or  by  more  energetic  particles  

23/03/14   F.  Ould-­‐Saada   37  

92238U→57

145La+3590Br + 3n

92238U :P( fission) ~ 3 ×10−24 s−1 ≈ 6 ×10−7P(α)254Fm : BR( fission) ~ 0.06% ; BR(α) ~ 99.94%

mass  distribution  of  fission  fragments  

¡  Fission  very  rare  process    §  Only  dominant  in  very  heavy  

elements  A>270      

57145La→...→60

145Nd + 8.5MeV (e,ν)

n+ 92U→ 56Ba+ 36Kr

Page 38: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

ΔE = (Es + Ec ) − (Es + Ec )semf =ε 2

52asA

2 / 3 − acZ2A−1/ 3( )

ΔE < 0 ⇒ Z 2

A≥

2asac

≈ 49

OK for Z >116; A ≥ 270

§  Parameterize  deformation:  §  Change  in  total  energy  ΔE  §  ΔE<0  à  Fission  

23/03/14   F.  Ould-­‐Saada   38  

a = R(1+ε); b =R

1+ε

V =43πR3 =

43πab2

Es = asA2 / 3 1+

25ε 2 + ...

$

% &

'

( )

Ec = acZ2A−1/ 3 1− 1

5ε 2 + ...

$

% &

'

( )

¡  In  SEMF,  we  assumed  that  drop/nucleus  spherical  §  This  minimizes  surface  area  (as)  §  If  surface  perturbed,  spherical  à  

prolate  §  as  up,  ac  down,  av  constant  §  Relative  sizes  (as,  ac  )  determine  

whether  nucleus  is  stable  or  not  against  spontaneous  fission  

Page 39: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Spontaneous  fission  =  potential  barrier  problem  (see  Appendix  A)  

¡   23592U  –  fission  by  thermal  neutrons  §  Even-­‐odd  (pairing  term  δ=0):  less  

tightly  bound  than  238  (higher  in  V)  

¡   23892U  –  fission  by  fast  neutrons  §  Even-­‐even  (δ<0)  

23/03/14   F.  Ould-­‐Saada   39  

Potential  energy  during  different  stages  of  a  fission  reaction    

§  Activation  energy  determines  probability  for  spontaneous  fission    ▪  ~6  MeV  for  heavy  nuclei  (provided  f.e.  by  neutrons  in  induced  fission)  

▪  No  activation  needed  for  very  heavy  nuclei  (dashed  line)  –  spontaneous  fission    

Page 40: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡     

23/03/14   F.  Ould-­‐Saada   40  

From  Braibant  

Page 41: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  In  α,  β  decays  and  fission,  daughter  often  left  in  excited  state  §  De-­‐excitation  by  photon  

emission    

▪  Energy  level  spacing  in  nuclei  ~some  MeV  (àγ-­‐rays)  

§  Lifetime  of  excited  state  ~10-­‐12  

s  (EM  process  ~10-­‐16  s  )  

ZAX*→ Z

AX +γΔE ≈ 0.1−10MeV

23/03/14   F.  Ould-­‐Saada   41  

§  Role  of  angular  momentum  is  crucial;  idem  for  parity  (conserved  in  EM)  §  Intrinsic  parities  §  Parity  from  angular  

momentum  §  à  more  in  chapter  7.8  

Parity  associated  with  angular          à  momentum  carried  by  the  photon  

! J γ =! S i −! S f

Si − S j ≤ J ≤ Si + S j

M = mi −m f

P(γ) = −1(−1)J

Page 42: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

§  Compound  nucleus  reactions:    ▪  projectile  loosely  bound  in  nucleus  ▪  reaction  time  much  longer  than  just  transit  

¡  More  detailed  classification  of  reactions  in  NP  §  Direct  reactions:  assumption  that  projectile  experiences  average  

potential  of  target  nucleus  –  reaction  time  10-­‐22s      

23/03/14   F.  Ould-­‐Saada   42  

▪  Elastic  scattering  ▪  Inelastic  scattering  ▪  Pickup  reaction  ▪  N  stripped  off  target,      carried  away  by  projectile  

▪  Stripping  reaction  ▪  N  stripped  off  projectile,      transferred  to  target  nucleus    

 Energy  level  diagram  of  excitation  of  compound  nucleus  and  subsequent  decay  €

(i) a + A→a + A(ii) a + A→a + A*

(iii) p+16O→d+15O

(iv) d+16O→ p+17O

a + A→C* →b + Ba + A→C* →C +γ

Page 43: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Compound  nucleus  reactions:    §  reaction  time  much  

longer  than  transit  §  Cross  sections  can  

show  variations  on  a  much  smaller  energy  scale  

§  Density  of  levels  high  ▪  n-­‐12C  scattering  at  

En~few  MEV  à  resonance  formation  in  13C  with  width  ~tens  –  hundreds  keV.  

23/03/14   F.  Ould-­‐Saada   43  

Total  cross  section  

▪  Widths  of  excitations  decrease  both  with  incident  energy  and  rapidly  with  target  nuclear  mass  

▪  Neutrons  (neutral)  have  high  probability  of  being  captured  by  nuclei  ▪  Cross  sections  rich  in  compound  

nucleus  effects,  particularly  at  very  low  energies  

Page 44: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Situations  where  particles  are  ejected  from  nucleus  before  full  statistical  equilibrium  reached  

¡  In  collisions  of  heavy  ions  §   probability  for  additional  mechanism:  deep  inelastic  scattering  (Section  5.8)  –  

intermediate  between  direct  and  compound  

23/03/14   F.  Ould-­‐Saada   44  

¡  Direct  and  compound  nucleus  reactions  in  nuclear  reactions  initiated  by  protons  ¡  Feed  same  final  states  

Page 45: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Typical  spectrum  of  energies  of  the  nucleons  emitted  at  fixed  angle  in  inelastic  nucleon-­‐nucleus  reactions  

▪  Case  of  incident  neutron  on  medium  mass  nuclei  

§  N(E)  of  secondary  particles  in  neutron-­‐nucleus  

§  Direct  reactions:  cross  section  peaked  in  forward  direction  ▪  Falling  rapidly  with  angle  

and  with  oscillations  (see  slide  16  )  

§  At  lowest  energies,  contribution  from  compound  rather  symmetric  about  90o  

23/03/14   F.  Ould-­‐Saada   45  

Page 46: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Many  medium  and  large-­‐A  nuclei  can  capture  very  low-­‐energy  (~10-­‐100  eV)  neutrons    §  Neutron  separation  energy  ~6MeV  for  final  nucleus  §  Capture  leads  to  excitation,  which  often  occurs  in  a  region  of  high  density  of  narrow  

states  that  show  up  as  rich  resonance  structure  in  neutron  total  cross-­‐section  

§  Value  of  σ at  resonance  peaks  (excited  states  of  239U)  orders  of  magnitude  greater  than  σ  based  on  size  of  nucleus  

23/03/14   F.  Ould-­‐Saada   46  

Page 47: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

23/03/14   F.  Ould-­‐Saada   47  

¡  Once  formed,  compound  nucleus  can  decay  to  final  states  consistent  with  relevant  conservation  laws  

¡  Neutron  emission  can  be  preferred  decay  §  For  thermal  neutrons  (0.02  eV)  photon  emission  often  preferred  

¡  Fact  that  radiative  decay  is  dominant  mode  of  compound  nuclei  formed  by  thermal  neutrons  is  important  in  the  use  of  nuclear  fission  to  produce  power  in  nuclear  reactors    

Page 48: Nucleispecifiedby - Universitetet i oslofolk.uio.no/farido/fys3510/NuclearPhenomenology2.pdf · 2014-03-26 · Mass’measurement’by’passing’ion’beams’ through’crossed’B,E’fields’

¡  Pages  67-­‐69  §  2.2  ,  2.4,  2.5,  2.7,    §  2.10,  2.11,  2.12,  2.14  §  2.15,  2.17,  2.18      

23/03/14   F.  Ould-­‐Saada   48  


Top Related