+ All Categories
Transcript
Page 1: Overall Shell Mass Balances I

Overall ShellMass Balances I

Page 2: Overall Shell Mass Balances I

Outline

3. Molecular Diffusion in Gases 4. Molecular Diffusion in Liquids 5. Molecular Diffusion in Solids6. Prediction of Diffusivities

7. Overall Shell Mass Balances1. Concentration Profiles

Page 3: Overall Shell Mass Balances I

Overall Shell Mass Balance

Species entering and leaving the system

by Molecular Transport +by Convective Transport

Mass Generationby homogeneous chemical reaction

* May also be expressed in terms of moles

Steady-State!

Page 4: Overall Shell Mass Balances I

Overall Shell Mass Balance

* May also be expressed in terms of moles

Common Boundary Conditions:

1. Concentration is specified at the surface.2. The mass flux normal to a surface maybe given.3. At solid- fluid interfaces, convection applies: NA = kcβˆ†cA.4. The rate of chemical reaction at the surface can be specified.

β™ͺ At interfaces, concentration is not necessarily continuous.

Page 5: Overall Shell Mass Balances I

Concentration Profiles

I. Diffusion Through a

Stagnant Gas Film

Page 6: Overall Shell Mass Balances I

Concentration Profiles

I. Diffusion Through a Stagnant Gas FilmAssumptions:

1. Steady-state2. T and P are constants3. Gas A and B are ideal4. No dependence of vz on

the radial coordinate

At the gas-liquid interface,

Page 7: Overall Shell Mass Balances I

Concentration Profiles

I. Diffusion Through a Stagnant Gas FilmMass balance is done in this thin shell

perpendicular to the direction of mass flow

𝑁 𝐴=βˆ’π‘π·π΄π΅π‘‘π‘₯𝐴

𝑑𝑧 +π‘₯𝐴(𝑁 𝐴+𝑁𝐡)

Page 8: Overall Shell Mass Balances I

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film

𝑁 𝐴=βˆ’π‘π·π΄π΅π‘‘π‘₯𝐴

𝑑𝑧 +π‘₯𝐴(𝑁 𝐴+𝑁𝐡)

Since B is stagnant,

𝑁 𝐴=βˆ’π‘π· 𝐴𝐡

(1βˆ’π‘₯𝐴)𝑑π‘₯𝐴

𝑑𝑧

Page 9: Overall Shell Mass Balances I

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film

𝑁 𝐴=βˆ’π‘π· 𝐴𝐡

(1βˆ’π‘₯𝐴)𝑑π‘₯𝐴

𝑑𝑧

𝑆𝑁 𝐴 Η€π‘§βˆ’π‘†π‘ 𝐴 ǀ𝑧+βˆ† 𝑧=0

Applying the mass balance,

where S = cross-sectional area of the column

Page 10: Overall Shell Mass Balances I

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film

𝑆𝑁 𝐴 Η€π‘§βˆ’π‘†π‘ 𝐴 ǀ𝑧+βˆ† 𝑧=0

Dividing by SΞ”z and taking the limit as Ξ”z 0,

βˆ’π‘‘π‘ 𝐴

𝑑𝑧 =0 NA = constant

Page 11: Overall Shell Mass Balances I

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film

βˆ’π‘‘π‘ 𝐴

𝑑𝑧 =0 NA = constant

𝑁 𝐴=βˆ’π‘π· 𝐴𝐡

(1βˆ’π‘₯𝐴)𝑑π‘₯𝐴

𝑑𝑧But,

Substituting,

𝑑𝑑𝑧 ( 𝑐𝐷 𝐴𝐡

(1βˆ’ π‘₯𝐴 )𝑑π‘₯𝐴

𝑑𝑧 )=0

Page 12: Overall Shell Mass Balances I

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film𝑑𝑑𝑧 ( 𝑐𝐷 𝐴𝐡

(1βˆ’ π‘₯𝐴 )𝑑π‘₯ 𝐴

𝑑𝑧 )=0For ideal gases, P = cRT and so at constant P and T, c = constantDAB for gases can be assumed independent of concentration

𝑑𝑑𝑧 ( 1

(1βˆ’ π‘₯𝐴 )𝑑π‘₯ 𝐴

𝑑𝑧 )=0

Page 13: Overall Shell Mass Balances I

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film

𝑑𝑑𝑧 ( 1

(1βˆ’ π‘₯𝐴 )𝑑π‘₯ 𝐴

𝑑𝑧 )=0Integrating once,

1(1βˆ’π‘₯𝐴 )

𝑑π‘₯𝐴

𝑑𝑧 =𝐢1

Integrating again,

βˆ’ ln (1βˆ’ π‘₯𝐴 )=𝐢1𝑧+𝐢2

Page 14: Overall Shell Mass Balances I

Concentration Profiles

I. Diffusion Through a Stagnant Gas Filmβˆ’ ln (1βˆ’ π‘₯𝐴 )=𝐢1𝑧+𝐢2

Let C1 = -ln K1 and C2 = -ln K2,

1βˆ’π‘₯𝐴=𝐾 1𝑧𝐾 2

B.C.

at z = z1, xA = xA1

at z = z2, xA = xA2 ( 1βˆ’π‘₯𝐴

1βˆ’ π‘₯𝐴1 )=( 1βˆ’π‘₯𝐴2

1βˆ’π‘₯𝐴1 )π‘§βˆ’ 𝑧 1𝑧 2βˆ’ 𝑧1

Page 15: Overall Shell Mass Balances I

Concentration Profiles

I. Diffusion Through a Stagnant Gas Film

( 1βˆ’π‘₯𝐴

1βˆ’ π‘₯𝐴1 )=( 1βˆ’π‘₯𝐴2

1βˆ’π‘₯𝐴1 )π‘§βˆ’ 𝑧 1𝑧 2βˆ’ 𝑧1

𝑁 𝐴=βˆ’π‘π· 𝐴𝐡

(1βˆ’π‘₯𝐴)𝑑π‘₯𝐴

𝑑𝑧𝑁 𝐴=

𝑐𝐷𝐴𝐡

(𝑧 2βˆ’ 𝑧1 )ln (1βˆ’ π‘₯𝐴 2

1βˆ’ π‘₯𝐴1)

*, i.e. xA1> xA2Η‚ i.e. z2> z1

𝑁 𝐴=𝑐𝐷𝐴𝐡

( 𝑧2βˆ’π‘§1)(π‘₯¿¿𝐡)𝑙𝑛(π‘₯𝐴1βˆ’π‘₯𝐴2)ΒΏ

The molar flux then becomes

OR in terms of the driving force Ξ”xA

(π‘₯¿¿𝐡)𝑙𝑛=π‘₯𝐡 2βˆ’π‘₯𝐡1

ln (π‘₯𝐡2

π‘₯𝐡1)

ΒΏ

Page 16: Overall Shell Mass Balances I

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical ReactionTwo Reaction Types:

1. Homogeneous – occurs in the entire volume of the fluid

- appears in the generation term

2. Heterogeneous – occurs on a surface (catalyst)

- appears in the boundary condition

Page 17: Overall Shell Mass Balances I

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical ReactionReaction taking place

2A B

1. Reactant A diffuses to the surface of the catalyst

2. Reaction occurs on the surface

3. Product B diffuses away from the surface

Page 18: Overall Shell Mass Balances I

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical ReactionReaction taking place

2A B

Assumptions:

1. Isothermal2. A and B are ideal gases3. Reaction on the surface

is instantaneous4. Uni-directional transport

will be considered

Page 19: Overall Shell Mass Balances I

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical Reaction

𝑑𝑁 𝐴

𝑑𝑧 =0

𝑁 𝐴=βˆ’π‘π·π΄π΅π‘‘π‘₯𝐴

𝑑𝑧 +π‘₯𝐴(𝑁 𝐴+𝑁 𝐡)

Page 20: Overall Shell Mass Balances I

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical Reaction

𝑁 𝐴=βˆ’π‘π· 𝐴𝐡

1βˆ’ 12π‘₯𝐴

𝑑π‘₯𝐴

𝑑𝑧

From stoichiometry,

Page 21: Overall Shell Mass Balances I

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical ReactionSubstitution of NA into the differential equation

𝑑𝑑𝑧 (βˆ’

𝑐𝐷𝐴𝐡

1βˆ’ 12π‘₯𝐴

𝑑π‘₯𝐴

𝑑𝑧 )=0

Integration twice with respect to z,

βˆ’2 ln(1βˆ’ 12 π‘₯𝐴)=𝐢1 𝑧+𝐢2=βˆ’ΒΏ

B.C. 1: at z = 0, xA = xA0

B.C. 2: at z = Ξ΄, xA = 0

Page 22: Overall Shell Mass Balances I

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical ReactionThe final equation is

1βˆ’ 12π‘₯𝐴=(1βˆ’ 1

2π‘₯𝐴 0)

(1βˆ’ 𝑧𝛿 )

And the molar flux of reactant through the film,

𝑁 𝐴=2𝑐𝐷 𝐴𝐡

𝛿 ln( 1

1βˆ’ 12π‘₯𝐴0

)

*local rate of reaction per unit of catalytic surface

Page 23: Overall Shell Mass Balances I

Concentration Profiles

II. Diffusion With a Heterogeneous Chemical Reaction

Reading Assignment

See analogous problem Example 18.3-1 of Transport Phenomena by Bird, Stewart and Lightfoot

Page 24: Overall Shell Mass Balances I

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction

1. Gas A dissolves in liquid B and diffuses into the liquid phase

2. An irreversible 1st order homogeneous reaction takes place

A + B AB

Assumption: AB is negligible in the solution (pseudobinary assumption)

Page 25: Overall Shell Mass Balances I

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction

𝑆𝑁 𝐴 Η€π‘§βˆ’π‘†π‘ 𝐴 ǀ𝑧+βˆ† π‘§βˆ’π‘˜1β€² β€² ′𝐢𝐴𝑆 βˆ† 𝑧=0

first order rate constant for homogeneous decomposition of AS cross sectional area of the liquid

Page 26: Overall Shell Mass Balances I

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction

𝑆𝑁 𝐴 Η€π‘§βˆ’π‘†π‘ 𝐴 ǀ𝑧+βˆ† π‘§βˆ’π‘˜1β€² β€² ′𝐢𝐴𝑆 βˆ† 𝑧=0

Dividing by SΞ”z and taking the limit as Ξ”z 0,

𝑑𝑁 𝐴

𝑑𝑧 +π‘˜1β€² β€² ′𝐢𝐴=0

Page 27: Overall Shell Mass Balances I

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction𝑑𝑁 𝐴

𝑑𝑧 +π‘˜1β€² β€² ′𝐢𝐴=0

If concentration of A is small, then the total c is almost constant and

𝑁 𝐴=βˆ’π·π΄π΅π‘‘π‘π΄

𝑑𝑧Combining the two equations above

𝐷 𝐴𝐡𝑑2𝑐𝐴

𝑑 𝑧2βˆ’π‘˜1

β€² β€² ′𝐢𝐴=0

Page 28: Overall Shell Mass Balances I

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction

𝐷 𝐴𝐡𝑑2𝑐𝐴

𝑑 𝑧2βˆ’π‘˜1

β€² β€² ′𝐢𝐴=0

Multiplying the above equation by gives an equation with dimensionless variables

Page 29: Overall Shell Mass Balances I

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction

𝐷 𝐴𝐡𝑑2𝑐𝐴

𝑑 𝑧2βˆ’π‘˜1

β€² β€² ′𝐢𝐴=0

𝑑2Ξ“π‘‘πœ 2

βˆ’πœ™2Ξ“=0

Ξ“=𝑐𝐴

𝑐𝐴0,𝜁= 𝑧

𝐿 ,πœ™=βˆšπ‘˜β€² β€² ′𝐿2/𝐷𝐴𝐡

Thiele Modulus

Page 30: Overall Shell Mass Balances I

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction

𝑑2Ξ“π‘‘πœ 2

βˆ’πœ™2Ξ“=0

The general solution is

Ξ“=𝐢1 cosh (πœ™πœ )+𝐢2sinh (πœ™πœ )

Page 31: Overall Shell Mass Balances I

Concentration Profiles

III. Diffusion With a Homogeneous Chemical Reaction

Ξ“=𝐢1 cosh (πœ™πœ )+𝐢2sinh (πœ™πœ )

Ξ“=cosh (πœ™ ) cosh (πœ™πœ )βˆ’sinh (πœ™ ) sinh (πœ™πœ )

cosh (πœ™ )=cosh [Ο• (1βˆ’ΞΆ )]cosh (πœ™ )

Evaluating the constants,

Reverting to the original variables, 𝑐 𝐴

𝑐𝐴0=cosh [βˆšπ‘˜β€² β€² β€² 𝐿2𝐷 𝐴𝐡

(1βˆ’ 𝑧𝐿 )]

cosh (βˆšπ‘˜β€² β€² β€² 𝐿2𝐷 𝐴𝐡)

Page 32: Overall Shell Mass Balances I

Concentration Profiles

III. Diffusion With a Homogeneous Chemical ReactionQuantities that might be asked for:

1. Average concentration in the liquid phase

𝑐𝐴 ,π‘Žπ‘£π‘”

𝑐 𝐴0=∫0

𝐿

(𝑐𝐴 ¿𝑐 𝐴0)𝑑𝑧

∫0

𝐿

𝑑𝑧= tanh πœ™πœ™

2. Molar flux at the plane z = 0

𝑁 𝐴𝑧 Η€ 𝑧=0=βˆ’π·π΄π΅π‘‘π‘ 𝐴

𝑑𝑧 ǀ𝑧=0=(𝑐𝐴0𝐷 𝐴𝐡

𝐿 )πœ™ tanh πœ™

Page 33: Overall Shell Mass Balances I

Concentration Profiles

IV. Diffusion into a Falling Liquid Film (Gas Absorption)

Assumptions

1. Velocity field is unaffected by diffusion

2. A is slightly soluble in B3. Viscosity of the liquid is unaffected4. The penetration distance of A in B

will be small compared to the film thickness.

Page 34: Overall Shell Mass Balances I

Concentration Profiles

IV. Diffusion into a Falling Liquid Film (Gas Absorption)

Recall: The velocity of a falling film

𝑣 𝑧 (π‘₯ )=π‘£π‘šπ‘Žπ‘₯ [1βˆ’( π‘₯𝛿 )2]

𝑣 𝑧(π‘₯ )=(𝜌 𝑔𝛿2 cos𝛼2πœ‡ )[1βˆ’(π‘₯𝛿 )2]

Page 35: Overall Shell Mass Balances I

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

* CA is a function of both x and z

Page 36: Overall Shell Mass Balances I

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

Dividing by WΞ”xΞ”z andletting Ξ”x 0 and Ξ”z 0,

πœ•π‘π΄π‘§

πœ• 𝑧 +πœ•π‘ 𝐴π‘₯

πœ• π‘₯ =0

Page 37: Overall Shell Mass Balances I

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

πœ•π‘π΄π‘§

πœ• 𝑧 +πœ•π‘ 𝐴π‘₯

πœ• π‘₯ =0

𝑁 𝐴𝑧=βˆ’π·π΄π΅π‘‘π‘π΄

𝑑𝑧 +π‘₯𝐴(𝑁 𝐴 𝑧+𝑁𝐡 𝑧)

The expressions for ,

Transport of A along the z direction is mainly by convection (bulk motion)

𝑁 𝐴𝑧 β‰ˆπ‘π΄π‘£π‘€=𝑐 𝐴𝑣𝑧 (π‘₯)

𝑁 𝐴= 𝐽 π΄βˆ—+𝑐𝐴𝑣𝑀Recall: 𝑣𝑀=π‘šπ‘œπ‘™π‘Žπ‘Ÿ π‘Žπ‘£π‘’π‘Ÿπ‘Žπ‘”π‘’π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦

Page 38: Overall Shell Mass Balances I

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

πœ•π‘π΄π‘§

πœ• 𝑧 +πœ•π‘ 𝐴π‘₯

πœ• π‘₯ =0

𝑁 𝐴π‘₯=βˆ’π· 𝐴𝐡𝑑𝑐 𝐴

𝑑𝑧 +π‘₯𝐴(𝑁 𝐴 π‘₯+𝑁𝐡π‘₯)

The expressions for ,

𝑁 𝐴π‘₯ β‰ˆβˆ’π· 𝐴𝐡𝑑𝑐 𝐴

𝑑𝑧

Transport of A along the x direction is mainly by diffusion

Page 39: Overall Shell Mass Balances I

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

πœ•π‘π΄π‘§

πœ• 𝑧 +πœ•π‘ 𝐴π‘₯

πœ• π‘₯ =0

Substituting the expressions for,

𝑣 𝑧(πœ•π‘π΄

πœ• 𝑧 )=𝐷 π΄π΅πœ•2𝑐 𝐴

πœ• π‘₯2

Substituting the expressions vz,

π‘£π‘šπ‘Žπ‘₯ [1βˆ’( π‘₯𝛿 )2]( πœ•π‘ 𝐴

πœ• 𝑧 )=𝐷 π΄π΅πœ•2𝑐𝐴

πœ• π‘₯2

Page 40: Overall Shell Mass Balances I

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

π‘£π‘šπ‘Žπ‘₯ [1βˆ’( π‘₯𝛿 )2]( πœ•π‘π΄

πœ• 𝑧 )=𝐷 π΄π΅πœ•2𝑐𝐴

πœ• π‘₯2

Boundary conditions B.C. 1B.C. 2B.C. 3

B.C. 3

BUT we can replace B.C. 3 with

Page 41: Overall Shell Mass Balances I

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

π‘£π‘šπ‘Žπ‘₯ [1βˆ’( π‘₯𝛿 )2]( πœ•π‘ 𝐴

πœ• 𝑧 )=𝐷 π΄π΅πœ•2𝑐𝐴

πœ• π‘₯2

or

where

Page 42: Overall Shell Mass Balances I

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

𝑁 𝐴π‘₯ Η€ π‘₯=0=βˆ’π·π΄π΅πœ•π‘ 𝐴

πœ• π‘₯ Η€π‘₯=0=𝑐𝐴0√ π·π΄π΅π‘£π‘šπ‘Žπ‘₯

πœ‹ 𝑧

𝑐 𝐴

𝑐𝐴0=1βˆ’π‘’π‘Ÿπ‘“ π‘₯

√ 4𝐷 𝐴𝐡2 𝑧

π‘£π‘šπ‘Žπ‘₯

=π‘’π‘Ÿπ‘“π‘ π‘₯

√ 4𝐷𝐴𝐡2 𝑧

π‘£π‘šπ‘Žπ‘₯

Page 43: Overall Shell Mass Balances I

Concentration ProfilesIV. Diffusion into a Falling Liquid Film (Gas Absorption)

Reading Assignment

See analogous problem Example 4.1-1 of Transport Phenomena by Bird, Stewart and Lightfoot

Page 44: Overall Shell Mass Balances I

Concentration Profiles

Quantities that might be asked for:

1. Total molar flow of A across the surface at x = 0

IV. Diffusion into a Falling Liquid Film (Gas Absorption)

π‘Š 𝐴=∫0

π‘Š

∫0

𝐿

𝑁𝐴π‘₯ Η€π‘₯=0 𝑑𝑧𝑑𝑦=π‘Š 𝑐𝐴 0√ π·π΄π΅π‘£π‘šπ‘Žπ‘₯

πœ‹ ∫0

𝐿 1βˆšπ‘§

𝑑𝑧=𝑐𝐴0√𝐷 π΄π΅π‘£π‘šπ‘Žπ‘₯

πœ‹ 𝐿


Top Related