+ All Categories
Transcript
Page 1: Pions in nuclei and tensor force

10.2.23 [email protected] 1

Pions in nuclei and tensor force

Hiroshi Toki (RCNP, Osaka)in collaboration with

Yoko Ogawa (RCNP, Osaka)Jinniu Hu (RCNP, Osaka)

Takayuki Myo (Osaka Inst. Tech.)Kiyomi Ikeda (RIKEN)

Page 2: Pions in nuclei and tensor force

10.2.23 [email protected] 2

Pion is important !! In Nuclear Physics

Yukawa introduced pion as mediator of nuclear interaction for nuclei. (1934)

Nuclear Physics started by shell model with strong spin-orbit interaction.

  (1949: Meyer-Jensen: Phenomenological)The pion had not played the central role in

nuclear physics until recent years.

Page 3: Pions in nuclei and tensor force

10.2.23 [email protected] 3

Variational calculation of light nuclei with NN interaction

C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci.51(2001)

ΨVπ Ψ

Ψ VNN Ψ~ 80%

Ψ=φ(r12)φ(r23)...φ(rij )

VMC+GFMC

VNNN

Fujita-Miyazawa

Relativistic

Pion is a key elementWe want to calculate heavy nuclei!!

Page 4: Pions in nuclei and tensor force

10.2.23 [email protected] 4

RCNP experiment (good resolution)

Y. Fujita et al.,E.Phys.J A13 (2002) 411

H. Fujita et al., PRC

Ψf στ Ψ i

Not simpleGiant GT

Page 5: Pions in nuclei and tensor force

10.2.23 [email protected] 5

The pion (tensor) is important.

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Deuteron (1+)QuickTime˛ Ç∆

TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

NN interaction S=1 and L=0 or 2

π

Page 6: Pions in nuclei and tensor force

10.2.23 [email protected] 6

Deuteron and tensor interaction

Central interaction has strong repulsion.Tensor interaction is strong in 3S1 channel.S-wave function has a dip.D-wave component is only 6%.Tensor attraction provides 80% of entire at

traction.D-wave is spatially shrank by a half.

rσ 1 ⋅

r q

r σ 2 ⋅

r q =

1

3q2S12( ˆ q ) +

1

3

r σ 1 ⋅

r σ 2q

2

S12( ˆ q ) = 24π Y2( ˆ q ) σ 1σ 2[ ]2[ ]0

Pion Tensor spin-spin

Page 7: Pions in nuclei and tensor force

10.2.23 [email protected] 7

Chiral symmetry (Nambu:1960)

Chiral symmetry is the key symmetry to connect real world with QCD physics

Chiral model is very powerful in generating various hadronic states

Nucleon gets mass dynamicallyPion is the Nambu-Goldstone particle of the c

hiral symmetry breaking

Page 8: Pions in nuclei and tensor force

10.2.23 [email protected] 8

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

He was motivated by the BCS theory (1958) .

E p = ±( p2 + m2)1/ 2

Nobel prize (2008)

rσ ⋅

rp ψ R + mψ L = E pψ R

−r σ ⋅

r p ψ L + mψ R = E pψ L

Δ is the order parameter is the order parameter

m

Particle number Chiral symmetry€

εiψ i + Δψ i * = E iψ i

−ε iψ i * + Δ*ψ i = E iψ i

*

E i = ±(ε i2 + Δ2)1/ 2

Page 9: Pions in nuclei and tensor force

10.2.23 [email protected] 9

Nambu-Jona-Lasinio Lagrangian

Mean field approximation; Hartree approximation

Fermion gets mass.

The chiral symmetry is spontaneously broken.

ψ ψ → ψ ψ cos(2α ) +ψ iγ 5ψsin(2α )

ψ iγ 5ψ →ψ iγ 5ψ cos(2α ) −ψ ψsin(2α )

ψ → e iαγ 5ψChiral transformation

Pion appears as a Nambu-Goldstone boson.

Page 10: Pions in nuclei and tensor force

10.2.23 [email protected] 10

Chiral sigma model

Chiral sigma model

Linear Sigma Model Lagrangian

Polar coordinate

Weinberg transformation

Y. Ogawa et al. PTP (2004)

Pion is the Nambu boson of chiral symmetry

Page 11: Pions in nuclei and tensor force

10.2.23 [email protected] 11

Non-linear sigma modelNon-linear sigma model

Lagrangian = fπ + φ

whereM = gσfπ M* = M + gσ φ

mπ2 = 2 + fπ mσ

2 = 2 +3 fπ

m = gfπ m

= m + gφ

~ ~

Free parameters are and

gω (Two parameters)

N

Page 12: Pions in nuclei and tensor force

10.2.23 [email protected] 12

Ψ=Ψ(σ ,ω)⊗Ψ(N)Mean field approximation for mesons.

Ψ(N) = C0 RMF + Ci

i

∑ 2p − 2hi

Nucleons are moving in the mean field and occasionally broughtup to high momentum states

due to pion exchange interaction

σ

σ

h h

p p

Bruekner argument

Relativistic Chiral Mean Field ModelWave function for mesons and nucleons

Page 13: Pions in nuclei and tensor force

10.2.23 [email protected] 13

Relativistic Brueckner-Hartree-Fock theory

Brockmann-Machleidt (1990)

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

G = V + VQ

eG

Us~ -400MeVUv~ 350MeV

π

πrelativity

RBHF theory provides a theoretical foundation of RMF model.

RBHF

Non-RBHF

Page 14: Pions in nuclei and tensor force

10.2.23 [email protected] 14

Density dependent RMF model

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Brockmann Toki PRL(1992)

Page 15: Pions in nuclei and tensor force

10.2.23 [email protected] 15

Why 2p-2h states are necessary for the tensorinteraction?

G.S.

Spin-saturated

The spin flipped states are alreadyoccupied by other nucleons.

Pauli forbidden

σ1σ 2[ ]2⋅Y2(r)

Page 16: Pions in nuclei and tensor force

10.2.23 [email protected] 16

Energy minimization with respect tomeson and nucleon fields

δΨ H Ψ

Ψ Ψ= 0

δE

δσ= 0

δE

δω= 0

(Mean field equation)

δE

δψ i(x)= 0

δE

δCi

= 0

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅBQuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 17: Pions in nuclei and tensor force

10.2.23 [email protected] 17

Energy

Energy minimization

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 18: Pions in nuclei and tensor force

10.2.23 [email protected] 18

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

RCMF equation

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 19: Pions in nuclei and tensor force

10.2.23 [email protected] 19

Energy minimization with respect tomeson and nucleon fields

δΨ H Ψ

Ψ Ψ= 0

δE

δσ= 0

δE

δω= 0

(Mean field equation)

δE

δψ i(x)= 0

δE

δCi

= 0

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB€

δE

δbi

= 0 (Corrrelation function)

Page 20: Pions in nuclei and tensor force

10.2.23 [email protected] 20

Unitary Correlation Operator Method

H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

corr. uncorr. SM, HF, FMDCΨ = ⋅Φ ←

{ }12exp( ), ( ) ( )ij r r

i j

C i g g p s r s r p<

= − = +∑

short-range correlator † 1 (Unitary trans.)C C−=

rp p pΩ= +r r r

Bare Hamiltonian

† : Hermitian generatorg g=

Shift operator depending on the relative distance r

C+HCΦ = EΦ

HΨ = EΨ

(UCOM)

Page 21: Pions in nuclei and tensor force

10.2.23 [email protected] 21

Short-range correlator : C

† 1 1

( ) ( )r rC p C p

R r R r+ +

=′ ′

†C lC l=r r

† ( )C r C R r+= †12 12C S C S=†C sC s=r r

Hamiltonian in UCOM

2-body approximation in the cluster expansion of operator€

H = T + V = Ti

i

∑ − TC .M + V (rij

i< j

∑ )

C+HC = ˜ T + ˜ V

˜ T = T + ΔT

ΔT = uij

i< j

˜ V = V (R+

i< j

∑ (rij ))

( ( ))( )

( )

s R rR r

s r+

+′ =

Page 22: Pions in nuclei and tensor force

10.2.23 [email protected] 22

Numerical results (1)

4He12C16O

Ogawa TokiNP 2009

Adjust binding energyand size.

Page 23: Pions in nuclei and tensor force

10.2.23 [email protected] 23

Numerical results 2

The difference between 12C and 16O is 3MeV/N.

The difference comes from low pion spin states (J<3).This is the Pauli blocking effect.

P3/2

P1/2

C

O

S1/2

Pion energy Pion tensor provides large attraction to 12C

Page 24: Pions in nuclei and tensor force

10.2.23 [email protected] 24

Chiral symmetry

Nucleon mass is reducedby 20% due to sigma.

We want to work out heavier nuclei for magic number.Spin-orbit splitting should be worked out systematically.

Ogawa TokiNP(2009)

Not 45%

N

Page 25: Pions in nuclei and tensor force

10.2.23 [email protected] 25

Nuclear matter

Hu Ogawa TokiPhys. Rev. 2009

ψ ψ

E/A

Total

Pion

Σ ~ 50MeV

Page 26: Pions in nuclei and tensor force

10.2.23 [email protected] 26

Deeply bound pionic atom

Toki Yamazaki, PL(1988)

Predicted to exist

Found by (d,3He) @ GSIItahashi, Hayano, Yamazaki..Z. Phys.(1996), PRL(2004)

Findings: isovector s-wave

b1

b1(ρ )=1− 0.37

ρ

ρ 0

fπ2mπ

2 = −2mq ψ ψ

ψ ψ

ψ ψ=1− 0.37

ρ

ρ 0

b1 ∝1

fπ2

Page 27: Pions in nuclei and tensor force

10.2.23 [email protected] 27

Halo structure in 11LiQuickTime˛ Ç∆

TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Deuteron-like state ismade by 2p-2h states in shell model.

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Deuteron wave function

Myo Kato Toki Ikeda PRC(2008)

Page 28: Pions in nuclei and tensor force

10.2.23 [email protected] 28

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Tensor interaction needs2p-2h excitation of pnpair.

P1/2 orbit is used for thisExcitation.

This orbit is blocked When we want to put two neutrons.

S1/2 orbit is free of this.

Tensor interaction

Page 29: Pions in nuclei and tensor force

10.2.23 [email protected] 29

ConclusionPion (tensor) is treated within relativistic chi

ral mean field model.We extended RBHF theory for finite nuclei.Nucleon mass is reduced by 20%Chiral condensate is similar to the model in

dependent value. (Sigma term~50MeV)Deeply bound pionic atom seems to verify p

artial recovery of chiral symmetry.

Page 30: Pions in nuclei and tensor force

10.2.23 [email protected] 30

Picture of nucleus

proton

neutron

pionic pair

Snapshot


Top Related