+ All Categories
Transcript
Page 1: Quantum 3-SAT is QMA 1 -complete

Quantum 3-SAT is QMA1-complete

David Gosset (Institute for Quantum Computing, University of Waterloo)

Daniel Nagaj (University of Vienna)

Long version: arXiv: 1302.0290

Short version : Proceedings of FOCS 2013

Page 2: Quantum 3-SAT is QMA 1 -complete

Quantum k-SAT (Bravyi 2006)Each clause is a k-local projector and is satisfied by a state if .

The amount that violates a clause is

Page 3: Quantum 3-SAT is QMA 1 -complete

Quantum k-SAT (Bravyi 2006)Each clause is a k-local projector and is satisfied by a state if .

The amount that violates a clause is

Quantum k-SATGiven k-local projectors {. We are promised that either

(YES) There is a state which satisfies for each

(NO) for all states

and asked to decide which is the case.

Page 4: Quantum 3-SAT is QMA 1 -complete

Quantum k-SAT (Bravyi 2006)Each clause is a k-local projector and is satisfied by a state if .

The amount that violates a clause is

Quantum k-SATGiven k-local projectors {. We are promised that either

(YES) There is a state which satisfies for each

(NO) for all states

and asked to decide which is the case.

Exactly satisfies eachclause

Page 5: Quantum 3-SAT is QMA 1 -complete

Quantum k-SAT (Bravyi 2006)Each clause is a k-local projector and is satisfied by a state if .

The amount that violates a clause is

Quantum k-SATGiven k-local projectors {. We are promised that either

(YES) There is a state which satisfies for each

(NO) for all states

and asked to decide which is the case.

Exactly satisfies eachclause

Total violation is at least 1. Can be obtained from by repeating each term

Page 6: Quantum 3-SAT is QMA 1 -complete

Quantum k-SAT (Bravyi 2006)Each clause is a k-local projector and is satisfied by a state if .

The amount that violates a clause is

Quantum k-SATGiven k-local projectors {. We are promised that either

(YES) There is a state which satisfies for each

(NO) for all states

and asked to decide which is the case.

Exactly satisfies eachclause

Total violation is at least 1. Can be obtained from by repeating each term

Classical k-SAT is the special case where all projectors are diagonal

Quantum k-SAT is a special case of k-local Hamiltonian where the Hamiltonian is frustration-free for yes instances

Page 7: Quantum 3-SAT is QMA 1 -complete

k

k-local Hamiltonian problem

Quantum k-SAT

Classical k-SAT

Yes instances are frustration-free

All constraints are diagonal

Page 8: Quantum 3-SAT is QMA 1 -complete

k

k-local Hamiltonian problem

Quantum k-SAT

Classical k-SAT

Yes instances are frustration-free

All constraints are diagonal

Complexity of quantum k-SAT

k=2

π‘˜β‰₯4

Contained in P

QMA1-complete

π’Œ=πŸπ’Œ=πŸ‘

4

[Bravyi 2006]

also follows from [Kitaev 99])

Page 9: Quantum 3-SAT is QMA 1 -complete

k

k-local Hamiltonian problem

Quantum k-SAT

Classical k-SAT

Yes instances are frustration-free

All constraints are diagonal

Complexity of quantum k-SAT

k=2

π‘˜β‰₯4

Contained in P

QMA1-complete

Contained in QMA1

NP-hard

π’Œ=πŸπ’Œ=πŸ‘

4

[Bravyi 2006]

also follows from [Kitaev 99])

Page 10: Quantum 3-SAT is QMA 1 -complete

k

k-local Hamiltonian problem

Quantum k-SAT

Classical k-SAT

Yes instances are frustration-free

All constraints are diagonal

Complexity of quantum k-SAT

We prove quantum 3-SAT is QMA1-hard (and therefore QMA1-complete).

k=2

π‘˜β‰₯4

Contained in P

QMA1-complete

Contained in QMA1

NP-hard

π’Œ=πŸπ’Œ=πŸ‘

4

[Bravyi 2006]

also follows from [Kitaev 99])

Page 11: Quantum 3-SAT is QMA 1 -complete

k

k-local Hamiltonian problem

Quantum k-SAT

Classical k-SAT

Yes instances are frustration-free

All constraints are diagonal

Complexity of quantum k-SAT

k=2

π‘˜β‰₯4

Contained in P

QMA1-complete

π’Œ=πŸπ’Œβ‰₯πŸ‘

Page 12: Quantum 3-SAT is QMA 1 -complete

[Ambainis Kempe Sattath 2010][Arad Sattath 2013][Schwarz Cubitt Verstraete 2013]

Many authors have studied quantum SAT since Bravyi’s work

Quantum LovΓ‘sz Local Lemma

[Laumann LΓ€uchli Moessner Scardicchio Sondhi 2010][Laumann Moessner Scardicchio Sondhi 2010][Bravyi Moore Russell 2010][Hsu Laumann LΓ€uchli Moessner Sondhi 2013][Bardoscia Nagaj Scardicchio 2013]

Ensembles of randominstances of quantum k-SAT

[Eldar Regev 2008] Complexity of quantum 2-SAT with higher dimensional particles (qudits)

[Ji Wei Zeng 2011] Characterization of the groundspace of yes instances of quantum 2-SAT

[Sattath 2013] β€œAn almost sudden jump in quantum complexity”

Page 13: Quantum 3-SAT is QMA 1 -complete

QMA1

If is a yes instance there exists (a witness) which is accepted with probability exactly 1.If is a no instance every state is accepted with probability at most

Wm-1Wm-2…W0

ΒΏπœ“ ⟩¿0 βŸ©βŠ—π‘›π‘Ž

QMA1 verification circuit

Because of the perfect completeness, the definition of QMA1 is gate-set dependent.It is not known whether or not QMA=QMA1; see

[Aaronson 2009] [Jordan, Kobayashi, Nagaj, Nishimura 2012][Kobayashi, Le Gall, Nishimura 2013] [Pereszlenyi 2013]

QMA1 is a one-sided error version of QMA. This is the relevant class becausequantum k-SAT is defined with one-sided error.

Page 14: Quantum 3-SAT is QMA 1 -complete

Bravyi proved quantum k-SAT is contained in QMA1 (verification circuit: choose one projector at random and measure it).

Page 15: Quantum 3-SAT is QMA 1 -complete

Bravyi proved quantum k-SAT is contained in QMA1 (verification circuit: choose one projector at random and measure it).

To prove QMA1-hardness of quantum 3-SAT we use a circuit-to-Hamiltonian mapping, i.e., we reduce from quantum circuit satisfiability.

Page 16: Quantum 3-SAT is QMA 1 -complete

If x is a yes instance there is an input state (witness) which makes the circuit output 1 with certainty. Ground energy of is zero.

If x is a no instance no input state makes the circuit output 1 with probability greater than Ground energy of is at least .

QMA1-hardness via circuit-to-Hamiltonian mapping

Wm-1Wm-2…W0ΒΏπœ“ ⟩

ΒΏ0 βŸ©βŠ—π‘›π‘Ž 𝐻 π‘₯=βˆ‘π‘–Ξ  𝑖

QMA1 Verification circuit for Quantum 3-SAT Hamiltonian

Page 17: Quantum 3-SAT is QMA 1 -complete

Wm-1Wm-2…W0ΒΏπœ“ ⟩¿0 βŸ©βŠ—π‘›π‘Ž

Hilbert space

QMA1 verification circuit (n qubits, m gates)

|𝑧 ⟩|𝑑 ⟩ π‘§βˆˆ {0,1 }𝑛 , π‘‘βˆˆ{0,1,2 ,…,π‘š }

Example part 1 [Kitaev 99]

Page 18: Quantum 3-SAT is QMA 1 -complete

Wm-1Wm-2…W0ΒΏπœ“ ⟩¿0 βŸ©βŠ—π‘›π‘Ž

Hilbert space

QMA1 verification circuit (n qubits, m gates)

|𝑧 ⟩|𝑑 ⟩ π‘§βˆˆ {0,1 }𝑛 , π‘‘βˆˆ{0,1,2 ,…,π‘š }

𝐻𝑑 ,𝑑+1 (π‘Š 𝑑 )=12 ΒΏTransitionoperators

Example part 1 [Kitaev 99]

Page 19: Quantum 3-SAT is QMA 1 -complete

Wm-1Wm-2…W0ΒΏπœ“ ⟩¿0 βŸ©βŠ—π‘›π‘Ž

Hilbert space

Transitionoperators

QMA1 verification circuit (n qubits, m gates)

|𝑧 ⟩|𝑑 ⟩ π‘§βˆˆ {0,1 }𝑛 , π‘‘βˆˆ{0,1,2 ,…,π‘š }

𝐻𝑑 ,𝑑+1 (π‘Š 𝑑 )=12 ΒΏ

𝐻 πΉπ‘’π‘¦π‘›π‘šπ‘Žπ‘›=βˆ‘π‘–=1

π‘›π‘Ž|1 ⟩ ⟨1|π‘–βŠ—βˆ¨0⟩⟨ 0∨¿+βˆ‘

𝑑=0

π‘šβˆ’1

𝐻𝑑 ,𝑑+1(π‘Š 𝑑)+|0 ⟩ ⟨0|π‘œπ‘’π‘‘βŠ—βˆ¨π‘šβŸ©βŸ¨π‘šβˆ¨ΒΏΒΏHamiltonian

Example part 1 [Kitaev 99]

Page 20: Quantum 3-SAT is QMA 1 -complete

Wm-1Wm-2…W0ΒΏπœ“ ⟩¿0 βŸ©βŠ—π‘›π‘Ž

Hilbert space

Transitionoperators

QMA1 verification circuit (n qubits, m gates)

|𝑧 ⟩|𝑑 ⟩ π‘§βˆˆ {0,1 }𝑛 , π‘‘βˆˆ{0,1,2 ,…,π‘š }

𝐻𝑑 ,𝑑+1 (π‘Š 𝑑 )=12 ΒΏ

Hamiltonian

1βˆšπ‘š+1

(|πœ™ ⟩|0 ⟩+π‘Š 0|πœ™ ⟩|1 ⟩+π‘Š 1π‘Š 0|πœ™ ⟩|2 ⟩+…+π‘Šπ‘šβˆ’1π‘Šπ‘šβˆ’2β€¦π‘Š 0βˆ¨πœ™ βŸ©βˆ¨π‘šβŸ©)Nullspace consists of β€œhistory states”

𝐻 πΉπ‘’π‘¦π‘›π‘šπ‘Žπ‘›=βˆ‘π‘–=1

π‘›π‘Ž|1 ⟩ ⟨1|π‘–βŠ—βˆ¨0⟩⟨ 0∨¿+βˆ‘

𝑑=0

π‘šβˆ’1

𝐻𝑑 ,𝑑+1(π‘Š 𝑑)+|0 ⟩ ⟨0|π‘œπ‘’π‘‘βŠ—βˆ¨π‘šβŸ©βŸ¨π‘šβˆ¨ΒΏΒΏ

Example part 1 [Kitaev 99]

Page 21: Quantum 3-SAT is QMA 1 -complete

Wm-1Wm-2…W0ΒΏπœ“ ⟩¿0 βŸ©βŠ—π‘›π‘Ž

Hilbert space

Transitionoperators

QMA1 verification circuit (n qubits, m gates)

|𝑧 ⟩|𝑑 ⟩ π‘§βˆˆ {0,1 }𝑛 , π‘‘βˆˆ{0,1,2 ,…,π‘š }

𝐻𝑑 ,𝑑+1 (π‘Š 𝑑 )=12 ΒΏ

Hamiltonian

1βˆšπ‘š+1

(|πœ™ ⟩|0 ⟩+π‘Š 0|πœ™ ⟩|1 ⟩+π‘Š 1π‘Š 0|πœ™ ⟩|2 ⟩+…+π‘Šπ‘šβˆ’1π‘Šπ‘šβˆ’2β€¦π‘Š 0βˆ¨πœ™ βŸ©βˆ¨π‘šβŸ©)Nullspace consists of β€œhistory states”

To have zero energy for the other two terms, we must have|πœ™ ⟩=|0 βŸ©π‘›π‘Žβˆ¨πœ“ ⟩A witness accepted with probability 1

𝐻 πΉπ‘’π‘¦π‘›π‘šπ‘Žπ‘›=βˆ‘π‘–=1

π‘›π‘Ž|1 ⟩ ⟨1|π‘–βŠ—βˆ¨0⟩⟨ 0∨¿+βˆ‘

𝑑=0

π‘šβˆ’1

𝐻𝑑 ,𝑑+1(π‘Š 𝑑)+|0 ⟩ ⟨0|π‘œπ‘’π‘‘βŠ—βˆ¨π‘šβŸ©βŸ¨π‘šβˆ¨ΒΏΒΏ

Example part 1 [Kitaev 99]

Page 22: Quantum 3-SAT is QMA 1 -complete

Wm-1Wm-2…W0ΒΏπœ“ ⟩¿0 βŸ©βŠ—π‘›π‘Ž

Hilbert space

QMA1 verification circuit (n qubits, m gates)

|𝑧 ⟩|𝑑 ⟩ π‘§βˆˆ {0,1 }𝑛 , π‘‘βˆˆ{0,1,2 ,…,π‘š }

𝐻𝑑 ,𝑑+1 (π‘Š 𝑑 )=12 ΒΏ

has a zero energy ground state if and only if the QMA1 verification circuit accepts a witness with probability 1. However, it’s not local.

Example part 1 [Kitaev 99]

Kitaev used a clock construction to convert it to a local Hamiltonian…

Transitionoperators

Hamiltonian 𝐻 πΉπ‘’π‘¦π‘›π‘šπ‘Žπ‘›=βˆ‘π‘–=1

π‘›π‘Ž|1 ⟩ ⟨1|π‘–βŠ—βˆ¨0⟩⟨ 0∨¿+βˆ‘

𝑑=0

π‘šβˆ’1

𝐻𝑑 ,𝑑+1(π‘Š 𝑑)+|0 ⟩ ⟨0|π‘œπ‘’π‘‘βŠ—βˆ¨π‘šβŸ©βŸ¨π‘šβˆ¨ΒΏΒΏ

Page 23: Quantum 3-SAT is QMA 1 -complete

Hilbert space HcompβŠ—Hclock

m qubitsn qubits

Example part 2: Clock construction [Kitaev 99]

Page 24: Quantum 3-SAT is QMA 1 -complete

𝐻 πΎπ‘–π‘‘π‘Žπ‘’π‘£=1βŠ—βˆ‘π‘–=1

π‘šβˆ’1

|01 ⟩ ⟨ 01¿𝑖 ,𝑖+1+π»π‘ π‘–π‘š

Hilbert space HcompβŠ—Hclock

m qubitsn qubits

Hamiltonian

Example part 2: Clock construction [Kitaev 99]

A sum of 5-local projectors

Page 25: Quantum 3-SAT is QMA 1 -complete

𝐻 πΎπ‘–π‘‘π‘Žπ‘’π‘£=1βŠ—βˆ‘π‘–=1

π‘šβˆ’1

|01 ⟩ ⟨ 01¿𝑖 ,𝑖+1+π»π‘ π‘–π‘š

Nullspace spanned by

Hilbert space HcompβŠ—Hclock

m qubitsn qubits

|t βŸ©π‘’=|111…1000…0 ⟩ ,t=0 ,…,m

𝑑 π‘šβˆ’π‘‘

Hamiltonian

Example part 2: Clock construction [Kitaev 99]

A sum of 5-local projectors

Page 26: Quantum 3-SAT is QMA 1 -complete

𝐻 πΎπ‘–π‘‘π‘Žπ‘’π‘£=1βŠ—βˆ‘π‘–=1

π‘šβˆ’1

|01 ⟩ ⟨ 01¿𝑖 ,𝑖+1+π»π‘ π‘–π‘š

𝐻 π‘ π‘–π‘š|HcompβŠ—Sclock=𝐻 πΉπ‘’π‘¦π‘›π‘šπ‘Žπ‘›

Nullspace spanned by

is designed so that

This implies has the same nullspace as

Hilbert space HcompβŠ—Hclock

m qubitsn qubits

|t βŸ©π‘’=|111…1000…0 ⟩ ,t=0 ,…,m

𝑑 π‘šβˆ’π‘‘

Hamiltonian

Example part 2: Clock construction [Kitaev 99]

A sum of 5-local projectors

Page 27: Quantum 3-SAT is QMA 1 -complete

h𝑑 ,𝑑+1 (π‘Š 𝑑 ) |HcompβŠ—S clock=𝐻𝑑 ,𝑑+1(π‘Š 𝑑)

𝑃0|Sclock=|0 ⟩ ⟨ 0∨¿

π‘ƒπ‘š|Sclock=|π‘š ⟩ βŸ¨π‘šβˆ¨ΒΏ

This is achieved β€œterm by term”, by exhibiting projectors (acting on ) and projectors acting on such that

Example part 2: Clock construction [Kitaev 99]

Page 28: Quantum 3-SAT is QMA 1 -complete

h𝑑 ,𝑑+1 (π‘Š 𝑑 ) |HcompβŠ—S clock=𝐻𝑑 ,𝑑+1(π‘Š 𝑑)

𝑃0|Sclock=|0 ⟩ ⟨ 0∨¿

π‘ƒπ‘š|Sclock=|π‘š ⟩ βŸ¨π‘šβˆ¨ΒΏ

This is achieved β€œterm by term”, by exhibiting projectors (acting on ) and projectors acting on such that

Example part 2: Clock construction [Kitaev 99]

𝐻 πΎπ‘–π‘‘π‘Žπ‘’π‘£=1βŠ—βˆ‘π‘–=1

π‘šβˆ’1

|01 ⟩ ⟨ 01¿𝑖 ,𝑖+1+βˆ‘π‘–=1

π‘›π‘Ž|1 ⟩ ⟨1|π‘–βŠ—π‘ƒ0+βˆ‘

𝑑=0

π‘šβˆ’1

h𝑑 , 𝑑+1(π‘Š 𝑑)+|0 ⟩ ⟨0|π‘œπ‘’π‘‘βŠ—π‘ƒπ‘š

Page 29: Quantum 3-SAT is QMA 1 -complete

h𝑑 ,𝑑+1 (π‘Š 𝑑 ) |HcompβŠ—S clock=𝐻𝑑 ,𝑑+1(π‘Š 𝑑)

𝑃0|Sclock=|0 ⟩ ⟨ 0∨¿

π‘ƒπ‘š|Sclock=|π‘š ⟩ βŸ¨π‘šβˆ¨ΒΏ

This is achieved β€œterm by term”, by exhibiting projectors (acting on ) and projectors acting on such that

Example part 2: Clock construction [Kitaev 99]

𝐻 πΎπ‘–π‘‘π‘Žπ‘’π‘£=1βŠ—βˆ‘π‘–=1

π‘šβˆ’1

|01 ⟩ ⟨ 01¿𝑖 ,𝑖+1+βˆ‘π‘–=1

π‘›π‘Ž|1 ⟩ ⟨1|π‘–βŠ—π‘ƒ0+βˆ‘

𝑑=0

π‘šβˆ’1

h𝑑 , 𝑑+1(π‘Š 𝑑)+|0 ⟩ ⟨0|π‘œπ‘’π‘‘βŠ—π‘ƒπ‘š

A -local projector if is j-local

1-local projectors

Page 30: Quantum 3-SAT is QMA 1 -complete

h𝑑 ,𝑑+1 (π‘Š 𝑑 ) |HcompβŠ—S clock=𝐻𝑑 ,𝑑+1(π‘Š 𝑑)

𝑃0|Sclock=|0 ⟩ ⟨ 0∨¿

π‘ƒπ‘š|Sclock=|π‘š ⟩ βŸ¨π‘šβˆ¨ΒΏ

This is achieved β€œterm by term”, by exhibiting projectors (acting on ) and projectors acting on such that

Kitaev’s Hamiltonian is a sum of k-local projectors with for circuits made from 1- and 2-qubit gates.

Kitaev’s construction can be used to prove that quantum 5-SAT is QMA1-hard.

Example part 2: Clock construction [Kitaev 99]

𝐻 πΎπ‘–π‘‘π‘Žπ‘’π‘£=1βŠ—βˆ‘π‘–=1

π‘šβˆ’1

|01 ⟩ ⟨ 01¿𝑖 ,𝑖+1+βˆ‘π‘–=1

π‘›π‘Ž|1 ⟩ ⟨1|π‘–βŠ—π‘ƒ1+βˆ‘

𝑑=0

π‘š βˆ’1

h𝑑 ,𝑑+1(π‘Š 𝑑)+|0 ⟩ ⟨0|π‘œπ‘’π‘‘βŠ—π‘ƒπ‘š

A -local projector if is j-local

1-local projectors

Page 31: Quantum 3-SAT is QMA 1 -complete

The first ingredient in our QMA1-hardness proof is a new clock construction (with different locality from Kitaev’s)…

Page 32: Quantum 3-SAT is QMA 1 -complete

Properties of the new clock construction

π»π‘π‘™π‘œπ‘π‘˜π‘

.

Hc lockSum of 3-local projectors Hamiltonian acting on

7N-3 qubits

Nullspace

ClockHamiltonian

Page 33: Quantum 3-SAT is QMA 1 -complete

Properties of the new clock construction

π»π‘π‘™π‘œπ‘π‘˜π‘

.

Hc lockSum of 3-local projectors Hamiltonian acting on

HcompβŠ—Hclock

7N-3 qubits

Nullspace

ClockHamiltonian

Transitionoperators

act on

A -local projector if U is j-local

Page 34: Quantum 3-SAT is QMA 1 -complete

Properties of the new clock construction

π»π‘π‘™π‘œπ‘π‘˜π‘

.

Hc lockSum of 3-local projectors Hamiltonian acting on

HcompβŠ—Hclock

7N-3 qubits

Nullspace

ClockHamiltonian

Transitionoperators

act on

Greater than/Less than operators 𝐢≀ 𝑖

𝐢≀ 𝑖|Sclock  = βˆ‘1≀ 𝑗<𝑖

|𝐢 𝑗 ⟩⟨ 𝐢 π‘—βˆ¨+ΒΏ12|𝐢𝑖 ⟩⟨ πΆπ‘–βˆ¨ΒΏΒΏ 𝐢β‰₯ 𝑖|Sclock  =

12|𝐢𝑖 ⟩⟨ πΆπ‘–βˆ¨+ βˆ‘

𝑖< 𝑗 ≀𝑁|𝐢 𝑗 ⟩⟨ 𝐢 π‘—βˆ¨ΒΏΒΏ

act on Hclock

A -local projector if U is j-local

1-local projectors

Page 35: Quantum 3-SAT is QMA 1 -complete

3-local 2-local 4-local 2-local

Like Kitaev’s clock construction, ours could be used to emulate Feynman’s Hamiltonian

This isn’t good enough for our purposesβ€”it only shows that quantum 4-SAT is QMA1-hard (already known).

Instead, we use our clock construction in a different way…

1βŠ—π»π‘π‘™π‘œπ‘π‘˜π‘š+ 1 +βˆ‘

𝑖=1

π‘›π‘Ž|1 ⟩⟨ 1βˆ¨π‘–βŠ—πΆβ‰€ 1+βˆ‘

𝑑h𝑑 ,𝑑+1 (π‘Š 𝑑 )+|0 ⟩ ⟨ 0βˆ¨π‘œπ‘’π‘‘βŠ—πΆβ‰₯π‘š+1

Page 36: Quantum 3-SAT is QMA 1 -complete

Two clock registers

We map the verification circuit to a Hamiltonian acting on a Hilbert space with one n-qubit computational register and two clock registers:

2D grid of zero energy clock states

1βŠ—π»π‘π‘™π‘œπ‘π‘˜π‘ βŠ—1+1βŠ—1βŠ—π»π‘π‘™π‘œπ‘π‘˜

𝑁

β€œInitial” β€œFinal”

Page 37: Quantum 3-SAT is QMA 1 -complete

Two clock registers

We map the verification circuit to a Hamiltonian acting on a Hilbert space with one n-qubit computational register and two clock registers:

1βŠ—π»π‘π‘™π‘œπ‘π‘˜π‘ βŠ—1+1βŠ—1βŠ—π»π‘π‘™π‘œπ‘π‘˜

𝑁 +𝐻 π‘π‘Ÿπ‘œπ‘

Every zero energy groundstate encodes the history ofa computation

Page 38: Quantum 3-SAT is QMA 1 -complete

Two clock registers

We map the verification circuit to a Hamiltonian acting on a Hilbert space with one n-qubit computational register and two clock registers:

for 1-local U

1βŠ—π»π‘π‘™π‘œπ‘π‘˜π‘ βŠ—1+1βŠ—1βŠ—π»π‘π‘™π‘œπ‘π‘˜

𝑁 +𝐻 π‘π‘Ÿπ‘œπ‘

is built out of 3-local projectors such as

h 𝑖 ,𝑖+1 (π‘ˆ )βŠ—1

1βŠ—πΆβ‰₯π‘˜βŠ—πΆβ‰€ 𝑗

|0 ⟩ ⟨ 0βˆ¨π‘ŽβŠ—h 𝑖 ,𝑖+1βŠ—11βŠ—h𝑖 , 𝑖+1βŠ—πΆβ‰€ π‘˜

Every zero energy groundstate encodes the history ofa computation

(writing )

Page 39: Quantum 3-SAT is QMA 1 -complete

Two clock registers

We map the verification circuit to a Hamiltonian acting on a Hilbert space with one n-qubit computational register and two clock registers:

1βŠ—π»π‘π‘™π‘œπ‘π‘˜π‘ βŠ—1+1βŠ—1βŠ—π»π‘π‘™π‘œπ‘π‘˜

𝑁 +𝐻 π‘π‘Ÿπ‘œπ‘+βˆ‘π‘–=1

π‘›π‘Ž|1 ⟩ ⟨ 1βˆ¨π‘–βŠ—πΆβ‰€ 1βŠ—πΆβ‰€ 1+|0 ⟩ ⟨ 0βˆ¨π‘œπ‘’π‘‘βŠ—πΆβ‰₯π‘βŠ—πΆβ‰₯𝑁

Enforce initialization of ancillasand correct output of circuit

for 1-local U

is built out of 3-local projectors such as

h 𝑖 ,𝑖+1 (π‘ˆ )

1βŠ—πΆβ‰₯π‘˜βŠ—πΆβ‰€ 𝑗

|0 ⟩ ⟨ 0βˆ¨π‘ŽβŠ—h 𝑖 ,𝑖+1βŠ—11βŠ—h𝑖 , 𝑖+1βŠ—πΆβ‰€ π‘˜ (writing )

Page 40: Quantum 3-SAT is QMA 1 -complete

Two clock registers

We map the verification circuit to a Hamiltonian acting on a Hilbert space with one n-qubit computational register and two clock registers:

1βŠ—π»π‘π‘™π‘œπ‘π‘˜π‘ βŠ—1+1βŠ—1βŠ—π»π‘π‘™π‘œπ‘π‘˜

𝑁 +𝐻 π‘π‘Ÿπ‘œπ‘+βˆ‘π‘–=1

π‘›π‘Ž|1 ⟩ ⟨ 1βˆ¨π‘–βŠ—πΆβ‰€ 1βŠ—πΆβ‰€ 1+|0 ⟩ ⟨ 0βˆ¨π‘œπ‘’π‘‘βŠ—πΆβ‰₯π‘βŠ—πΆβ‰₯𝑁

Enforce initialization of ancillasand correct output of circuit

I will now show you how to construct for the case where the verification circuit is a specific two-qubit gate (warning: gadgetry ahead)…

for 1-local U

is built out of 3-local projectors such as

h 𝑖 ,𝑖+1 (π‘ˆ )

1βŠ—πΆβ‰₯π‘˜βŠ—πΆβ‰€ 𝑗

|0 ⟩ ⟨ 0βˆ¨π‘ŽβŠ—h 𝑖 ,𝑖+1βŠ—11βŠ—h𝑖 , 𝑖+1βŠ—πΆβ‰€ π‘˜ (writing )

Page 41: Quantum 3-SAT is QMA 1 -complete

Zero energy ground states

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

1βŠ—1βŠ—π» π‘π‘™π‘œπ‘π‘˜9 +1βŠ—π»π‘π‘™π‘œπ‘π‘˜

9 βŠ—1

Two clock registers: Example

Page 42: Quantum 3-SAT is QMA 1 -complete

Zero energy ground states is a vertex in the above graph

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

Two clock registers: Example

1βŠ—1βŠ—π» π‘π‘™π‘œπ‘π‘˜9 +1βŠ—π»π‘π‘™π‘œπ‘π‘˜

9 βŠ—1+1βŠ—πΆβ‰₯ 3βŠ—πΆβ‰€1

Page 43: Quantum 3-SAT is QMA 1 -complete

Zero energy ground states

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

is a vertex in the above graph

Two clock registers: Example

+1βŠ—πΆβ‰€ 1βŠ—πΆβ‰₯ 3+1βŠ—πΆβ‰₯ 3βŠ—πΆβ‰€11βŠ—1βŠ—π» π‘π‘™π‘œπ‘π‘˜9 +1βŠ—π»π‘π‘™π‘œπ‘π‘˜

9 βŠ—1

Page 44: Quantum 3-SAT is QMA 1 -complete

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

|πœ™ βŸ©π‘Žπ‘|Ξ“ ⟩=|πœ™ βŸ©π‘Žπ‘ βˆ‘π‘– , π‘—βˆˆ Ξ“

|𝐢𝑖 ⟩∨𝐢 π‘—βŸ© where is a connected component of the graph

Zero energy ground states

Two clock registers: Example

+1βŠ—h12βŠ—πΆβ‰€2+1βŠ—πΆβ‰€ 1βŠ—πΆβ‰₯ 3+1βŠ—πΆβ‰₯ 3βŠ—πΆβ‰€11βŠ—1βŠ—π» π‘π‘™π‘œπ‘π‘˜9 +1βŠ—π»π‘π‘™π‘œπ‘π‘˜

9 βŠ—1

Page 45: Quantum 3-SAT is QMA 1 -complete

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

|πœ™ βŸ©π‘Žπ‘|Ξ“ ⟩=|πœ™ βŸ©π‘Žπ‘ βˆ‘π‘– , π‘—βˆˆ Ξ“

|𝐢𝑖 ⟩∨𝐢 π‘—βŸ© where is a connected component of the graph

Zero energy ground states

Two clock registers: Example

+1βŠ—h12βŠ—πΆβ‰€2+1βŠ—πΆβ‰€ 1βŠ—πΆβ‰₯ 3+1βŠ—πΆβ‰₯ 3βŠ—πΆβ‰€11βŠ—1βŠ—π» π‘π‘™π‘œπ‘π‘˜9 +1βŠ—π»π‘π‘™π‘œπ‘π‘˜

9 βŠ—1

Continuing in this way,we can design a Hamiltonian with ground states described by a more complicated graph…

Page 46: Quantum 3-SAT is QMA 1 -complete

Built out of terms likeh 𝑖 ,𝑖+1βŠ—πΆβ‰€π‘˜

πΆβ‰€π‘˜βŠ— h𝑖 ,𝑖+1𝐢β‰₯ π‘˜βŠ—πΆβ‰€ 𝑗

|πœ™ βŸ©π‘Žπ‘|Ξ“ ⟩=|πœ™ βŸ©π‘Žπ‘ βˆ‘π‘– , π‘—βˆˆ Ξ“

|𝐢𝑖 ⟩∨𝐢 π‘—βŸ© where is a connected component of the graph

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

Zero energy ground states

Two clock registers: Example

Page 47: Quantum 3-SAT is QMA 1 -complete

Commutes with

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

Zero energy ground states

+ΒΏ 0⟩⟨ 0βˆ¨π‘ŽβŠ— (h34+h67 )βŠ—1+ΒΏ1⟩⟨ 1βˆ¨π‘ŽβŠ—1βŠ— (h34+h67 )

Two clock registers: Example

Page 48: Quantum 3-SAT is QMA 1 -complete

sector1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

sector

|0βŸ©π‘Žβˆ¨πœ“ βŸ©π‘|Ξ“ ⟩ is a connected component

|1βŸ©π‘Žβˆ¨πœ“ βŸ©π‘|Ξ“ ⟩ is a connected component

Zero energy ground states Zero energy ground states

+ΒΏ 0⟩⟨ 0βˆ¨π‘ŽβŠ— (h34+h67 )βŠ—1+ΒΏ1⟩⟨ 1βˆ¨π‘ŽβŠ—1βŠ— (h34+h67 )

Two clock registers: Example

Page 49: Quantum 3-SAT is QMA 1 -complete

sector1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

sector

|0βŸ©π‘Žβˆ¨πœ“ βŸ©π‘|Ξ“ ⟩ is a connected component

|1βŸ©π‘Žβˆ¨πœ“ βŸ©π‘|Ξ“ ⟩ is a connected component

Zero energy ground states Zero energy ground states

+ΒΏ 0⟩⟨ 0βˆ¨π‘ŽβŠ— (h34+h67 )βŠ—1+ΒΏ1⟩⟨ 1βˆ¨π‘ŽβŠ—1βŠ— (h34+h67 )

Two clock registers: Example

Page 50: Quantum 3-SAT is QMA 1 -complete

sector1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

|0 βŸ©π‘Ž|πœ“ βŸ©π‘|⟩

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

sector

|0 βŸ©π‘Ž|πœ“ βŸ©π‘|⟩ |1 βŸ©π‘Ž|πœ“ βŸ©π‘|⟩ |1 βŸ©π‘Ž|πœ“ βŸ©π‘|⟩+ others + others

Zero energy ground states Zero energy ground states

+ΒΏ 0⟩⟨ 0βˆ¨π‘ŽβŠ— (h34+h67 )βŠ—1+ΒΏ1⟩⟨ 1βˆ¨π‘ŽβŠ—1βŠ— (h34+h67 )

Two clock registers: Example

Page 51: Quantum 3-SAT is QMA 1 -complete

sector1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

sector

𝑉 𝑏

π‘ˆπ‘ π‘ˆπ‘

𝑉 𝑏

Zero energy ground states Zero energy ground states

+h45 (π‘ˆπ‘)βŠ—1+h45ΒΏ

Acts on first clock register and qubit b

Acts on second clock register and qubit b

[π‘ˆ ,𝑉 ]β‰ 0

+ΒΏ 0⟩⟨ 0βˆ¨π‘ŽβŠ— (h34+h67 )βŠ—1+ΒΏ1⟩⟨ 1βˆ¨π‘ŽβŠ—1βŠ— (h34+h67 )

Two clock registers: Example

Page 52: Quantum 3-SAT is QMA 1 -complete

sector1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 91

2

3

4

5

6

7

8

9

sector

+h45 (π‘ˆπ‘)βŠ—1+h45ΒΏ

𝑉 𝑏

π‘ˆπ‘ π‘ˆπ‘

𝑉 𝑏

Acts on first clock register and qubit b

Acts on second clock register and qubit b

[π‘ˆ ,𝑉 ]β‰ 0

Zero energy ground states Zero energy ground states

+ΒΏ 0⟩⟨ 0βˆ¨π‘ŽβŠ— (h34+h67 )βŠ—1+ΒΏ1⟩⟨ 1βˆ¨π‘ŽβŠ—1βŠ— (h34+h67 )

Two clock registers: Example

Page 53: Quantum 3-SAT is QMA 1 -complete

The point is that every zero energy ground state encodes the history of a two-qubit computation

|πœ™ βŸ©π‘Žπ‘|𝐢1 ⟩|𝐢1 ⟩+…+π‘Š|πœ™ βŸ©π‘Žπ‘βˆ¨πΆ9 ⟩∨𝐢9⟩

where π‘Š=|0 ⟩ ⟨ 0βˆ¨βŠ—π‘‰π‘ˆ+ΒΏ1⟩⟨ 1βˆ¨βŠ—π‘ˆπ‘‰

(An entangling two-qubit unitary for suitably chosen )

+h45 (π‘ˆπ‘)βŠ—1+h45ΒΏ

Acts on first clock register and qubit b

Acts on second clock register and qubit b

[π‘ˆ ,𝑉 ]β‰ 0

+ΒΏ 0⟩⟨ 0βˆ¨π‘ŽβŠ— (h34+h67 )βŠ—1+ΒΏ1⟩⟨ 1βˆ¨π‘ŽβŠ—1βŠ— (h34+h67 )

Two clock registers: Example

This was achieved without using the transition operator

Page 54: Quantum 3-SAT is QMA 1 -complete

Remarks and open questions

β€’ Are there simpler β€œclause-by-clause” reductions for quantum k-SAT? In the classical case there is a clause-by-clause way to map a (k+1)-SAT instance to a k-SAT instance, for .

β€’ Other applications for our new clock construction?

β€’ β€œFrustration-free” gadgetry has the advantage over perturbation theory methods that one can avoid large (system size dependent) terms in the Hamiltonian.


Top Related