+ All Categories
Transcript
Page 1: Radiative Transport Modeling of High Frequency Regional ...rainbow.phys.uconn.edu/files/Sanborn_2015_AGU_Poster.pdf · Radiative Transport Modeling of High Frequency Regional Seismograms

Radiative Transport Modeling of High Frequency Regional Seismograms for Event Discrimination

Christopher J. Sanborn, Steven Walsh, Michele Fitzpatrick, and Vernon F. Cormier Physics Department, University of Connecticut, Storrs

REFERENCES

(1) C.  J.  Sanborn,  et  al.,  Radiative3Dhttp://rainbow.phys.uconn.edu/geowiki/Radiative3D  

(2) Cao,  S.,  and  K.  J.  Muirhead  (1993).  Finite  difference  modelling  of  Lg  blockage,  Geophys.  J.  Int.    

(3) Zhang,  T.  R.,  and  T.  Lay  (1995).  Why  the  Lg  phase  does  not  traverse  oceanic  crust,  B.S.S.A.  

(4) Mendi,  C.  D.,  B.  O.  Ruud,  and  E.  S.  Husebye  (1997).  The  North  Sea  Lg-­‐blockage  puzzle,  Geophys.  J.  Int.  

(5) Sato,  H.,  M.  C.  Fehler,  and  T.  Maeda  (2012).  Seismic  wave  propagation  and  scattering  in  the  heterogeneous  earth  (2nd  Ed.),  Springer.  

(6) Ballard,  S.,  J.  Hipp,  A.  Encarnacao,  C.  Young,  and  B.  Kraus  (2012).  A  Generalized  Earth  Model  Software  Utility  (GeoTess).

ABSTRACT RADIATIVE TRANSPORT

The  differences  between  earthquakes  and  explosions  are  largest  in  the  highest  recordable  frequency  band.  In  this  band,  scattering  of  elastic  energy  by  small-­‐scale  heterogeneity  (less  than   a   wavelength)   can   equilibrate   energy   on   components   of   motion   and   stabilize   the  behavior   of   the   Lg   wave   trapped   in   Earth's   crust.   Larger-­‐scale   deterministic   structure  (greater  than  a  wavelength)  still  assumes  major  control  over  the  efficiency  or  blockage  of  the   Lg   and   the   efficiency   of   other   regional   phases.  We   model   high   frequency   regional  seismic  wave  codas  (2-­‐4  Hz)  for  the  combined  effects  of  the  large-­‐scale  3-­‐D  (deterministic)  and  the  small  scale  (statistical)  structure  with  a  radiative  transport  algorithm.  The  algorithm  propagates   packets   of   body   wave   energy   with   ray   theory   through   a   large-­‐scale  deterministic  3-­‐D  structure,  and   includes   the  effects  of  multiple  scattering  by  small-­‐scale  statistical  structure.    Coda  envelopes  are  synthesized  to  illustrate  sensitivities  to  variations  in  the  parameters  describing  small-­‐scale  statistical  heterogeneity,  intrinsic  attenuation,  Lg  blockage   due   to   large-­‐scale   variations   in   crustal   thickness,   and   the   effects   of   tectonic  release   estimated   from   the   seismograms   of   nuclear   tests.   We   predict   that   event  discriminants  based  on  P/Lg  amplitude  ratios  will  best  separate  earthquake  and  explosion  populations  at  frequencies  2  Hz  and  higher. EARTH STRUCTURE

DETERMINISTIC  STRUCTURE  Examples:  • Changes  in  Moho  depth  • Lateral  variation  in  seismic  velocity

STATISTICAL  STRUCTURE  Example:  • fine-­‐scale  deviations  of  seismic  

velocity,  due  to  material  inhomogeneity,  small  cracks  and  fissures,  etc.    Random  heterogeneity  can  be  parameterized  by  scale-­‐length  and  strength  parameters.  

From  a  modeling  standpoint,  we  divide  Earth  structure  into  two  categories,  based  on  the  approach  used  in  simulation:SOFTWARE TOOL: RADIATIVE3D [1]

FUNDED  BY:    AFRL  Contract  No.  FA9453-­‐15-­‐C-­‐0069,  July  1,  2015  through  June  30,  2018Address  correspondence  to:    [email protected]  or  [email protected]

Radiative3D  is  a  free  and  open  source  radiative  transport  code  for   synthetics   generation   in   3D   Earth   models   with   complex  deterministic  and  statistical  structure.    Features  include:  

Simulates   earthquake   and   explosion   radiation   patterns,  parameterized  via  moment-­‐tensor  elements  Radiative  transport  well-­‐suited  to  high-­‐frequency  synthetics  Complex  3D  model  structure  via  tetrahedral  grid;  planned  support  for  GeoTess  model  format.[6]  Produces  synthetic  envelopes,  travel  time  curves,  or  videos  of  energy  propagation  through  3D  models  Realistic  scattering  patterns  in  full  3D  Realistic   reflection/transmission   handled   at   discontinuous  interfaces,  including  P-­‐wave  /  S-­‐wave  conversion  Modeling   of   intrinsic   attenuation;   separately   model  intrinsic  vs.  scattering  “Q”.  

Homepage:  http://rainbow.phys.uconn.edu/geowiki/Radiative3D

CONCLUSIONS

Radiative  transport  is  a  computationally  efficient  method  of  synthesizing  the  very  high  frequency  (>2.0  Hz)  seismic  wave  field  where  differences  between  explosion  and  earthquake  sources  are  largest.  By   incorporating   both   known   large-­‐scale   and   unknown  small-­‐scale  3-­‐D  structure,  radiative  transport  can  be  used  to  predict   the   behavior   of   ratios   of   regional   phases   along  specific   paths,   the   homogenization   of   source   radiation  patterns  with  range,  and  uncertainties  in  travel-­‐time  picks.  

Future  Work:  Code   validation:   test   predictions   of   Radiative3D   against  those  from  numerical  syntheses  in  3D  structure.  Use  of  Radiative3D  to  model  chosen  paths  for  refinement  of  attenuation  and  scattering  models  in  regions  of  interest.

Radiative  transport   is  a  physical  modeling  technique  that  tracks  energy  transport  as  a  particle  flux,  using  ray  tracing  to  solve  for  the  trajectories  of  millions  of  particles  representing  small  quanta  of  elastic  energy.    RT  is  a  suitable  alternative  to  solving  the  full  wave  equation  when  ray  theory  criteria   are   met,   and   is   particularly   advantageous   for   high   frequency  modeling.    Another   advantage   of   radiative   transport   is   that   scattering  from  small-­‐scale  heterogeneity  can  be  handled  statistically,  rather  than  requiring  ultra-­‐fine  model  meshes  which  would  otherwise  be  needed  to  simulate  the  heterogeneity  deterministically.

SIMULATIONS IN CRUSTAL PINCH/BULGE MODELS [2],[3],[4]

HETEROGENEITY AND SCATTERING MODEL [5]

Scattering  Amplitudes:  

• Scattering is treated as a stochastic process occurring on a mean-free path basis, with deflection angle and conversions determined by probability distributions:

gPP (⌅, ⇥) =l4

4⇤

��XPPr (⌅, ⇥)

��2 P✓2l

�0sin

2

gPS(⌅, ⇥) =

1

�0

l4

4⇤

��XPS� (⌅, ⇥)

��2 P✓

l

�0

q1 + �2

0 � 2�0 cos⌅

gSP(⌅, ⇥) = �0

l4

4⇤

��XSPr (⌅, ⇥)

��2 P✓

l

�0

q1 + �2

0 � 2�0 cos⌅

gSS(⇤, �) =l4

4⇥

⇣��XSS⇥ (⇤, �)

��2 +��XSS

� (⇤, �)��2⌘P

✓2l sin

2

von  Kármán  Spectrum:  

• Inhomogeneities exist at a range of scale lengths.

• Corner frequency determined by a.

• Rapid fall-off after 1/a, determined by kappa.

• Power spectrum affects scattering deflection angle and P/S conversion.

κ = 1.0 0.5 0.3

Dependence  on  Parameters:

Above:   affect   of   scattering   parameters   on   two   scattering   characteristics:   mean   free   path,   or   average  distance  between   scattering   events,   and  dipole   projection,  which   is   a  measure   of   scattering  directionality  (positive  values  indicate  dominant  forward  scattering,  negative  indicates  dominant  back-­‐scattering.)  Below  left:  von  Kármán  spectrum  for  various  kappa  values  on  a  log-­‐log  scale.  Below  right:  illustration  of  a  random  walk,   with   scattering   events   deflecting   phonon   paths   from   origination   at   source   to   collection   at   receiver.    Bottom:  simulated  perturbation  fields  for  various  kappa  values  (scale-­‐length  a  held  fixed).  

Characterizing  Media:  

• Material heterogeneity treated as perturbation against locally-uniform velocity and density background

• Four parameters describing Scattering Media:

• eps: average fractional velocity perturbation size (dV/V0)

• nu: ratio of density-perturbation to velocity-perturbation

• a: scale length, or auto-correlation “corner”

• kappa: von Kármán parameter

PINCH AND BULGE STRUCTURES

HETEROGENEITY SPECTRUM AND CODA PRODUCTION

Pinch  with  Basin Pinch  without  Basin Crust  BulgeFlat  Crust

Four  test  cases:  (a)  Flat  crust,  (b)  crust  pinch  with  sedimentary  overlay  and  mantle  upwelling,  (c)  crust  pinch  without  sedimentary  overlay,  and  (d)  crust  bulge  protruding  into  mantle.  

Travel  time  curves  (above)  illustrate  disruption  of  Lg  and  Pg  energy  in  each  pinch/bulge  scenario.  

Energy  curves  (right)  give  insight  into  effects  of  structure.    These  show  time-­‐integrated  energy  as  a  function  of  distance  for  each  test  case.  

Pinch   with   sedimentary   basin   (case   b)   was   associated   with   the  greatest  energy  reduction  at  long  range  (950  km).  

Bulge   structure   was   associated   with   negligible   energy   reduction   at  950  km  range.  

Pinch  structures  were  associated  with   local  amplification  of  energy  signal  in  the  pinched  region.  Bulge  structure  was  associated  with  local  attenuation.

PINCH VS. SCATTERING EFFECTS ON LG

Four  test  cases:  (a)  Flat  crust,  (b)  crust  pinch  with  sedimentary  overlay  and  mantel  upwelling,  (c)  flat  crust  with  anomalous  high  scattering  in  localized  region  (d)  crust  pinch  and  high-­‐scattering  in  pinch  region.  

Lg   effects  were   isolated   through   use   of   strike-­‐slip   focal  mechanism  and  choice  of  Lg-­‐favoring  azimuth  for  seismometer  array.  

Travel  time  curves  illustrate  disruption  of  Lg  energy  in  each  scenario:

Each  test  case  (b,  c,  and  d)  was  associated  with  a  reduction  of  energy  at  long  range  compared  to  baseline  test  case  (a).  

Scattering  structure  (case  c)  results  in  substantial  attenuation  but   does   not   visibly   disrupt   the   envelope   shape   beyond   the  scattering  region.  

Pinch  structure  (case  b)  attenuates  and  disrupts  the  envelope  shape  beyond  the  pinch  region.  

Scattering  structure   (case  c)  results   in  visible  back-­‐scatter   in  travel  time  curve  (c).  

Both  pinch  and  scatter  structures  were  associated  with  local  amplification  of  energy  signal  in  the  variation  region,  followed  (in  cases  b  and  d)  by  a  correction  at  the  end  of  the  region.

Travel  time  curves:  Color  density  indicates  energy  amplitude  (square-­‐root  of  energy)  as  a  fraction  of  a  distance-­‐dependent  reference  curve  determined  by  a  power-­‐law  fit  to  the  baseline  (non-­‐pinched,  non-­‐scattering)  test  case.    Reference  curve  (dashed  line)  and  time-­‐integrated    energy  (solid  line)  are  shown   as   overlay   plots,   along   with   related   statistics,   on   a   4th-­‐root   scale   to   accommodate  compressed  vertical  space.    (Energy  curves  are  shown  in  greater  detail  on  a  logarithmic  scale  in  the  Energy  Comparison  figure  at  right.)    Crust  variation  region  is  outlined  by  dashed  vertical  demarcation  lines.    Major  regional  phase  velocities  are  indicated  via  velocity  slope  lines.  

Energy   curves:    Each   series   represents   time-­‐integrated   energy   collected   at   a   surface  seismometer  as  a  function  of  distance  from  source  event  for  a  given  test  condition.    The  series   identified   as   “baseline”   is   the   flat-­‐crust,   non-­‐scattering   condition   (case   a).    The  dashed  line  series  is  a  power-­‐law  fit  to  the  baseline  condition  that  serves  as  a  color-­‐density  reference  for  the  travel  time  curves.    The  distance  range  encompassing  the  crust  variation  region  is  demarcated  by  vertical  dashed  lines.

Non-­‐Pinched  +  Scattering Pinched  +  Scattering

PinchedNon-­‐Pinched

Non

-­‐Sca

ttering

High  Sc

atter  Z

one

(a) (b)

(d)(c)

Varying  heterogeneity  parameters  in  simple  layered  Earth  models  illustrates  competing  effects  of  mean  free  path  and  dipole   projection   measures   on   coda   production   from  multiple  scattering.  

E.g.   corner   scale   a:   (figure   panel   right)   –   Increasing   a  decreases   mean   free   path,   thereby   increasing   rate   of  scatter  events.    

Increasing   rate   of   scatter   events   generally   increases   coda  production.  However,  increasing  a  also  increases  scattering  amplitude  in  the  forward-­‐scattering  direction,  as  indicated  by  increased  dipole  projection  measure.    (See  “Dependence  on  Parameters,”  panel  above.)  

This   means   each   individual   scatter   event   is   less  deflectionary,   reducing   the   cumulative   effect   of   multiple  scattering   on   phonon   trajectory,   and   reducing   coda  production.  

This   results   in   a   “sweet   spot”   at  which   coda   production   is  maximized.    Sweet   spot  will  occur   in   the  neighborhood  of  a  ≈  λ,  where  λ  is  the  wavelength.

“Short”(a = 0.1 km)

“Long”(a = 12 km)

“Just Right”(a = 1.0 km)

Long

er                                        Co

rner    S

cale    a                                        Sh

orter

t  =  27  sec. t  =  56  sec. t  =  83  sec. t  =  114  sec. t  =  129  sec. t  =  195  sec.

Using  Radiative3D,  we  simulated  crust  pinch,  crust  bulge,  and  enhanced  heterogeneity  structures   in  a  3D  simplified  crust  and  upper  mantle  model  consisting  of  a   low-­‐velocity   sediments   layer,  a   crust   layer,  a  high-­‐gradient  Moho  transition  layer,  and  upper  mantle  structure  based  on  AK-­‐135.  

Crust   variation   zone,   100   km   wide,   defined   between   distance   ranges  370  km  to  470  km  from  source  event.    (Tapering  for  pinch/bulge  structures  begins  at  310  km  and  normal  thickness  resumes  at  530  km.)  

Variation   zone   is   either:   a   pinch   or   bulge   in   the   crust   layer,   a   zone   of  anomalously  high  heterogeneity  (scattering  region),  or  both.  

Model  layers  follow  Earth-­‐like  curvature,  and  include  intrinsic  attenuation  and  mild  background  heterogeneity.  

Source  event  is  chosen  as  a  vertical  strike-­‐slip  focal  mechanism  in  order  to  isolate  Lg  and  Pg  effects  through  azimuth  selection  of  seismometer  array.  

Simulations   for  a  given  model   setup,   source   type,  and   frequency  produce  three-­‐component   envelopes   at   each   seismometer   location,   and   travel  time  curves  for  each  array.  

50-­‐Million   phonons   per   run.     Approx.   2–4   hours   execution   time,   single-­‐threaded,  on  Intel  Core  i7  desktop  workstation  per  run.

Crust  Pinch  Model:  (Profile  View)

Earthquake  Time-­‐Series:

Pg

Lg

Pg

Lg

Map  View  and  Source  Mechanism:

Pinch/Bulge  Model:  The   test   model   is   fan-­‐shaped,  azimuthally   symmetric,   and   follows  Earth   curvature.   The   pinch,   bulge,   or  high-­‐scattering   region   is   shown   as   a  shaded,  arc-­‐shaped  band.    Source   location   is  indicated   by   the   red   dot.   Seismometer  placement,   gather   area,   and   orientation   (RTZ)   is  indicated  by  the  green  disc  arrays.

The  time  series  below  shows  phonon  propagation  through  a  crust  pinch  Earth  model  and  illustrates  how  wave  fronts  evolve  with  time.    Red  markers  represent  P-­‐phonons  and  blue  markers  represent  S-­‐phonons.

Modeling  Approach:

E-POSTER DOWNLOAD goo.gl/ogzFKR

Top Related