+ All Categories
Transcript
Page 1: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

Lundstrom ECE 305 S16

ECE-305: Spring 2016

Solar Cell Fundamentals

Professor Mark Lundstrom Electrical and Computer Engineering

Purdue University, West Lafayette, IN USA [email protected]

3/22/16

Pierret, Semiconductor Device Fundamentals (SDF) pp. 356-361

Page 2: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

Solar cells

2

modern Si solar cell

Chapin, Pearson, Fuller, 1954

http://www.bell-labs.com/org/physicalsciences/timeline/span10.html#

Page 3: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

solar cells today

3 SunPower http://us.sunpower.com

Page 4: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

recombination and dark current

4

minority carriers injected across junction

Fn FPqVA

− VA +

ID

Lundstrom ECE 305 S16 Every time a minority electron recombines on the p-side, one electron flows in the external current.

Page 5: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

generation and current

5

minority carriers collected by junction

Fn FPqVA

IL < 0

hf > EG

Lundstrom ECE 305 S16

Every time a minority electron is generated and collected by the PN junction, one electron flows in the external current.

Page 6: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

light and dark current

6

VD

I mA( )ID = I0 e

qVA /kBT −1( )

≈ 0.7V

Lundstrom ECE 305 S16

IL < 0photocurrent

dark current

hf > EG

Page 7: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

solar cell operation

7

1) Light generates e-h pairs

EF

Lundstrom ECE 305 S16

Page 8: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

solar cell operation

8

2) PN junction collects e-h pairs

EF

3) Current flows through load IL < 0

RL

VL +−

forward bias across PN junction develops

ID > 0

Lundstrom ECE 305 S16

Page 9: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

solar cell operation

9

4) Forward bias reduces current

FpFn qVD

Lundstrom ECE 305 S16

5) IV characteristic is a superposition

ITOT = I0 eqVD kBT −1( )− ISC

light-generated current

diode (dark) current

Page 10: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

IV characteristic

10

PD = ITOTVD < 0

VD

ID

ITOT = I0 eqVD kBT −1( )− ISC

−ISC

Pout = −ISCVD = 0

VOC

Pout = ITOTVOC = 0

Pout = ImpVmp = −ISCVOCFF

η = PoutPin

= ISCVOCFFPin

ID = I0 eqVD kBT −1( )

Page 11: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

11

solar cell efficiency

η = PoutPin

= ISCVOCFFPin

1) Short circuit current 2) Open-circuit voltage 3) Fill factor

Lundstrom ECE 305 S16

Page 12: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

12

1) Maximum short circuit current

Example: Silicon Eg = 1.1eV. Only photons with a wavelength < 1.13 µm will be absorbed.

solar spectrum (AM1.5G)

Pin = 100 mW cm2

λ < hcEG

JSC max = 44 mA cm2

Page 13: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

13

2) Open-circuit voltage

ITOT = I0 eqV /kBT −1( )− ISC

Lundstrom ECE 305 S16

ITOT = 0 = I0 eqVOC /kBT −1( )− ISC

I0 eqVOC /kBT −1( ) = ISC

VOC ≈ 0.7 V

VOC = kBTqln ISC

I0

⎛⎝⎜

⎞⎠⎟

Page 14: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

Δn 0( ) = ni2 NA( ) eqVA kBT −1( )

14

Increasing VOC

0

Δn x( )

Wp << Ln

WP

n+

p-Si

I0 = qADn

WP

ni2

NA

⎛⎝⎜

⎞⎠⎟

Δn x( )

Lundstrom ECE 305 S16

Page 15: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

15

3) Efficiency

Lundstrom ECE 305 S16

η = PoutPin

= ISCVOCFFPin

η ≈44 ×10−3A/cm2( )× 0.7 V× 0.8

100 ×10−3 V/cm2

≈ 25%

VD

ID

−ISC

VOC

ID = I0 eqVD kBT −1( )

Page 16: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

High efficiency Si solar cell

Martin Green Group UNSW – Zhao, et al., 1998 (24.5% at 1 sun) 16

370 − 400 µm

η = PoutPin

= ISCVOCFFPin

VOC = kBTqln ISC

I0

⎛⎝⎜

⎞⎠⎟

FF = 0.81

JSC = 41.5 mA/cm2 94%( )VOC = 0.703

Page 17: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

17

JSC – VOC Trade-off

1) Smaller bandgaps give higher short circuit current

2) Larger bandgaps give higher open-circuit voltage

3) For the given solar spectrum, an optimum bandgap exists. EG

ηJSC ↓VOC ↓

Lundstrom ECE 305 S16

“Shockley-Queisser Limit”

η ≈ 34%

VOC = kBTqln ISC

I0

⎛⎝⎜

⎞⎠⎟

I0 ∝ ni2

Page 18: Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering

18

solar cell summary

1) Light is absorbed and produces e-h pairs 2) PN junctions separate e-h pairs and collect the carriers. 3) Current flow in external circuit produces a FB voltage and

the FB diode current reduces the total current. 4) Power out is ISCVOC FF. 5) Unlike integrated circuit chips, where the value added

comes from the design/system, manufacturing costs are critical in PV.

Lundstrom ECE 305 S16


Top Related