+ All Categories
Transcript
Page 1: STSM report - skin-laser-imaging.org

STSM report

STSM Application number: COST-STSM-BM1205-�����

STSM Grantee: 3URI��,JRU�0HJOLQVNL

STSM title: 7KH�QHZ�RSWLFDO�GLDJQRVWLF�PRGDOLW\�±�WKH�UROH�RI�QXFOHDU�VL]H�LQ�FHOO�GLIIHUHQWLDWLRQ�

Home Institution: University of Oulu, Finland

Host Institution: :HL]PDQQ�,QVWLWXWH�RI�6FLHQFH��,VUDHO

STSM period: ��.0�.201� to ��.0�.201�

STSM purpose: To� WU\�DQG�WHVW�D�QHZ�RSWLFDO�PRGDOLW\�DQG�WR�SUHSDUH�D�MRLQW�VFLHQWLILF�SXEOLFDWLRQ�

Description of the work carried out during the STSM: In 2ptoelectronics and Measurement 7echniques /aboratory of the University of Oulu a QHZ�method for�non�invasive diagnostic of cancerous and non-cancerous tissue�sDPSOHV E\�XVLQJ�circularly polarized light�KDV� EHHQ� LQWURGXFHG. An alternative approach of VWDWH�RI�WKH�DUW� RSWLFDO� LPDJLQJ� PRGDOLWLHV� for WLVVXH�GLDJQRVLV� DQG� cancer detection DUH� DYDLODEOH� LQ� 'r.   9LDFKHVODY� .DOFKHQNR’s   8QLW   at   the   :HL]PDQQ�,QVWLWXWH�RI�6FLHQFH�(,VUDHO).

,JRU� 0HJOLQVNL� YLVLWHG� WKH� :HL]PDQQ� ,QVWLWXWH� RI� 6FLHQFH� DQG� MRLQWO\� ZLWK� 'U�� .DOFKHQNR� ZRUNHG�RQ� WKH� YDOLGDWLRQ� RI� WKH� SRODUL]DWLRQ� EDVHG� WHFKQLTXH� DQG� LWV� WHVWLQJ� WR� PHDVXUH� WKH� QXFOHDU� VL]H� RI�FHOOV� ZLWK� FDQFHU�� SUH�FDQFHU� DQG� QRQ�FDQFHU�� ,Q� DGGLWLRQ� 3URI�� 0HJOLQVNL� DQG� 'U� .DOFKHQNR�GHYHORSHG� D� QHZ� WHFKQLTXH� IRU� KLJK� TXDOLW\� SHUIXVLRQ� LPDJLQJ� �LQ� WHUPV� RI� :*�� DFWLYLWLHV���

%DVHG�RQ�WKH�UHVXOWV�RI�FROODERUDWLRQ�D�MRLQW�SXEOLFDWLRQ�ZLOO�EH�SUHSDUHG�SUHSDUHG�DQG�SXEOLVKHG�VKRUWO\��7KH�UHVXOWV�RI�WKH�MRLQW�FROODERUDWLRQ�ZLOO�EH�DOVR�SUHVHQWHG�DW�WKH�XSFRPLQJ�FRQIHUHQFHV�DQG�&267������PHHWLQJV��

0XWXDO�EHQHILWV�IRU�WKH�+RPH�DQG�+RVW�LQVWLWXWLRQV:

%RWK�+RVW� DQG�+RPH� LQVWLWXWLRQV� DJUHH� WR� FRQWLQXH� FROODERUDWLRQ��0RUH� WLVVXH� VDPSOHV�ZLOO� EH� WHVWHG� LQ�2XOX�DQG�ZLOO�EH�PHVXUHG� LQGHSHQGHQWO\�E\�WZR�GLIIHUHQW�H[SHULPHQWDO� V\VWHPV�LQ�WKH�:HL]PDQQ�,QVWLWXWH�RI�6FLHQFH�� %DVHG� RQ� WKHVH� VWXGLHV�ZH� H[SHFW� D�GHYHORSPHQW� RI� D� QHZ� H[SHULPHQWDO� V\VWHP� WKDW� ZLOO�EH� DEOH� WR� SUHGLFW� WKH� FKDQJHV� RI� LQ�FDQFHURXV� DQG� QRQ�FDQFHURXV� WLVVXHV�EDVHG�RQ�WKH�FKDQJHV�RI�WKH�QXFOHDU�VL]H�LQ�WKH�FHOOV�� 3RWHQWLDOO\� D� QHZ� GLDJQRVWLF� PRGDOLW\� LV� YHU\� OLNHO\� FDQ�EH�GHYHORSHG����

Page 2: STSM report - skin-laser-imaging.org

6760�5(3257��&RQWG�

Figure�1�shows�the�experimental�setup.�Circular�polarized�light�is�produced�using�a�635�nm�laser�diode�(Thorlabs,�Inc.,�USA)�and� focused�onto� the�surface�of� the�sample.�Scattered� light� is�collected�at�a�distance� (d�= 1�mm)�away� from� the�point� of� incidence� and� is� then� passed� through� an� analyzer� to�measure� its� state� of� polarization.� The� source-detector�separation�d�plays�an�important�role�in�the�observation�of�circular�polarization.�With�d�= 0,�the�detected�signal�is�likely�to�be�saturated�by�light�in�the�cross-polarized�state.�This�is�due�to�an�overwhelming�percentage�of�single�backscattering�at�the�sub-surface�area.�The�contribution�of�the�co-polarized�component�grows�with�the�increase�of�d.�In�order�to�reduce�the�uncertainty�in�the�source-detector�separation�d�and�to�avoid�surface�refections,�two�standard�microscope�objectives�have�been� used� to� deliver� incident� laser� radiation� and� detect� scattering� light� respectively.� These� objectives� have� been�implemented�into�the�setup�at�angles�45◦± 2◦ and�10◦± 2◦ (see�Fig.1)�which�are�chosen�intentionally,�as�the�physical�size�of� the�objectives� forbids� them� from�maintaining�a�normal�angle� to� the�surface�of� the�scattering�medium.�The�effective�path-lengths�distribution�of� the�photons�migrated�from�source� to�detector�within� the�medium,�shown�in�Fig.1,�has�been�simulated�by�Monte�Carlo�method��GHYHORSHG�E\�3URI��0HJOLQVNL��Ior�the�actual�parameters�of�the�experimental�system.

Figure�1.�Schematic�presentation�of� the�experimental� setup.� The�circular�polarized� light� is�focused�onto� the�sample�surface.� Back-scattered�light�is�collected�at�distance�d�away�from�the�point�of�incidence,�then�its�state�of�polarization�is�analyzed.

All� the� experiments� have� been� conducted� using� WLVVXH� VDPSOHV� ZLWK� WKH� FRQILUPHG� QXFOHDU� VL]H� RI� FHOOV��LQFOXGLQJ� FDQFHURXV�� SUH�FDQFHURXV� DQG� QRQ�FDQFHURXV.� The� results�of� the�polarization�of� the�back-scattered� light�observed�for�each�sample�are�presented�below.Figure�2�presents�the�intensity�of�circular�polarized�laser�light�backscattered�from�the�FHOOV� FXOWXUHV.�The� results� clearly�demonstrate�a�shift�of�the�detected�intensity�of�the�circular�polarized�optical�radiation�backscattered�from�the�the�different�FHOOV� FDOWXUHV.� It� is�also� clearly� seen� that�with� the� increasing� QXFOHDU� VL]H� the�polarization� state� of�backscattered� light�eventually�changes� its�helicity,� as� this� corresponds� to� the� relative�positions�of� the�minima.�

Fig��.�Poincare�sphere�plots�the�SRVLWLRQV�RI�WKH�polarization�vectors�FRUUHVSRQGLQJ�WR�WKH�LQFUHDVH�RI�QXFOHDU�VL]H�

TR� FRQFOXGH�� WKH� GHYHORSHG� system� is� capable� of� detecting� small� changes� LQ� the� scattering� anisotropy� of� VFDWWHULQJ�particles,�VXFK�DV�QXFOHDU�RI�WKH�FHOOV��7his�should�have�obvious�applications�in�the�FDQFHU�GLDJQRVLV,�e.g.�as�the�detection�of�QXFOHDU�VL]H�LQFUHDVH�DW�WKH�SUH�FDQFHURXV�VWDJH.

Page 3: STSM report - skin-laser-imaging.org

STSM report

STSM Application number: COST-STSM-BM1205-�����

STSM Grantee: 3URI��,JRU�0HJOLQVNL

STSM title: 7KH�QHZ�RSWLFDO�GLDJQRVWLF�PRGDOLW\�±�WKH�UROH�RI�QXFOHDU�VL]H�LQ�FHOO�GLIIHUHQWLDWLRQ�

Home Institution: University of Oulu, Finland

Host Institution: :HL]PDQQ�,QVWLWXWH�RI�6FLHQFH��,VUDHO

STSM period: ��.0�.201� to ��.0�.201�

STSM purpose: To� WU\�DQG�WHVW�D�QHZ�RSWLFDO�PRGDOLW\�DQG�WR�SUHSDUH�D�MRLQW�VFLHQWLILF�SXEOLFDWLRQ�

Description of the work carried out during the STSM: In 2ptoelectronics and Measurement 7echniques /aboratory of the University of Oulu a QHZ�method for�non�invasive diagnostic of cancerous and non-cancerous tissue�sDPSOHV E\�XVLQJ�circularly polarized light�KDV� EHHQ� LQWURGXFHG. An alternative approach of VWDWH�RI�WKH�DUW� RSWLFDO� LPDJLQJ� PRGDOLWLHV� for WLVVXH�GLDJQRVLV� DQG� cancer detection DUH� DYDLODEOH� LQ� 'r.   9LDFKHVODY� .DOFKHQNR’s   8QLW   at   the   :HL]PDQQ�,QVWLWXWH�RI�6FLHQFH�(,VUDHO).

,JRU� 0HJOLQVNL� YLVLWHG� WKH� :HL]PDQQ� ,QVWLWXWH� RI� 6FLHQFH� DQG� MRLQWO\� ZLWK� 'U�� .DOFKHQNR� ZRUNHG�RQ� WKH� YDOLGDWLRQ� RI� WKH� SRODUL]DWLRQ� EDVHG� WHFKQLTXH� DQG� LWV� WHVWLQJ� WR� PHDVXUH� WKH� QXFOHDU� VL]H� RI�FHOOV� ZLWK� FDQFHU�� SUH�FDQFHU� DQG� QRQ�FDQFHU�� ,Q� DGGLWLRQ� 3URI�� 0HJOLQVNL� DQG� 'U� .DOFKHQNR�GHYHORSHG� D� QHZ� WHFKQLTXH� IRU� KLJK� TXDOLW\� SHUIXVLRQ� LPDJLQJ� �LQ� WHUPV� RI� :*�� DFWLYLWLHV���

%DVHG�RQ�WKH�UHVXOWV�RI�FROODERUDWLRQ�D�MRLQW�SXEOLFDWLRQ�ZLOO�EH�SUHSDUHG�SUHSDUHG�DQG�SXEOLVKHG�VKRUWO\��7KH�UHVXOWV�RI�WKH�MRLQW�FROODERUDWLRQ�ZLOO�EH�DOVR�SUHVHQWHG�DW�WKH�XSFRPLQJ�FRQIHUHQFHV�DQG�&267������PHHWLQJV��

0XWXDO�EHQHILWV�IRU�WKH�+RPH�DQG�+RVW�LQVWLWXWLRQV:

%RWK�+RVW� DQG�+RPH� LQVWLWXWLRQV� DJUHH� WR� FRQWLQXH� FROODERUDWLRQ��0RUH� WLVVXH� VDPSOHV�ZLOO� EH� WHVWHG� LQ�2XOX�DQG�ZLOO�EH�PHVXUHG� LQGHSHQGHQWO\�E\�WZR�GLIIHUHQW�H[SHULPHQWDO� V\VWHPV�LQ�WKH�:HL]PDQQ�,QVWLWXWH�RI�6FLHQFH�� %DVHG� RQ� WKHVH� VWXGLHV�ZH� H[SHFW� D�GHYHORSPHQW� RI� D� QHZ� H[SHULPHQWDO� V\VWHP� WKDW� ZLOO�EH� DEOH� WR� SUHGLFW� WKH� FKDQJHV� RI� LQ�FDQFHURXV� DQG� QRQ�FDQFHURXV� WLVVXHV�EDVHG�RQ�WKH�FKDQJHV�RI�WKH�QXFOHDU�VL]H�LQ�WKH�FHOOV�� 3RWHQWLDOO\� D� QHZ� GLDJQRVWLF� PRGDOLW\� LV� YHU\� OLNHO\� FDQ�EH�GHYHORSHG����

Page 4: STSM report - skin-laser-imaging.org

6760�5(3257��&RQWG�

Figure�1�shows�the�experimental�setup.�Circular�polarized�light�is�produced�using�a�635�nm�laser�diode�(Thorlabs,�Inc.,�USA)�and� focused�onto� the�surface�of� the�sample.�Scattered� light� is�collected�at�a�distance� (d�= 1�mm)�away� from� the�point� of� incidence� and� is� then� passed� through� an� analyzer� to�measure� its� state� of� polarization.� The� source-detector�separation�d�plays�an�important�role�in�the�observation�of�circular�polarization.�With�d�= 0,�the�detected�signal�is�likely�to�be�saturated�by�light�in�the�cross-polarized�state.�This�is�due�to�an�overwhelming�percentage�of�single�backscattering�at�the�sub-surface�area.�The�contribution�of�the�co-polarized�component�grows�with�the�increase�of�d.�In�order�to�reduce�the�uncertainty�in�the�source-detector�separation�d�and�to�avoid�surface�refections,�two�standard�microscope�objectives�have�been� used� to� deliver� incident� laser� radiation� and� detect� scattering� light� respectively.� These� objectives� have� been�implemented�into�the�setup�at�angles�45◦± 2◦ and�10◦± 2◦ (see�Fig.1)�which�are�chosen�intentionally,�as�the�physical�size�of� the�objectives� forbids� them� from�maintaining�a�normal�angle� to� the�surface�of� the�scattering�medium.�The�effective�path-lengths�distribution�of� the�photons�migrated�from�source� to�detector�within� the�medium,�shown�in�Fig.1,�has�been�simulated�by�Monte�Carlo�method��GHYHORSHG�E\�3URI��0HJOLQVNL��Ior�the�actual�parameters�of�the�experimental�system.

Figure�1.�Schematic�presentation�of� the�experimental� setup.� The�circular�polarized� light� is�focused�onto� the�sample�surface.� Back-scattered�light�is�collected�at�distance�d�away�from�the�point�of�incidence,�then�its�state�of�polarization�is�analyzed.

All� the� experiments� have� been� conducted� using� WLVVXH� VDPSOHV� ZLWK� WKH� FRQILUPHG� QXFOHDU� VL]H� RI� FHOOV��LQFOXGLQJ� FDQFHURXV�� SUH�FDQFHURXV� DQG� QRQ�FDQFHURXV.� The� results�of� the�polarization�of� the�back-scattered� light�observed�for�each�sample�are�presented�below.Figure�2�presents�the�intensity�of�circular�polarized�laser�light�backscattered�from�the�FHOOV� FXOWXUHV.�The� results� clearly�demonstrate�a�shift�of�the�detected�intensity�of�the�circular�polarized�optical�radiation�backscattered�from�the�the�different�FHOOV� FDOWXUHV.� It� is�also� clearly� seen� that�with� the� increasing� QXFOHDU� VL]H� the�polarization� state� of�backscattered� light�eventually�changes� its�helicity,� as� this� corresponds� to� the� relative�positions�of� the�minima.�

Fig��.�Poincare�sphere�plots�the�SRVLWLRQV�RI�WKH�polarization�vectors�FRUUHVSRQGLQJ�WR�WKH�LQFUHDVH�RI�QXFOHDU�VL]H�

TR� FRQFOXGH�� WKH� GHYHORSHG� system� is� capable� of� detecting� small� changes� LQ� the� scattering� anisotropy� of� VFDWWHULQJ�particles,�VXFK�DV�QXFOHDU�RI�WKH�FHOOV��7his�should�have�obvious�applications�in�the�FDQFHU�GLDJQRVLV,�e.g.�as�the�detection�of�QXFOHDU�VL]H�LQFUHDVH�DW�WKH�SUH�FDQFHURXV�VWDJH.


Top Related