+ All Categories
Transcript

Pamela Esprívalo Harrell 145

Volume 19, Number 1, Spring 2010

Teaching an IntegratedScience Curriculum:

Linking Teacher Knowledgeand Teaching Assignments

Pamela Esprívalo HarrellUniversity of North Texas

Issues in Teacher Education, Spring 2010

Introduction

Anumberoffactorsaffectsuccessfulimplementationofanintegratedscience curriculum, including various outputs and inputs related toteacherqualitysuchasprofessionaldevelopmentexperiences,adequateplanningperiods,andadequatecontentpreparationofteacherswithregard to content knowledge associated with the curriculum taught(Huntley,1998;Knudson,1937;Leung,2006;Palmer,1991;SouthernRegionEducationBoard,1998).Otherresearchershaveexaminedtherelationshipbetweenteacherqualityandteacherretention(Ingersoll,2000; National Center for Education Statistics, 1996), and nationalorganizations have defined minimum content preparation standards to improveteachingandlearning(InterstateNewTeacherAssessmentandSupportConsortium[ITASC],2008;NationalCouncilforAccreditationofTeacherEducators[NCATE],2007;NationalMiddleSchoolAssociation[NMSA],2008).Thisstudyexaminesfactorsrelatedtoteacherqualityinputs(i.e.,coursework,gradepointaverage,andteachertestscores).Specifically, the focus is on teacher knowledge related to eighth grade science inTexas,whichusesan interdisciplinarysciencecurriculumconsistingoftopicsinlifescience,chemistry,physics,andEarthscience(TexasEducationAgency,2005).Toprovideacontextforviewingthe

Pamela Esprivale Harrell is an associate professor in the College of Education at the University of North Texas, Denton, Texas. Her e-mail address is [email protected]

Teaching an Integrated Science Curriculum146

Issues in Teacher Education

data,teacherdemographicsarepresentedforgender,ethnicity,yearsof teaching experience, anddegreemajor.Based on thesevariables,teacherknowledgefactorsintheliterature,includingpedagogicalcon-tentknowledge,arediscussed.

Theoretical Foundation and Evolutionfor an Integrated Science Curriculum Integratedcurriculumhasreceivedconsiderablesupportwithregardtoprovidingmeaningfullearningexperiencesthatenhanceknowledgeandconceptualunderstanding(Aikin,1942;Daniels,1991;Friend,1984;Jacobs,1989;Leung,2006;Lipson,Valencia,Wixson,&Peters,1993;Vars,1991;Yager&Lutz,1994).Therationaleforimplementationofanintegratedcurriculumistoshowhowknowledgeacrossdisciplinesisinterrelatedinanaturalworld,ascomparedtoaprogramutilizingsingle-subject courses that narrow the learner’s perspective and areless efficient in the learning process (Vars, 1991; Wolf & Brandt, 1998; Yager&Lutz,1994). What all integrated curricula have in common is an underlyingtheoreticalfoundationrootedinGestaltpsychology.ThefocusofGe-staltpsychologyistwo-fold:examiningthelearnerasanorganicwholeandengagingtheindividualinfocusedlearningexperiencesthatarepurposeful and meaningful (Benjafield, 1996). Further, learning is not anadditiveaffairinwhichconceptsarelaiddownonebyone;ratheritisadevelopmentalprocess,characterizedbycomplexandsynergisticadvancesinwhichinteractionsbetweenthelearnerandtheenvironmentenableintellectualrestructuringandtransformationastheyrelatetothegrowthanddevelopmentoftheindividual. Becausepsychologicaltheoryislinkedtoeducationalpractice,itisexpectedthatthecurriculumwillprovideopportunitiesforthelearnertointegrateknowledge,resultingintheenhancementofthetotallearn-ingexperience.However,itisimportanttorecognizethatintegration takesplaceinternallyandthatanintegratedcurriculumdoesnotauto-maticallycauseintegrationwithinanindividual.Rather,totheextentthatthecurriculum,asanexternal factor, facilitatesassimilationofknowledge,theindividualwillrespondwithintellectualrestructuringandtransformation. Considerableliteratureexistsoneducationalreformsinvolvingcur-riculumintegration.Historically,theprogressivemovementofthe1930sinfluenced science education, organizing science courses around big ideas. A Program for Science Teaching (NationalSocietyfortheStudyofEducation,1932)andScience for General Education(AmericanEducationFellowship,1938)involvessciencecurriculathatincludedfactualknowledgeabout

Pamela Esprívalo Harrell 147

Volume 19, Number 1, Spring 2010

scienceaswellasinvolvedstudentsintheprocessofscience.Thisearlycurriculumreformsoughttofocussciencelearninginanaturalworldcontextasopposedtowithinstrictcontentdisciplinelines.Thefocuswaslearningscienceacrossdisciplinesandexploringthisknowledgethroughsocial contexts, scientific reasoning, and critical thinking. In1962,Science, a Process Approach,attemptedtoconnectsciencedisciplinesbyemphasizingprocessscience(Hall,1978;Livermore,1964).ContinuedintegrationeffortsweresupportedbytheNationalScienceTeachersAssociation(Aldridge,1989;Crow&Aldridge,1995),anddur-ingthe1990s,theNationalResearchCouncil(1996)andBenchmarksforScienceLiteracy(AmericanAssociationfortheAdvancementofScience,1993)renewedattemptstodevelopanintegratedcurriculum.Curriculumintegrationremainsabroadly-usedterm,andoverthepasttwodecades,anumberofmodes of curriculum integration have been defined in the literature.Forpurposeofthisstudy,amodeofcurriculumintegrationprovidesageneralconceptualframeworkascomparedtomultiplestrate-giesforcurriculumintegrationasdescribedintheliterature.

Modes of Integration Badley(1986)describedfourmodesofintegratingthecurriculum:fusion,incorporation,correlation,andharmonization.Fusionjoinsto-getheratleasttwoseparatedisciplines.Forexample,physicalsciencejoinstogetherthedisciplinesofphysicsandchemistry.Incorporationaddsorabsorbsonecurriculumelementintoanother.Forexample,aunitonoceanographyisaddedtothebiologycurriculum.Makingcon-nectionsbetweenseparatelytaughtsubjects,suchastimingthestudyofbiomesinworldgeographyandbiologysoastooverlap,isanexampleofcorrelation.Thematicunitsareexamplesofthismodeofintegration.Finally,harmonization takes disparate curricular elements that arecompatibleandunitesthem.Teachinghigherlevelthinkingskillsacrossthecurriculumisanexampleofharmonization. Case (1991) defined and explained the components of integration and itsimplicationsforteachingpractice.FormsofintegrationdescribedbyCaseincludeintegrationofcontent,integrationofskillsandprocesses,integrationofschoolandself(intersectionofschoolgoalsandpersonalgoals),andholisticintegration(allformalandinformalpractices,rou-tines, methods, rules, and school-based influences on learning). Huntley(1998)attemptedtoclarifytheextentofdisciplineoverlapformathematicsandsciencevia theuseofa theoretical framework,the mathematics/science continuum. Huntley defined the integrated curriculumas“oneinwhichateacher,orteachers,explicitlyassimilateconcepts from more than one discipline during instruction. It is typified

Teaching an Integrated Science Curriculum148

Issues in Teacher Education

byapproximatelyequalattentiontotwo(ormore)disciplines”(p.321).Further,Huntleydifferentiatedtheintegratedfromtheinterdisciplin-ary curriculum by defining the interdisciplinary curriculum as:

oneinwhichthefocusofinstructionisononediscipline,andoneormoreotherdisciplinesareusedtosupportorfacilitatecontentinthefirst domain (for instance, by establishing relevance or context). In this case,connectionsbetweenthedisciplinesaremadeonlyimplicitlybytheteacher(s).(p.320)

Leung(2006)positedacontinuumofintegrationbasedonnationalstudiesconductedbytheHongKongDepartmentofCurriculum&In-structioninChina.Modesofcurriculumintegrationincludeamoduleapproachwithinsubjects,cross-curricularapproaches,andcurriculumintegrationoccurringonparticulardaysorweeks.Resultsofthesurveyonteacherchallengestoteachinganintegratedcurriculumindicatedthat,while94.9%of teachers supportan integrated curriculum, theheavyworkloadassociatedwiththeintegratedcurriculumandtheneedfortraininginthisareaareofconcernfor87%and93%ofteachers,respectively(Leung,2006).

Challenges of the Integrated Curriculumfor Educational Policy and Teaching Practice Regardless of themode of integration, severe teacher shortages,especiallyintheareasofmathematicsandscience,haveleftlargestatessuch as Texas and California in a continuous struggle to fill classrooms withhighqualityteachersbeforetheschoolyearbegins.Teachercontentknowledgeisanimportantfactortoconsiderwithregardtoeffectiveimplementationofanintegratedcurriculum,andseveralstudieshaveexploredteacherknowledgeasmeasuredbycompletedcourseworkandteachingassignment. BobbittandMcMillan (1994)usedthe1987-1988and1990-1991Schools and Staffing Survey data from the National Center for Educa-tionStatisticstoinvestigateteacherknowledge.Theyfoundthatover97% of teachers reported holding a major, minor, or certification related totheirteachingassignment.Monk(1994)examinedtherelationshipbetweencourseworkcompletedandstudentachievement,demonstratingthatstudentsweremorelikelytohavehigherachievementgainswhentheirteacherscompletedcourseworkequivalenttoamajor.Ingersoll(1999)reportedthat20%ofallscienceteachersheldneitheramajornoraminorrelatedtotheirteachingassignment,andWirt(2004)foundthat20%ofmiddleschoolscienceteachersdidnotholdamajor,minor,or certification for their teaching assignment.

Pamela Esprívalo Harrell 149

Volume 19, Number 1, Spring 2010

DatafromtheNationalCenterforEducationStatistics(2004)indicatethat 17.2% of middle school teachers have neither a certification nor a major in science and that 33.6% of middle school teachers hold a certifi-cationwithoutamajorinscience,althoughstudieshavedemonstratedthat undergraduate or graduate degrees in the content field are associ-atedwithstudentachievement(Ferguson&Ladd,1996;Goldhaber&Brewer,1997;2000;Rowan,Chiang,&Miller,1997;Wayne&Youngs,2003),andnationalorganizationssuchasINTASC,NCATE,andNMSAcallforstrongcontentpreparationofmiddleschoolteachers.Further,mathematicsandscienceteachersaremorelikelytoleaveteaching,ascomparedtoteachersofotherdisciplines,duetojobdissatisfactionorpersonalreasons,ortopursueothercareers(Ingersoll,2000),creatingarevolvingdoorthatexacerbatestheteachershortageprobleminscienceand other high-need fields. Because each state functions as the gatekeeper for teacher certification, policy makers often seek to provide a “temporary fix” for the teacher short-age problem and fill every classroom with a teacher, even when content knowledgeissuspect.Forexample,inTexas,anindividualwhoholdsacertification in a single-subject area of science (e.g., biology, chemistry), multiple-sciencesubject(i.e.,4-8mathscience,8-12science),ormultiple-generalistsubjects(i.e.,K-8,EarlyChildhood-6,4-8)canteachgrades6-8middleschoolscience.InTexas,grades6-8middleschoolscienceincludesbiology,chemistry,physics,andEarthscience. Todemonstratecontentmastery,therequirementofthestateofTexasistopassthestateteachercontentexam.Notranscriptanalysisisrequiredtodeterminewhethertheteacherhasformaltrainingineachofareascoveredintheteachingassignmentorwhetherthegradesthatthe potential teacher received indicate sufficient mastery of the content. Thus,aTexasteachermayholdagradesK-8(similartoCaliforniamul-tiple-subjects certificate) or grades 4-8 elementary generalist certificate andbeassignedtoteachasinglesubjectassignmentinmiddleschoolsuchasgrades6-8mathorscience. Theprocess forassignmentof teachers inCaliforniadifferssub-stantiallyfromthatofTexasinthatteacherassignmentsinCaliforniaareorganizedaroundmultiplesubjects(e.g.,grade2multiple-subjectsteachingassignment)orsinglesubjects(e.g.,grade5scienceorchemistryteachingassignment).Inthoseschoolassignmentsorganizedaroundasinglesubject,theteachermustdemonstratecontentknowledgebypassingastatetestforthesinglesubject,whereasthoseschoolassign-mentsthatareorganizedaroundmultiplesubjectsrequiretheteachertopassamultiple-subjectstateexamination. It isalsopossible toutilizea transcriptanalysis todemonstrate

Teaching an Integrated Science Curriculum150

Issues in Teacher Education

teachercontentknowledgeforaparticularassignment.Recently,theCaliforniaCommissiononTeacherCredentialing(2008)addedasingle-subjectcredential,GeneralScience(foundationlevel),inanattempttostaffscienceclassrooms.Thiscredentialisanefforttoencouragemoreindividuals to gain science certification for general, introductory, and integratedsciencecoursestaughtthrougheighthgradeinCaliforniaschoolsbytakingatestandcompletingasinglecourse.Althoughthechangewillincreasethepipelineofscienceteacherswhohavecompletedasfewastwoorthreeunitsofscience,theimpactofthischangeonstu-dentscienceachievementisunknown.Thiscredentialisaresponsetochangesduring2002thatcallforalignmentofteacherprogramswithstudentcontentstandards. According to Knudson (1937), teaching an integrated curriculumrequires(a)veryableteachers,(b)wideandrichselectionofmaterials,and(c)anadministrationfriendlytoinnovationandexperimentation.However,whenteachersdonothavetheprerequisitebackgroundneededtoimplementthecurriculum,thereisaconsiderableproblemwithregardtothedevelopmentofstudentknowledge(Palmer,1991).Additionally,teaching an integrated curriculum may conflict with the teacher’s sense ofcontentexpertise(Werner,1991)becausemostsecondaryteachersre-ceive training in colleges and universities that use single- or double-field models reflecting the structure and organization of colleges and universi-ties.Academicpreparationisanassumptionofasuccessfullydeliveredintegratedcurriculum;however,assignmentofteacherstodelivercon-tentoutsidetheirareaofexpertisewillmostlikelynotpromotestudentachievement. Given the importance of the science content knowledgeneededto teachan integratedsciencecurriculum,thisstudyseekstoexaminethecontentpreparationofeighthgradescienceTexasteachersimplementinganintegratedcurriculumthatincludesthecontentareasofbiology,chemistry,physics,andEarthscience.

Method

Research Question Thefollowingresearchquestionwasusedtoguidetheresearch:HowwellpreparedareTexasteacherstodeliveraeighthgradeintegratedsciencecurriculum(i.e.,contentareacoursework,contentgradepointaverage,andthediagnosticgrades8-12ScienceTexasExaminationsofEducatorStandards)?

Participants ParticipantswereselectedfromapoolofapplicantsforaTeacher

Pamela Esprívalo Harrell 151

Volume 19, Number 1, Spring 2010

QualityGrantProjectforeighthgradescienceteachersoveratwo-yearacademicperiod(2005-2006and2006-2007).Criteriaforselectionin-cludedpreferenceforteacherswhowereworkingwithunderrepresentedand underserved student groups in high-need schools. The group of93eighthgradeteachersinTexaswaspredominantlyfemale(77.9%)andCaucasian(61.1%),withotherethnicgroupsrepresented(AfricanAmerican,23.2%;Hispanic,12.6%;andOther,3.0%).Mostteacherswerecertified (84.9%), although certification areas varied considerably, with thelargestrepresentationfrommajorsininterdisciplinary/elementarystudies (32.3%), followed by biology/chemistry (34.4%) and physicaleducation(8.5%).Degreemajorsvariedwidelyandincludedmajorsinareassuchasagriculture,business,communications,computerscience,English,geology,psychology,andhomeeconomics. The majority of the teachers (70.5%) earned a certification from auniversity-based teacherpreparationprogram,althoughanotablepercentage (27.4%)was trained throughalternative routes to teach-ing. There are 151 separate alternative certification teaching routes in Texas,andtheyincludestateandcommercialproviders(StateBoardfor Educator Certification, 2009a). Each alternative route has unique admissionandprogramcompletionrequirements.InTexas,eachalter-native certification program provider must be approved by the State Board for Educator Certification. Althoughgradepointaverage(GPA)admissionrequirementswererecentlyincreased,duringtheperiodforthisstudy,admissionrequire-mentsfortheseprogramsrangedfromaGPAof2.0-3.0.Allteachers,regardlessofpreparationroute,mustpassstateteacherexaminations.Theseteachershadameanof8.23yearsofteachingexperienceandmosttaughtatpublicschoolsratedbytheTexasEducationAgencyas:Exemplary(1%),AcademicallyAcceptable(28.4%),Recognized(47.4%);AcademicallyUnacceptable(7.3%),orNotRated(2.1%).SchoolratingsinTexasutilizestatestudentachievementscores(i.e.,TexasAssess-mentofKnowledgeandSkills[TAKS]ortheStateDevelopedAlterna-tiveAssessmentII),highschoolcompletionrates(studentscompleteorcontinueeducationfouryearsafterenteringhighschool),anddropoutrates. These criteria are used to place schools in one of five rating cat-egories.AdetaileddescriptionoftheratingsystemcanbefoundontheTexasEducationAgencywebsite(TexasEducationAgency,2007).

Research Design Teacherknowledgewasexaminedusingparticipants’transcriptsfromallofthecollegesanduniversitiesattended.Thecoursenumber,titleofthecourse,numberofcredithours,andgradeswererecordedby

Teaching an Integrated Science Curriculum152

Issues in Teacher Education

theresearchersforeachcoursethatmatchedtheTexasExaminationsforEducatorStandards(TExES)testdomainsforgrades8-12science.ContentareasforEarthscienceincludegeology,Earthscience,envi-ronmentalscience,andastronomy. ThecontentareaGPAforeachcontentareatested(biology,chemis-try,physics,andEarthscience)wascalculated.GPAwasdeterminedbydividingthesummationofallgradepointsforthefoursciencedisciplinecoursestakenbythesummationofthenumberofcreditsearned. The content knowledge of the teachers in terms of teacher proficiency wasmeasuredusingthegrades8-12TExESdiagnosticexamination.Thisexaminationisusedtoassessthesciencecontentknowledgeofmiddleschoolandhighschoolteachersingrades8-12.Ascoreof70indicatespassing. Becausetheparticipantswerealleighthgradeteachers,thisexamina-tionwasanappropriatemeasureofteacherscienceknowledge.Further,thetopicscoveredonthe8-12ScienceTExESforteachers(i.e.,biology,chemistry,physics,andEarthscience)andthetopicsontheTAKSSciencetestforstudents(i.e.,biology,chemistry,andphysics)aresimilar,butthedepthandbreadthoftheTExEStestgiventotheteacherismuchgreater.The 8-12 diagnostic TExES was given on the first day of the grant. For readerswhoareunfamiliarwithteachertestinginTexas,theprocessusedtoestablishthevalidityandreliabilityofthetestsandhowthepassingstandardsaresetaredescribedinSectionIofeachpreparationmanual(State Board for Educator Certification, 2009b).

Results and Conclusions

Descriptive statistics for semester credit hours taken in sciencecontentareasare shown inTable1.Meancontentareapreparation(semestercredithours)acrossallsubjectstaughtintheTexaseighthgradesciencecurriculumrangefrom3.913inphysicsto19.919inbiol-ogy.Physicscourseworkcompletedrepresentstheleastvariabilityofthefoursubjectareasexamined(SD=4.845). Figures1aand1bpresentthesemestercredithourcourseworkfor93participantspartitionedaccordingtosciencesubject.AsshowninFigures1aand1b,largepercentagesofteachershavelittleornotrain-inginthecontentareasassociatedwitheighthgradescience.Eleventeachers(11.8%)hadnosemestercredithoursforbiology,24teachers(25.8%)hadnotraininginchemistry,46teachers(50.0%)hadnotrain-inginphysics,and43teachers(46.2%)hadnotraininginEarthscience.Ifoneconsidersthemostminimalpreparationofeightsemestercredithoursorless,whichisindicativeofintroductorycourseworkandincludesalaboratory,thesituationcanbeunderstoodasgrim.

Pamela Esprívalo Harrell 153

Volume 19, Number 1, Spring 2010

Oftheteachers,33(35.1%)completedeightsemestercredithoursor less of biology and 55 teachers (58.5%) completed eight semestercredithoursorlessofchemistry.Themostnotablelackoftrainingwaswithinthecontentareaofphysics,forwhichonly8teachers(8.6%)hadmorethaneightsemestercredithoursofphysics.Finally,71teachers(74.7%)completedlessthaneightsemestercredithoursofcourseworkinEarthscience.TheimportanceoftraininginEarthscienceshouldnotgounnoticedbecausethetopiccomprises38%oftheeighthgradeTAKSSciencetest.TheTAKSSciencetestisgiventoalleighthgradestudentsasameasureofprogress toward theeleventhgradeTAKSScience test, a high-stakes exit-level test that must be passed to fulfill Texashighschoolgraduationrequirements. AsseeninTable2,differencesbetweensciencemajorandnon-sci-encemajorcontentcourseworkwerealsofound.Themediannumberof semester credit hours for biology, chemistry, physics, and Earthscienceforsciencemajorswas22,16,4,and0respectively,whilethemediansemestercredithoursfornon-sciencemajorswas14,4,0,and5,respectively. Statistically significant differences were noted for science majorswithregardtobiology(t=2.102,p=.039)andchemistry(t=4.019,p=.000), while non-science majors had significantly more Earth science courseworkascomparedtosciencemajors(t=-2.916,p=.005).

Table1Descriptive Statistics for Semester Credit Hours Takenfor Science Subject Areas (N = 93)

Subject Mean Median SD MinSCH MaxSCH

Biology

Sciencemajor 23.900 22 20.45 0 74nonScience 16.188 14 14.14 0 56Biology-All 19.919 16 17.811 0 74

Chemistry

Sciencemajor 17.089 16 16.13 0 64nonScience 6.583 4 7.11 0 24Chemistry-All 11.667 8 13.344 0 64

Physics

Sciencemajor 4.864 4 5.14 0 19nonScience 3.042 0 4.44 0 21Physics-All 3.913 1.5 4.849 0 21

EarthScience

Sciencemajor 3.400 0 5.742 0 24nonScience 10.583 5.5 16.003 0 60EarthScience-All7.108 3 12.635 0 60

Teaching an Integrated Science Curriculum154

Issues in Teacher Education

Pamela Esprívalo Harrell 155

Volume 19, Number 1, Spring 2010

DescriptivestatisticsforthesciencesubjectareaGPAsarepresentedinTable3andFigures2aand2b.MeanGPAsrangedfrom1.491inphysicsto2.569inbiology(A=4.0).AnanalysisofGPAdemonstratesthat,evenwhentheeighthgradeteacherscompletecourseworkforvari-ousdisciplinesofscience,theresultsindicatepoorperformance.Exceptfortheareaofbiology,forwhichthemeanGPAwas2.569,theGPAforallothersciencedisciplineswasbelowagradeofCandaslowas1.491for physics. This is a disturbing finding with regard to eighth grade students’educationalexperiences,whichshouldpreparethemtopasstheTAKS.OftheTAKS,24%teststheteachercandidate’sknowledgeaboutEarthscience.Further,chemistryandphysicsrepresent12%oftheeighthgradeTAKSexamination.

Table2T test Results for Science Content Semester Credit Hours Taken (N = 93)

ScienceDegree NonscienceDegree (N=45) (N=48)

M SD M SD df T Sig

Biology 23.90 20.45 16.18 14.14 91 2.102 .039

Chemistry 17.09 16.13 6.58 7.11 91 4.019 .000

EarthSci 3.40 5.74 10.58 16.00 91 -2.916 .005

Table3Descriptive Statistics for Grade Point Average in Science Subject Areas (N=93)

Subject Mean Median SD

Biology

Sciencemajor 2.432 2.700 1.143nonscience 2.699 2.952 1.115Biology-All 2.569 2.760 1.130

Chemistry

Sciencemajor 2.117 2.350 1.234nonScience 1.841 2.063 1.421Chemistry-All 1.977 2.250 1.333

Physics

Sciencemajor 1.608 2.000 1.572nonScience 1.379 0 1.654Physics-All 1.491 0 1.609

EarthScience

Sciencemajor 1.469 0 1.666nonScience 1.641 2.200 1.516EarthScience-All 1.855 1.855 1.562

Teaching an Integrated Science Curriculum156

Issues in Teacher Education

Pamela Esprívalo Harrell 157

Volume 19, Number 1, Spring 2010

ThemeanGPAforbiology,chemistry,physics,andEarthscienceforsciencemajorswas2.70,2.35,2.00,and0.00,respectively,whilethemeanGPAfornonsciencemajorswas2.70,1.84,1.38,and1.64.Thettests showed no statistically significant differences between the science andnon-sciencemajorsforcontentGPAorgrades8-12TExESSciencescores.Ingeneral,therewasaclearlackofdemonstratedformalcontentknowledgeforeighthgradeteachers. Morerecently,No Child Left Behindlegislationpromulgatedtheuseofteachertestinginall50U.S.states.BecauseTexasisalargestate,insteadofusing“off-the-shelf”testssuchasPraxisIandPraxisII,thestateofTexashascontractedwithNationalEvaluationSystemsinthepastand,in2007,contractedwiththeEducationalTestingSystemstocontinuedevelopmentofteachercontenttestsalignedwiththeTexasEssentialKnowledgeandSkills,theK-12curriculuminTexas. TestingisnotanewphenomenoninTexas,whereteachertestingbeganinMarch1986(Kain&Singleton,1996).However,resultsforthediagnosticgrades8-12TExESSciencetestrevealparticipantscoresrangingfrom13-84,where100isthemaximumpossiblescore,andapassingscorefortheexaminationis70orgreater.Inthisstudy,only5 of 93 participants passed the diagnostic examination. This finding is particularlydisturbing in thatTexas teacherassignmentsprovideacontent loophole for eighth grade science teacher assignment. Specifi-cally,teacherknowledgeisassumedwhenonepassesamultiple-sub-jectexamdesignedforelementaryteachersworkinginself-containedclassrooms.Further,inTexas,theteacherisnotrequiredtopassallcontentareasforamultiple-subjectexam.Rather,acompositescoreisusedtodeterminemastery. Only23%ofthegrades4-8generalisttestmeasuresscienceknowl-edge.Eventhegrades4-8mathematics/sciencetestmeasuresscienceknowledgeaccordingtothefollowingdistribution:11%physicalscience;11% biology; 11% Earth science; 11% process skills; and 6% sciencelearning,instruction,andassessment.Returningtothepracticeofus-ingacompositescoretodeterminesubjectmastery,itispossibleforthecandidatetofailentiresubjectdomainsandstillpasstheexam.Dem-onstrationofcontentmasteryisalsounderminedwhenthecandidateisallowedunlimitedtest-takingattempts,whichalsounderminesthevalidityoftheTExES. Inthisstudy,45of93eighthgradeteachers(48.4%)heldadegreein any type of science field. The score distribution for all participants is showninFigures3aand3bandisbrokendownaccordingtothenameof thedegreeawarded,as listedon the teacher’s transcript.Table4displaystheresultsforthegrades8-12TExESSciencetest,semester

Teaching an Integrated Science Curriculum158

Issues in Teacher Education

credit hours completed, and GPAs for the five teachers who passed the examination. The diagnostic grades 8-12 TExES Science test confirms the findings ofthetranscriptanalysis.Thatis,teachersareunabletodemonstratemasteryofthecontentknowledgeneededtoteacheighthgradescienceinTexas.

Pamela Esprívalo Harrell 159

Volume 19, Number 1, Spring 2010

Implications

Anumberofstudieshaveshowntheintegratedcurriculumasapowerfultooltoenhancestudentknowledge.However,successfulimplementationofanintegratedcurriculumreliesonanumberoffactors,includingadequatepreparationofteacherswithregardtothecontentknowledgerelatedtothecurriculumtaught(Ferguson&Ladd;1996;Goldhaber&Brewer,1997;Huntley,1998;Knudson,1937;Leung,2006;Palmer,1991).Thefocusofthisresearchwasinputvariablesassociatedwithteacherquality(i.e.,collegecoursework,GPA,andteachercontenttestscores),althoughprocessvariables(e.g.,deliveryofthecurriculum)andoutputvariables(e.g.,studentachievement)arealsoimportanttopicsthatwarrantfurtherresearch.However,onewouldnotexpectthatlowqualityinputvariableswouldproduceateacherthatcouldeitherdeliverasciencecurriculumorincreasestudentachievement(Monk,1994;Shulman,1986). ThestructureofTexascollegesanduniversities,increasingnumbersofalternatively-trained candidates holding a degree in a single-field subject, and poor alignment between teaching assignment and certification field are alsoimportantconsiderationswithregardtosuccessfulimplementationofanintegratedsciencecurriculum.Withfewexceptions,Texascollegeanduniversitydegreeprogramsremainstructuredasasingle-sciencediscipline.Thus,ingeneral,theteachersthemselveshavenotexperiencedthe benefit of learning science via an integrated curriculum. Single-sub-ject degrees, instead of the broad field training needed to implement an integratedsciencecurriculum,alsofacilitatetheviewoftheteacherasexpert in a particular field. Increasing teacher content knowledge via completion of science coursework in multiple science fields might better prepareteacherstodeliveranintegratedcurriculum. Itisalsopossiblethattargetedprofessionaldevelopmentdesignedtoincreaseteacherscienceknowledgeisyetanotheravenuethatcouldincreaseteachercontentknowledgeaboutscience.TorenewaTexas

Table48-12 Science TExES Diagnostic Test Scores, Semester Credit Hours,and GPA for Participants Passing the 8-12 Science TExES (N = 45)

TExES Biology GPA Chem. GPA Physics GPA Earth GPAScore Science

71 20 3.60 50 3.76 8 3.50 3 4.0075 33 3.21 20 3.00 8 2.88 0 082 54 3.93 23 3.69 8 3.50 3 4.0083 38 3.50 43 3.60 8 3.50 3 4.0084 4 4.00 10 4.00 8 3.50 31 3.17

Teaching an Integrated Science Curriculum160

Issues in Teacher Education

teachinglicense,150hoursofprofessionaldevelopmenttrainingarerequired every five years. Professional development hours, however, aredeterminedbyeachschooldistrict,andthemajorityoftheseprofes-sionaldevelopmenthoursaregenericinnature,coveringtopicssuchassafetyandchangesinspecialeducationlaws.Thispracticemakesitpossibletorenewtheteachinglicensewithnoprofessionaldevelop-menttrainingrelatedtoimprovementofteachercontentknowledge.Onewaythatastatemayincreasethescienceteacherpipelineisto“reducebarriers”toteachingbyreducingcontentpreparationcourse-work, loweringGPArequirements,andloweringpassingstandardsforteachertests.However,alloftheseattemptsto“reducebarriers”willmostlikelylowerteacherquality. Anotherconcernwithregardtoimplementationoftheintegratedcurriculumisthepracticeofpolicymakerswholegislateteacheras-signmentstoallowapoormatchbetweenteachingassignmentsandteacher certification fields. The current Texas assignment structure al-lows an individual who holds any secondary-science certificate to teach eighthgradescience.Inthisstudy,26%ofteachershadnocourseworkinchemistry,and45.7%oftheteachershadnocourseworkinphysics.Similarly,48.9%oftheteachershadnocourseworkinEarthscience,whichcomprises24%oftheeighthgradesciencecurriculum.ThemeanGPAforchemistry,physics,andEarthsciencewasa“D,”and95.7%ofteachersfailedthediagnosticgrades8-12TExESSciencetest.Clearly,these individuals require significant professional development and/or universitycourseworktoteachtheTexaseighthgradesciencecurricu-lum. Nevertheless, in an effort to fill classrooms with teachers, Texas assignmentstructurepermitsthelackofcontentpreparationtocontinue.Thispracticemeansthatteachersfallshortofmeetinganynationalorganizationstandards(e.g.,INTASC,NCATE,NMSA)forpreparationofnewteachers.Thus,whyshouldlowerstandardsbeacceptableforteacherswhoalreadyholdacredential? InTexas,addressingtheteachershortageproblemsinhigh-needfields such as science and mathematics has resulted in over 151 dif-ferentalternativeroutestoteaching.Typically,theseindividualsholdsingle-subject degrees and are not trained to teach broad-field science (i.e.,biology,chemistry,physics,andEarthscience).Aspreviouslydis-cussed,thispracticeisproblematicinthatthegrades4-8multiple-subjectexamsareutilizedtoassignteacherstosingle-subjectclassrooms(e.g.,6-8gradescience),thecandidatesneednotdisplaycompetencyinalltestdomainsbecauseacompositescoreisusedtodetermineapassingscore,andthecandidateisofferedunlimitedtest-takingattempts,whichunderminesthevalidityofthetest.

Pamela Esprívalo Harrell 161

Volume 19, Number 1, Spring 2010

In California, a new certificate, General Science (foundation level) wasrecentlyaddedinanefforttoaddressteachershortageproblemsinscience(CaliforniaCommissiononTeacherCredentialing,2008).TheGeneral Science (foundation level) certificate requires the bearer of a multiple-subjectcredentialtogainaGeneralScience(foundationlevel)credentialbypassingtwoCaliforniaSubjectExaminationsforTeacherssubtests(#118and#119)andcompletingonecourseinsingle-subjectpedagogy.Thisroutetoacredentialraisesmorequestionsabouttheroleoftestingasagatekeeperpurportedtomeasureteachercontentknowledge, particularly knowledge sufficient for teaching an integrated sciencecurriculum.UnlikeTexas,Californiadoesnotlinkteacherchar-acteristics to student scores, making it difficult to determine how well thestatestandards,teachertests,curriculum,andstudentachievementarealigned. Theuseofanintegratedcurriculumisapowerfulwaytocommunicatescientific knowledge. Unfortunately, the failure to assure that teachers have acquired broad scientific knowledge in biology, chemistry, phys-ics,andEarthsciencepriortoanattempttoimplementanintegratedcurriculumwill perpetuate sciencemisconceptionsand result in thecreation of gaps in that scientific knowledge that is needed to achieve scientific literacy and to function in a global society. Additionally, until policymakersdiscontinueallowingapoormatchbetweenteachingas-signments and teacher certification fields and move away from sole reli-anceonteachertestsasameasureofteacherknowledge,itisunlikelythatstudentachievementwillincreaseabovethelevelofateacherwholacksthecontentknowledgeneededtodeliveraninterdisciplinarysci-encecurriculum.

Limitations of the Study

Therearevariouslimitationstothestudy,whichincludetheageofthetranscriptdata.Someteacherswereintheworkforceformanyyearsandmayhavelearnedmaterialastheytaughtitorengagedinprofessionaldevelopment inaneffort to increase contentknowledgeaboutinterdisciplinarysciencesubjects.Teachersmaynothavetakenthetestseriouslyand,assuch,notperformedtothegreatestextenttheirknowledgemightallowortheteachersmayhavebelievedthatthetestisunimportantandnotalignedwithwhattheyteach(althoughthetestisalignedwithwhatshouldbetaught).Itisalsopossiblethatteacherswhopossessanyorallofthevariablesusedinthisstudy(i.e.,coursework,grades,orapassingscoreontheTExES)maypoorlydeliverthecurriculum.Thus,althoughnotthefocusofthisstudy,researchon

Teaching an Integrated Science Curriculum162

Issues in Teacher Education

curriculumdeliveryordirectimpactonstudentachievementiswar-ranted. The grades 8-12 diagnostic TExES was given on the first day of the grant.ThecontentofthistestisalignedwithwhatteachersshouldknowtoteachtheTexasstatecurriculum.Nodirectincentiveotherthanthoseassociatedwithparticipationinthegrant(e.g.,stipend,laptop,scienceresources, training)wasprovided.Thecandidateswereprovidedsixhourstotaketheexamination. Theimplementationofanintegratedsciencecurriculumprovidesa powerful learning experience designed to enhance knowledge andconceptual understanding. The teacher’s science content knowledgeis generally acquired through formal training and/or content specific professionaldevelopment.Assessmentofthisknowledgeisperformedusingteacherteststhatfunctionasgatekeeperstoteacherlicensure.Thisstudysuggeststhat(a)Texasteachersofeighthgradesciencehavelittleformaltraininginchemistry,physics,orEarthScience,although38%oftheeighthgradecurriculumincludestopicsforEarthScience;(b)sciencecontentknowledgeasmeasuredusingGPAislow;(c)morethanhalfofeighthgradescienceteachersdonothaveadegreeinscience;and(d)interdisciplinarydegreesandsingle-subjectcontentdegreesarenot statistically significantly related to the grades 8-12 Science TExES exam. As policy makers create new teaching certificates in response to thescienceteachershortage,theymayalsowanttoexaminetheimpactofchangingteacherknowledgestandardsonstudentachievement.

ReferencesAikin,W.N.(1942).The story of the eight-year study.NewYork:Harper&Brothers.Aldridge,B.(1989).Essentialchangesinsecondaryscience:Scope,sequence,

andcoordination.NSTA Reports, 4-5.Washington,DC:NationalScienceTeachersAssociation.

AmericanAssociationfortheAdvancementofScience.(1993).Benchmarks for science literacy.NewYork:OxfordUniversityPress.

American Education Fellowship. (1938). Science in general education. NewYork:Appleton-Century.

Badley,K.R.(1986).Integrationandtheintegrationoffaithandlearning.Un-publishedPh.D.dissertation,UniversityofBritishColumbia,Vancouver.

Benjafield, J. G. (1996). The developmental point of view: A history of psychology.NeedhamHeights,MA:Simon&Schuster.

Bobbitt,S.A.,&McMillan,M.M.(1994).Qualifications of the public school teacher workforce: 1988 and 1991.NationalCenterforEducationStatistics.RetrievedJune29,2009,fromhttp://nces.ed.gov

CaliforniaCommissiononTeacherCredentialing.(2008).Proposal to establish a single-subject teaching credential in general science (foundational level).

Pamela Esprívalo Harrell 163

Volume 19, Number 1, Spring 2010

Retrieved June 28, 2009, from http://www.ctc.ca.gov/commission/agen-das/2008-04-2008-04-2H

Case,R.(1991).Theanatomyofcurricularintegration.Canadian Journal of Education, 16(2),215-224.

Crow,L.W.,&Aldridge,B.G.(1995).A project on scope, sequence and coordi-nation of secondary school science. (ERICDocumentReproductionServiceNo.ED392631)

Daniels,L.(1991).Integrationandrelevance.Forum on Curricular Integration(OccasionalpaperNo.3).Burnaby,BC:SimonFrasierUniversity,Tri-Uni-versityIntegrationProject.

Ferguson,R.,&Ladd,H.(1996).Howandwhymoneymatters:AnanalysisofAlabamaschools.InH.F.Ladd(Ed.),Holding schools accountable: Perfor-mance based review in education (pp.265-298).WashingtonDC:BrookingsInstitution.

Friend,H.(1984).The effect of science and mathematics integration on selected seventh grade students: Attitudes toward and achievement in science.NewYork:NewYorkCityBoardofEducation.

Goldhaber,D.,&Brewer,D.(1997).Evaluating the effect of teacher degree level on educational performance. Retrieved June 28, 2009, from http://nces.ed.gov/pubs97/97535l.pdf

Hall,W.C.(1978).Integratedscience.Prospects, 8(1),58-65.Huntley, M. A. (1998). Design and implementation of a framework for defining

integratedmathematicsandscienceeducation.School Science and Math-ematics, 98(6),320-327.

Ingersoll, R. (1999). The problem of underqualified teachers in American second-aryschools.Educational Researcher,28(2),26-37.

Ingersoll,R.(2000).Turnover among mathematics and science teachers in the U.S.RetrievedJune28,2009,fromhttp://74.125.113.104/search?q=cache:O9ylAro93moJ:www.ed.gov/inits/Math/glenn/Ingersollp.doc+Turnover+Among+Mathematics+and+Science+Teachers+in+the+U.S.+ingersoll&hl=en&ct=clnk&cd=1&gl=us

InterstateNewTeacherAssessmentandSupportConsortium.(2002).Model standards in science for beginning teacher licensing and development: A resource for state dialogue.RetrievedJune28,2009,fromhttp://www.ccsso.org/content/pdfs/ScienceStandards.pdf

Jacobs,H.(1989).Interdisciplinary curriculum: Design and implementation.Al-exandra,VA:AssociationforSupervisionandCurriculumDevelopment.

Kain,J.F.,&Singleton,K.(1996,May/June).Equalityofeducationalopportu-nityrevisited.New England Economic Review,87-114.

Knudsen,C.W. (1937).Whatdoeducatorsmeanby “integration”?Harvard Educational Review, 7(1), 15-26.

Leung,W.L.A.(2006).Teachingintegratedcurriculum:Teachers’challenges.Pacific Asian Education, 18(1),88-102.

Lipson,M.,Valencia,S.,Wixson,K.,&Peters,C.(1993).Integrationandthe-maticteaching:Integrationtoimproveteachingandlearning.Language Arts, 70(4),252-264.

Livermore,A.H.(1964).TheprocessapproachoftheAAASCommissiononSci-

Teaching an Integrated Science Curriculum164

Issues in Teacher Education

enceEducation.Journal of Research in Science Teaching, 2, 271-282.Monk,D.H.(1994).Contentareapreparationofsecondarymathematicsand

scienceteachersandstudentachievement.Economics of Education Review13(2),125-145.

NationalCouncilforAccreditationofTeacherEducators.(2007).Standards for science teacher preparation.RetrievedJune25,2009,fromhttp://www.nsta.org/pdfs/NCATE-NSTAStandards2003/pdf

NationalCenterforEducationStatistics.(1996).Predictors of attrition, trans-fer, and attrition of special and general education teachers: Data from the 1989 teacher follow-up survey.RetrievedJune28,2009,fromhttp://nces.ed.gov/pubs96/9612.pdf

NationalCenterforEducationStatistics.(2004).Out of field teacher by poverty concentration and minority enrollment. Retrieved June 28, 2009, fromhttp://nces.ed.gov/programs/coe/2004/section4/table.asp?tableID=71

NationalMiddleSchoolAssociation. (2008). Initial level teacher preparation standards. Retrieved June 28, 2009, from http://www.nmsa.org/Profes-sionalPreparation/NMSAStandards/tabid/374/Default.aspx

NationalResearchCouncil.(1996).National science education standards.RetrievedSeptember27,2008,fromhttp://www.nap.edu/catalog.php?record_id=4962

NationalSociety for theStudyofEducation,Committeeon theTeachingofScience.(1932).Thirty-first yearbook: A program for teaching science: Part I.Chicago:TheUniversityofChicagoPress.

No Child Left Behind. (2002).PublicLaw107-110RetrievedJune,28,2009,fromhttp://www.ed.gov/policy/elsec/leg/esea02/index.html

Palmer, J. N. (1991). Planning wheels turn curriculum around. Education Leadership, 49(20),57-60.

Rowan,B.,Chiang,F.-S.,&Miller,R.J.(1997).Usingresearchonemployees’performance to study the effects of teachers on students’ achievement.Sociology of Education, 70,256-284.

Shulman,L.S.(1986).Thosewhounderstand:Knowledgegrowthinteaching.Educational Researcher,5(2),4-14.

SouthernRegionEducationBoard.(1998).Improving teaching in the middle grades: When standards aren’t enough.RetrievedJune28,2009,fromhttp://www.sreb.org/programs/MiddleGrades/publications/reports/98E13_Stay-ingtheCourse.pdf

State Board for Educator Certification. (2009a). Approved programs.RetrievedJune28,2009,fromhttp://www.sbec.state.tx.us/SBECOnline/approcedpro-grams.asp

State Board for Educator Certification. (2009b). Preparation materials.RetrievedJune28,2009,fromhttp://www.texes.ets.org/prepMaterials/

TexasEducationAgency.(2005).Middle school science, grade eight.RetrievedJune 29, 2009, from http://www.tea.state.tx.us/student.assessment/taks/booklets/science/g8.pdf

TexasEducationAgency.(2007).2007 accountability manual. RetrievedJune29,2009,fromhttp://www.tea.state.tx.us/perfreport/account/2007/manual/ch04.pdf

Vars,G.F.(1991).Integratedcurriculuminhistoricalperspective.Educational

Pamela Esprívalo Harrell 165

Volume 19, Number 1, Spring 2010

Leadership 49(2),14-15.Wayne,A.,&Youngs,P.(2003).Teachercharacteristicsandstudentachievement

gains:Areview.Review of Educational Research 73(1),89-122.Werner, W. (1991). Defining curriculum policy through slogans. Journal of

Education Policy, 6,225-238.Wirt, J. (2004). The condition of education, 2004. National Center for

Education Statistics. Retrieved June 28, 2009, from http://nces.ed.gov/pubs2004/2004076.pdf

Wolf,P.,&Brandt,R.(1998).Whatdoweknowfrombrainresearch?Educa-tional Leadership, 5(3), 8-13.

Yager,R.E.,&Lutz,M.V.(1994).Integratedscience:Theimportanceof“how”versus“what.”School Science and Mathematics, 94,338-346.


Top Related