+ All Categories
Transcript

Hindawi Publishing CorporationJournal of Applied MathematicsVolume 2013, Article ID 981762, 10 pageshttp://dx.doi.org/10.1155/2013/981762

Research ArticleThe Interval-Valued Intuitionistic Fuzzy Optimized WeightedBonferroni Means and Their Application

Ya-ming Shi and Jian-min He

School of Economics and Management, Southeast University, Nanjing 211189, China

Correspondence should be addressed to Ya-ming Shi; [email protected]

Received 3 May 2013; Accepted 18 June 2013

Academic Editor: Guangchen Wang

Copyright Β© 2013 Y.-m. Shi and J.-m. He. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

We investigate and propose two new Bonferroni means, that is, the optimized weighted BM (OWBM) and the generalizedoptimized weighted BM (GOWBM), whose characteristics are to reflect the preference and interrelationship of the aggregatedarguments and can satisfy the basic properties of the aggregation techniques simultaneously. Further, we propose the interval-valued intuitionistic fuzzy optimized weighted Bonferroni mean (IIFOWBM) and the generalized interval-valued intuitionisticfuzzy optimized weighted Bonferroni mean (GIIFOWBM) and detailed study of their desirable properties such as idempotency,monotonicity, transformation, and boundary. Finally, based on IIFOWBMandGIIFOWBM,we give an approach to group decisionmaking under the interval-valued intuitionistic fuzzy environment and utilize a practical case involving the assessment of a set ofagroecological regions in Hubei Province, China, to illustrate the developed methods.

1. Introduction

As a useful aggregation technique, the Bonferronimean (BM)can capture the interrelationship between input argumentsand has been a hot research topic recently. Bonferroni [1]originally introducedamean-typeaggregationoperator, calledthe Bonferroni mean, whose prominent characteristic is thatit cannot only consider the importance of each criterion butalso reflect the interrelationship of the individual criterion.Recently, Yager [2] extended the BM by two mean-type op-erators, such as the Choquet integral operator [3] and theordered weighted averaging operator [4], as well as associatesdiffering importance with the arguments. Mordelova andRuckschlossova [5] also investigated the generalizations ofBM referred to as ABC-aggregation functions. Beliakov et al.[6] further extended the BM by considering the correlationsof any three aggregated arguments instead of any two andproposed the generalized Bonferroni mean (GBM).

Nevertheless, the arguments suitable to be aggregated bythe BM and GBM can only take the forms of crisp numbers.In the real world, due to the increasing complexity of thesocioeconomic environment and the lack of knowledge anddata, crisp data are sometimes unavailable. Thus, the input

arguments may be more suitable with representation of fuzzyformats, such as fuzzy number [7], interval-valued fuzzynumber [8], intuitionistic fuzzy value [9], interval-valuedintuitionistic fuzzy value [10], and hesitant fuzzy element[11]. Thus, Xu and Yager [12] introduced the intuitionisticfuzzy Bonferroni mean (IFBM) and the intuitionistic fuzzyweighted Bonferroni mean (IFWBM). Xu and Chen [13]further proposed the interval-valued intuitionistic fuzzyBonferroni mean (IIFBM) and the interval-valued intuition-istic fuzzy weighted Bonferroni mean (IIFWBM). Xia et al.[14] proposed the generalized intuitionistic fuzzy Bonferronimeans. Zhou and He [15] developed some geometric Bonfer-roni Means. Furthermore, Beliakov and James [16] definedBonferroni means over lattices which is a new viewpoint.Recently, Zhou andHe [17] constructed an intuitionistic fuzzyweighted Bonferroni mean, Xia et al. [18] further investi-gated the generalized geometric Bonferroni means, Beliakovand James [19] extend the generalized Bonferroni means toAtanassov orthopairs, and so on.

The desirable characteristic of the BM is its capabilityto capture the interrelationship between input arguments.However, the classical BM andGBM, even the extended BMs,cannot reflect the interrelationship between the individual

2 Journal of Applied Mathematics

criterion and other criteria. To deal with these issues, in thispaper, we propose the optimized weighted Bonferroni mean(OWBM) and the generalized optimized weighted Bonfer-roni mean (GOWBM), whose characteristics are to reflectthe preference and interrelationship of the aggregated argu-ments and can satisfy the basic properties of the aggrega-tion techniques simultaneously. Further, we have proposedthe interval-valued intuitionistic fuzzy optimized weightedBonferroni mean (IIFOWBM) and the generalized interval-valued intuitionistic fuzzy optimized weighted Bonferronimean (GIIFOWBM) and detailed study of their desirableproperties such as idempotency, monotonicity, transforma-tion, and boundary.

The remainder of this paper is organized as follows.We briefly review some basic definitions of the interval-valued intuitionistic fuzzy values and Bonferroni mean.Then, in Section 3, we propose two BMs including OWBMand GOWBM and study their properties. Furthermore, inSection 4, we develop the IIFOWBM and GIIFOWBM oper-ators, and their idempotency, monotonicity, transformation,and boundary are also investigated. A practical example isprovided in Section 5 to demonstrate the application of theOWBM, GOWBM, and two interval-valued intuitionisticfuzzy BMs. The paper ends in Section 6 with concludingremarks.

2. Some Basic Concepts

2.1. Interval-Valued Intuitionistic Fuzzy Values. In the follow-ing, we introduce the basic concepts and operations relatedto interval-valued intuitionistic fuzzy value [20], which isan extended definition of the intuitionistic fuzzy value andinterval-valued intuitionistic fuzzy set [21, 22].

Definition 1 (see [10]). Let 𝑋 = (π‘₯1, π‘₯

2, . . . , π‘₯

𝑛) be fixed. An

interval-valued intuitionistic fuzzy set (IIFS) 𝐴 in 𝑋 can bedefined as

𝐴 = {(π‘₯, πœ‡π΄(π‘₯) , ]

𝐴(π‘₯)) | π‘₯ ∈ 𝑋} , (1)

where πœ‡π΄(π‘₯) βŠ‚ [0, 1] and ]

𝐴(π‘₯) βŠ‚ [0, 1] satisfy sup πœ‡

𝐴(π‘₯) +

sup ]𝐴(π‘₯) ≀ 1 for all π‘₯

π‘–βˆˆ 𝑋 and πœ‡

𝐴(π‘₯) and ]

𝐴(π‘₯) are,

respectively, called the degree of membership and the degreeof nonmembership of the element π‘₯

π‘–βˆˆ 𝑋 to 𝐴.

Definition 2 (see [20]). Let 𝐴 = {(π‘₯, πœ‡π΄(π‘₯), ]

𝐴(π‘₯)) | π‘₯ ∈ 𝑋}

be an IIFS; the pair (πœ‡π΄(π‘₯), ]

𝐴(π‘₯)) is called an interval-valued

intuitionistic fuzzy value (IIFV).For computational convenience, an IIFV can be denoted

by ([π‘Ž, 𝑏], [𝑐, 𝑑]), with the condition that [π‘Ž, 𝑏] βŠ‚ [0, 1],[𝑐, 𝑑] βŠ‚ [0, 1], and 𝑏 + 𝑑 ≀ 1. Furthermore, based onthe operations of interval-valued intuitionistic fuzzy values[21, 22], Xu [23] defined some operations of IIFNs asfollows.

Definition 3 (see [23]). Letting οΏ½οΏ½ = ([π‘Ž, 𝑏], [𝑐, 𝑑]), οΏ½οΏ½1=

([π‘Ž1, 𝑏

1], [𝑐

1, 𝑑

1]), and οΏ½οΏ½

2= ([π‘Ž

2, 𝑏

2], [𝑐

2, 𝑑

2]) be three IIFVs,

then the following operational laws are valid:

(1) οΏ½οΏ½1βŠ• οΏ½οΏ½

2= ([π‘Ž

1+ π‘Ž

2βˆ’ π‘Ž

1π‘Ž2, 𝑏

1+ 𝑏

2βˆ’ 𝑏

1𝑏2], [𝑐

1𝑐2, 𝑑

1𝑑2]),

(2) οΏ½οΏ½1βŠ— οΏ½οΏ½

2= ([π‘Ž

1π‘Ž2, 𝑏

1𝑏2], [𝑐

1+ 𝑐

2βˆ’ 𝑐

1𝑐2, 𝑑

1+ 𝑑

2βˆ’ 𝑑

1𝑑2]),

(3) πœ†οΏ½οΏ½ = ([1 βˆ’ (1 βˆ’ π‘Ž)πœ†, 1 βˆ’ (1 βˆ’ 𝑏)πœ†], [π‘πœ†, π‘‘πœ†]), πœ† > 0,

(4) οΏ½οΏ½πœ† = ([π‘Žπœ†, π‘πœ†], [1 βˆ’ (1 βˆ’ 𝑐)πœ†, 1 βˆ’ (1 βˆ’ 𝑑)πœ†]), πœ† > 0.

Then, Xu [23] introduced the score function 𝑠(οΏ½οΏ½) = (π‘Ž βˆ’π‘+π‘βˆ’π‘‘)/2 and the accuracy function β„Ž(οΏ½οΏ½) = (π‘Ž+𝑏+𝑐+𝑑)/2to calculate the score value and accuracy degree of IIFV οΏ½οΏ½ =([π‘Ž, 𝑏], [𝑐, 𝑑]) and gave an order relation between two IIFNsοΏ½οΏ½1and οΏ½οΏ½

2as follows:

(1) if 𝑠(οΏ½οΏ½1) < 𝑠(οΏ½οΏ½

2), then οΏ½οΏ½

1< οΏ½οΏ½

2;

(2) if 𝑠(οΏ½οΏ½1) = 𝑠(οΏ½οΏ½

2), then

(i) if β„Ž(οΏ½οΏ½1) < β„Ž(οΏ½οΏ½

2), then οΏ½οΏ½

1< οΏ½οΏ½

2;

(ii) if β„Ž(οΏ½οΏ½1) = β„Ž(οΏ½οΏ½

2), then οΏ½οΏ½

1∼ ��

2.

2.2. Bonferroni Means

Definition 4 (see [1]). Let 𝑝, π‘ž β‰₯ 0 and π‘Žπ‘–(𝑖 = 1, 2, . . . , 𝑛) a

collection of nonnegative numbers. If

BM𝑝,π‘ž(π‘Ž

1, π‘Ž

2, . . . , π‘Ž

𝑛) = (

1

𝑛(𝑛 βˆ’ 1)

𝑛

βˆ‘

𝑖,𝑗=1

𝑖 = 𝑗

π‘Žπ‘

π‘–π‘Žπ‘ž

𝑗)

1/(𝑝+π‘ž)

,

(2)

then BM𝑝,π‘ž is called the Bonferroni mean (BM).

Definition 5 (see [6]). Let 𝑝, π‘ž, π‘Ÿ β‰₯ 0 and π‘Žπ‘–(𝑖 = 1, 2, . . . , 𝑛)

be a collection of nonnegative numbers. If

GBM𝑝,π‘ž,π‘Ÿ(π‘Ž

1, π‘Ž

2, . . . , π‘Ž

𝑛)

= (1

𝑛(𝑛 βˆ’ 1)(𝑛 βˆ’ 2)

𝑛

βˆ‘

𝑖,𝑗,π‘˜=1

𝑖 = 𝑗 = π‘˜

π‘Žπ‘

π‘–π‘Žπ‘ž

π‘—π‘Žπ‘Ÿ

π‘˜)

1/(𝑝+π‘ž+π‘Ÿ)

,

(3)

then GBM𝑝,π‘ž,π‘Ÿ is called the generalized Bonferroni mean(GBM).

To deal with intuitionistic fuzzy value and hesitant fuzzyvalue, Xu and Yager [12] extended these BMs to fuzzy envi-ronment and gave the following concepts.

Definition 6 (see [12]). Let 𝛼𝑖(𝑖 = 1, 2, . . . , 𝑛) be a set of

intuitionistic fuzzy values.The intuitionistic fuzzy Bonferronimean (IFBM), the intuitionistic fuzzy weighted Bonferronimean (IFWBM), and the generalized intuitionistic fuzzy

Journal of Applied Mathematics 3

weighted Bonferroni mean (GIFWBM) are, respectively,defined as

IFBM𝑝,π‘ž(𝛼

1, 𝛼

2, . . . , 𝛼

𝑛)

= (1

𝑛 (𝑛 βˆ’ 1)

𝑛

⨁

𝑖,𝑗=1,

𝑖 = 𝑗

(𝛼𝑝

π‘–βŠ— 𝛼

π‘ž

𝑗))

1/(𝑝+π‘ž)

,

IFWBM𝑝,π‘ž(𝛼

1, 𝛼

2, . . . , 𝛼

𝑛)

= (1

𝑛 (𝑛 βˆ’ 1)

𝑛

⨁

𝑖,𝑗=1,

𝑖 = 𝑗

((𝑀𝑖𝛼𝑝

𝑖) βŠ— (𝑀

π‘—π›Όπ‘ž

𝑗)))

1/(𝑝+π‘ž)

,

GIFBM𝑝,π‘ž,π‘Ÿ(𝛼

1, 𝛼

2, . . . , 𝛼

𝑛)

= (1

𝑛 (𝑛 βˆ’ 1) (𝑛 βˆ’ 2)

𝑛

⨁

𝑖,𝑗,π‘˜=1,

𝑖 = 𝑗 = π‘˜

((𝑀𝑖𝛼𝑝

𝑖) βŠ— (𝑀

π‘—π›Όπ‘ž

𝑗) βŠ— (𝑀

π‘˜π›Όπ‘Ÿ

π‘˜)))

1/(𝑝+π‘ž+π‘Ÿ)

.

(4)

However, it is noted that the above BMs could noteffectively aggregate the general fuzzy value, that is, interval-valued intuitionistic fuzzy value. On the other hand, theabove BMs just consider the whole correlationship betweenthe criterion π‘Ž

𝑖and all criteria βˆ‘π‘›

𝑗=1π‘Žπ‘ž

𝑗⋅ βˆ‘

𝑛

π‘˜=1π‘Žπ‘Ÿ

π‘˜and cannot

reflect the interrelationship between the individual criterionπ‘Žπ‘–and other criteria Vπ‘ž,π‘Ÿ

𝑖which is the main advantage of the

BM. To overcome this drawback, we propose the followingOWBM, GOWBM, IIFOWBM, and GIIFOWBM operators.

3. The Optimized Weighted BM andIts Generalized Form

The BM and GBM, including IFWBM and GIFWBM, justconsider the whole correlationship between the criterionπ‘Žπ‘–and all criteria and cannot reflect the interrelationship

between the individual criterion π‘Žπ‘–and other criteria Vπ‘ž,π‘Ÿ

𝑖

which is the main advantage of the BM. To deal with theseissues, in the following subsections, we propose the optimizedweighted versions of BM and its generalized form, that is,the optimized weighted BM (OWBM) and the generalizedoptimized weighted BM (GOWBM). Based on the Bonfer-roni mean, we can define the following optimized weight-ed BM (OWBM) and generalized optimized weighted BM(GOWBM).

Definition 7. Let 𝑝, π‘ž β‰₯ 0 and π‘Žπ‘–(𝑖 = 1, 2, . . . , 𝑛) be a

collection of nonnegative numbers with the weight vector𝑀 = (𝑀

1, 𝑀

2, . . . , 𝑀

𝑛) such that 𝑀

𝑖β‰₯ 0 and βˆ‘π‘›

𝑖=1𝑀𝑖= 1. Then

the optimized weighted Bonferroni mean (OWBM) can bedefined as follows:

OWBM𝑝,π‘ž(π‘Ž

1, π‘Ž

2, . . . , π‘Ž

𝑛) = (

𝑛

βˆ‘

𝑖,𝑗=1

𝑖 = 𝑗

𝑀𝑖𝑀𝑗

1 βˆ’ 𝑀𝑖

π‘Žπ‘

π‘–π‘Žπ‘ž

𝑗)

1/(𝑝+π‘ž)

.

(5)

Definition 8. Let 𝑝, π‘ž, π‘Ÿ β‰₯ 0 and π‘Žπ‘–(𝑖 = 1, 2, . . . , 𝑛) a

collection of nonnegative numbers with the weight vector𝑀 = (𝑀

1, 𝑀

2, . . . , 𝑀

𝑛) such that 𝑀

𝑖β‰₯ 0 and βˆ‘π‘›

𝑖=1𝑀𝑖= 1.

Then the generalized optimized weighted Bonferroni mean(GOWBM) can be defined as follows:

GOWBM𝑝,π‘ž,π‘Ÿ(π‘Ž

1, π‘Ž

2, . . . , π‘Ž

𝑛)

= (

𝑛

βˆ‘

𝑖,𝑗,π‘˜=1

𝑖 = 𝑗 = π‘˜

π‘€π‘–π‘€π‘—π‘€π‘˜

(1 βˆ’ 𝑀𝑖) (1 βˆ’ 𝑀

π‘–βˆ’ 𝑀

𝑗)

π‘Žπ‘

π‘–π‘Žπ‘ž

π‘—π‘Žπ‘Ÿ

π‘˜)

1/(𝑝+π‘ž+π‘Ÿ)

.

(6)

Furthermore,wecan transformtheOWBMandGOWBMinto the interrelationship between OWBM and GOWBMforms as follows:

OWBM𝑝,π‘ž(π‘Ž

1, π‘Ž

2, . . . , π‘Ž

𝑛)= (

𝑛

βˆ‘

𝑖=1

π‘€π‘–π‘Žπ‘

𝑖

𝑛

βˆ‘

𝑗=1

𝑗 = 𝑖

𝑀𝑗

1 βˆ’ 𝑀𝑖

π‘Žπ‘ž

𝑗)

1/(𝑝+π‘ž)

,

(7)

GOWBM𝑝,π‘ž,π‘Ÿ(π‘Ž

1, π‘Ž

2, . . . , π‘Ž

𝑛)

= (

𝑛

βˆ‘

𝑖=1

π‘€π‘–π‘Žπ‘

𝑖

𝑛

βˆ‘

𝑗=1

𝑗 = 𝑖

𝑀𝑗

1 βˆ’ 𝑀𝑖

π‘Žπ‘ž

𝑗

𝑛

βˆ‘

π‘˜=1

π‘˜ = 𝑖 = 𝑗

π‘€π‘˜

(1 βˆ’ π‘€π‘–βˆ’ 𝑀

𝑗)

π‘Žπ‘Ÿ

π‘˜)

1/(𝑝+π‘ž+π‘Ÿ)

.

(8)

According to (6)-(7), we see that the terms βˆ‘π‘›

𝑗=1,𝑗 = 𝑖(𝑀

𝑗/

(1 βˆ’ 𝑀𝑖))π‘Ž

π‘ž

𝑗and βˆ‘π‘›

𝑖,𝑗,π‘˜=1,𝑖 = 𝑗 = π‘˜(𝑀

π‘–π‘€π‘—π‘€π‘˜/(1 βˆ’ 𝑀

𝑖)(1 βˆ’ 𝑀

π‘–βˆ’

𝑀𝑗))π‘Ž

π‘ž

π‘—π‘Žπ‘Ÿ

π‘˜are the weighted power average satisfaction of all

criteria except 𝐴𝑖, and βˆ‘π‘›

𝑗=1,𝑗 = 𝑖(𝑀

𝑗/(1 βˆ’ 𝑀

𝑖)) = 1 and

βˆ‘π‘›

𝑖,𝑗,π‘˜=1,𝑖 = 𝑗 = π‘˜(𝑀

π‘–π‘€π‘—π‘€π‘˜/(1 βˆ’ 𝑀

𝑖)(1 βˆ’ 𝑀

π‘–βˆ’ 𝑀

𝑗)) = 1. If we,

respectively, denote the above terms as π‘’π‘žπ‘–and π‘’π‘ž

𝑖Vπ‘Ÿπ‘–, thus

OWBM𝑝,π‘ž(π‘Ž

1, π‘Ž

2, . . . , π‘Ž

𝑛) = (

𝑛

βˆ‘

𝑖=1

π‘€π‘–π‘Žπ‘

π‘–π‘’π‘ž

𝑖)

1/(𝑝+π‘ž)

,

GOWBM𝑝,π‘ž,π‘Ÿ(π‘Ž

1, π‘Ž

2, . . . , π‘Ž

𝑛) = (

𝑛

βˆ‘

𝑖=1

π‘€π‘–π‘Žπ‘

π‘–π‘’π‘ž

𝑖Vπ‘Ÿπ‘–)

1/(𝑝+π‘ž+π‘Ÿ)

.

(9)

Here then π‘’π‘žπ‘–and π‘’π‘ž

𝑖Vπ‘Ÿπ‘–are the weighted power average

satisfaction to all criteria except 𝐴𝑖, which represents the

interrelationship between the individual criterion π‘Žπ‘–and

other criteria π‘Žπ‘—(𝑗 = 𝑖). This is similar to the BM.

4 Journal of Applied Mathematics

4. Two Interval-Valued IntuitionisticFuzzy BM Operators Based on OWBMand GOWBM

To aggregate the fuzzy information, Xu and Yager [12] pro-posed the IFBM and IFWBM. However, it is noted that theabove BMs could not effectively aggregate the general fuzzyvalue, that is, interval-valued intuitionistic fuzzy value. Thus,we further propose two interval-valued intuitionistic fuzzyBM operators to aggregate the interval-valued intuitionisticfuzzy correlated information based on the optimized weight-ed and generalized optimized weighted BMs, respectively,that is, IIFOWBM and GIIFOWBM.

Definition 9. Let ��𝑖= ([π‘Ž

𝑖, 𝑏

𝑖], [𝑐

𝑖, 𝑑

𝑖]) be a collection of IIFVs

with the weight vector 𝑀 = (𝑀1, 𝑀

2, . . . , 𝑀

𝑛) such that 𝑝, π‘ž β‰₯

0, 𝑀𝑖β‰₯ 0, and βˆ‘π‘›

𝑖=1𝑀𝑖= 1. If

IIFOWBM𝑝,π‘ž(οΏ½οΏ½

1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛)

= (

𝑛

⨁

𝑖,𝑗=1,

𝑖 = 𝑗

𝑀𝑖𝑀𝑗

1 βˆ’ 𝑀𝑖

(��𝑝

π‘–βŠ— οΏ½οΏ½

π‘ž

𝑗))

1/(𝑝+π‘ž)

,

(10)

then IIFOWBM𝑝,π‘ž is called the interval-valued intuitionisticfuzzy optimized weighted Bonferroni mean (IIFOWBM).

On the basis of the operational laws of IIFVs, we have thefollowing.

Theorem 10. Letting ��𝑖= ([π‘Ž

𝑖, 𝑏

𝑖], [𝑐

𝑖, 𝑑

𝑖]) (𝑖 = 1, 2, . . . , 𝑛) be

a collection of IIFVs with the weight vector (𝑀1, 𝑀

2, . . . , 𝑀

𝑛),

such that𝑝, π‘ž β‰₯ 0,𝑀𝑖β‰₯ 0, andβˆ‘π‘›

𝑖=1𝑀𝑖= 1, then the aggregated

value by using the IIFOWBM is also an IIFV, and

IIFOWBM𝑝,π‘ž(οΏ½οΏ½

1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛)

= (

𝑛

⨁

𝑖,𝑗=1,

𝑖 = 𝑗

𝑀𝑖𝑀𝑗

1 βˆ’ 𝑀𝑖

(��𝑝

π‘–βŠ— οΏ½οΏ½

π‘ž

𝑗))

1/(𝑝+π‘ž)

= (

[[[

[

(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ π‘Žπ‘

π‘–π‘Žπ‘ž

𝑗)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

,

(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ 𝑏𝑝

π‘–π‘π‘ž

𝑗)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

]]]

]

,

[[[

[

1 βˆ’(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ (1 βˆ’ 𝑐𝑖)𝑝

Γ— (1 βˆ’ 𝑐𝑗)π‘ž

)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

,

1 βˆ’(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ (1 βˆ’ 𝑑𝑖)𝑝

Γ— (1 βˆ’π‘‘π‘—)π‘ž

)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

]]]

]

) .

(11)

Proof. By the operational laws for IIFVs, we get

��𝑝

𝑖= ([π‘Ž

𝑝

𝑖, 𝑏

𝑝

𝑖] , [1 βˆ’ (1 βˆ’ 𝑐

𝑖)𝑝

, 1 βˆ’ (1 βˆ’ 𝑑𝑖)𝑝

]) ,

οΏ½οΏ½π‘ž

𝑗= ([π‘Ž

π‘ž

𝑗, 𝑏

π‘ž

𝑗] , [1 βˆ’ (1 βˆ’ 𝑐

𝑗)π‘ž

, 1 βˆ’ (1 βˆ’ 𝑑𝑗)π‘ž

]) ,

��𝑝

π‘–βŠ— οΏ½οΏ½

π‘ž

𝑗

= ([π‘Žπ‘

π‘–π‘Žπ‘ž

𝑗, 𝑏

𝑝

π‘–π‘π‘ž

𝑗] ,

[1 βˆ’ (1 βˆ’ 𝑐𝑖)𝑝

(1 βˆ’ 𝑐𝑗)π‘ž

, 1 βˆ’ (1 βˆ’ 𝑑𝑖)𝑝

(1 βˆ’ 𝑑𝑗)π‘ž

]) ,

𝑀𝑖𝑀𝑗

1 βˆ’ 𝑀𝑖

��𝑝

π‘–βŠ— οΏ½οΏ½

π‘ž

𝑗

= ([1 βˆ’ (1 βˆ’ π‘Žπ‘

π‘–π‘Žπ‘ž

𝑗)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

, 1 βˆ’ (1 βˆ’ 𝑏𝑝

π‘–π‘π‘ž

𝑗)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

] ,

[(1 βˆ’ (1 βˆ’ 𝑐𝑖)𝑝

(1 βˆ’ 𝑐𝑗)π‘ž

)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

,

(1 βˆ’ (1 βˆ’ 𝑑𝑖)𝑝

(1 βˆ’ 𝑑𝑗)π‘ž

)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

]) ,

𝑛

⨁

𝑖,𝑗=1,

𝑖 = 𝑗

𝑀𝑖𝑀𝑗

1 βˆ’ 𝑀𝑖

��𝑝

π‘–βŠ— οΏ½οΏ½

π‘ž

𝑗

= (

[[[

[

1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ π‘Žπ‘

π‘–π‘Žπ‘ž

𝑗)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

,

1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ 𝑏𝑝

π‘–π‘π‘ž

𝑗)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

]]]

]

,

[[[

[

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ (1 βˆ’ 𝑐𝑖)𝑝

(1 βˆ’ 𝑐𝑗)π‘ž

)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

,

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ (1 βˆ’ 𝑑𝑖)𝑝

(1 βˆ’ 𝑑𝑗)π‘ž

)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)]

]]

]

) .

(12)

Journal of Applied Mathematics 5

Therefore,

IIFOWBM𝑝,π‘ž(οΏ½οΏ½

1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛)

= (

𝑛

⨁

𝑖,𝑗=1,

𝑖 = 𝑗

𝑀𝑖𝑀𝑗

1 βˆ’ 𝑀𝑖

(��𝑝

π‘–βŠ— οΏ½οΏ½

π‘ž

𝑗))

1/(𝑝+π‘ž)

= (

[[[

[

(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ π‘Žπ‘

π‘–π‘Žπ‘ž

𝑗)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

,

(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ 𝑏𝑝

π‘–π‘π‘ž

𝑗)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

]]]

]

,

[[[

[

1βˆ’(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’(1 βˆ’ 𝑐𝑖)𝑝

(1 βˆ’ 𝑐𝑗)π‘ž

)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

,

1 βˆ’(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ (1 βˆ’ 𝑑𝑖)𝑝

Γ— (1 βˆ’ 𝑑𝑗)π‘ž

)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

]]]

]

),

0 ≀(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’π‘Žπ‘

π‘–π‘Žπ‘ž

𝑗)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

≀ 1,

0 ≀ (1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ 𝑏𝑝

π‘–π‘π‘ž

𝑗)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

≀ 1.

(13)

We have

0≀1 βˆ’(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ (1 βˆ’ 𝑐𝑖)𝑝

(1 βˆ’ 𝑐𝑗)π‘ž

)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

≀ 1,

0≀1 βˆ’(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’(1 βˆ’ 𝑑𝑖)𝑝

(1 βˆ’ 𝑑𝑗)π‘ž

)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

≀ 1,

(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ 𝑏𝑝

π‘–π‘π‘ž

𝑗)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

+ 1

βˆ’(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ (1 βˆ’ 𝑑𝑖)𝑝

(1 βˆ’ 𝑑𝑗)π‘ž

)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

≀ 1

+(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ (1 βˆ’ 𝑑𝑖)𝑝

(1 βˆ’ 𝑑𝑗)π‘ž

)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

βˆ’(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’(1 βˆ’ 𝑑𝑖)𝑝

(1 βˆ’ 𝑑𝑗)π‘ž

)𝑀𝑖𝑀𝑗/(1βˆ’π‘€π‘–)

)

1/(𝑝+π‘ž)

= 1

(14)

which completes the proof.

Property 1 (idempotency). If all IIFVs ��𝑖= ([π‘Ž

𝑖, 𝑏

𝑖], [𝑐

𝑖, 𝑑

𝑖])

(𝑖 = 1, 2, . . . , 𝑛) are equal, that is, ��𝑖= ([π‘Ž

𝑖, 𝑏

𝑖], [𝑐

𝑖, 𝑑

𝑖]) = οΏ½οΏ½ =

([π‘Ž, 𝑏], [𝑐, 𝑑]), for all 𝑖, we have

IIFOWBM𝑝,π‘ž(οΏ½οΏ½

1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛) = οΏ½οΏ½ = ([π‘Ž, 𝑏] , [𝑐, 𝑑]) . (15)

Proof. Since ��𝑖= ([π‘Ž

𝑖, 𝑏

𝑖], [𝑐

𝑖, 𝑑

𝑖]) = οΏ½οΏ½ = ([π‘Ž, 𝑏], [𝑐, 𝑑]), then

IIFOWBM𝑝,π‘ž(οΏ½οΏ½

1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛)

= (

𝑛

⨁

𝑖,𝑗=1,

𝑖 = 𝑗

𝑀𝑖𝑀𝑗

1 βˆ’ 𝑀𝑖

(οΏ½οΏ½π‘βŠ— οΏ½οΏ½

π‘ž))

1/(𝑝+π‘ž)

= (οΏ½οΏ½π‘βŠ— οΏ½οΏ½

π‘ž)1/(𝑝+π‘ž)

= ��𝑖

(16)

which completes the proof of Property 1.

Corollary 11. If ��𝑖= ([π‘Ž

𝑖, 𝑏

𝑖], [𝑐

𝑖, 𝑑

𝑖]) (𝑖 = 1, 2, . . . , 𝑛) is a

collection of the largest IIFVs, that is, ��𝑖= οΏ½οΏ½ = ([1, 1], [0, 0]),

6 Journal of Applied Mathematics

for all 𝑖, and (π‘€πœŽ(1), 𝑀

𝜎(2), . . . , 𝑀

𝜎(𝑛)) is precise weight vector of

��𝑖, then

IIFOWBM𝑝,π‘ž(οΏ½οΏ½

1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛)

= (

𝑛

⨁

𝑖,𝑗=1,

𝑖 = 𝑗

𝑀𝑖𝑀𝑗

1 βˆ’ 𝑀𝑖

(��𝑝

π‘–βŠ— οΏ½οΏ½

π‘ž

𝑗))

1/(𝑝+π‘ž)

= (

[[[

[

(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ 1))

1/(𝑝+π‘ž)

,

(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ 1))

1/(𝑝+π‘ž)

]]]

]

,

[1 βˆ’ (1)1/(𝑝+π‘ž)

, 1 βˆ’ (1)1/(𝑝+π‘ž)

])

= ([1, 1] , [0, 0])

(17)

which is also the largest IIFV.

Property 2 (monotonicity). Let ��𝑖= ([π‘Ž

𝑖, 𝑏

𝑖], [𝑐

𝑖, 𝑑

𝑖]) and

𝛽𝑗= ([π‘Ž

𝑗, 𝑏

𝑗], [𝑐

𝑗, 𝑑

𝑗]) (𝑖, 𝑗 = 1, 2, . . . , 𝑛) be two collections

of IIFVs; if π‘Žπ‘–β‰€ π‘Ž

𝑗, 𝑏

𝑖≀ 𝑏

𝑗, 𝑐

𝑖≀ 𝑐

𝑗and 𝑑

𝑖≀ 𝑑

𝑗, for all 𝑖, then

IIFOWBM𝑝,π‘ž(οΏ½οΏ½

1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛)

≀ IIFOWBM𝑝,π‘ž(𝛽

1, 𝛽

2, . . . , 𝛽

𝑛) .

(18)

Proof. Theproof of Property 2 is similar to Property 10 in [15].

Property 3 (transformation). Letting ��𝑖= ([π‘Ž

𝑖, 𝑏

𝑖], [𝑐

𝑖, 𝑑

𝑖])

(𝑖 = 1, 2, . . . , 𝑛) be a set of IIFVs and (𝛼1, 𝛼

2, . . . , 𝛼

𝑛) the per-

mutation of (οΏ½οΏ½1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛), then

IIFOWBM𝑝,π‘ž(𝛼

1, 𝛼

2, . . . , 𝛼

𝑛)

= IIFOWBM𝑝,π‘ž(οΏ½οΏ½

1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛) .

(19)

Proof. Since (𝛼1, 𝛼

2, . . . , 𝛼

𝑛) is a permutation of (οΏ½οΏ½

1, οΏ½οΏ½

2,

. . . , ��𝑛), then

(

𝑛

⨁

𝑖,𝑗=1,

𝑖 = 𝑗

𝑀𝑖𝑀𝑗

1 βˆ’ 𝑀𝑖

��𝑝

π‘–βŠ— οΏ½οΏ½

π‘ž

𝑗)

1/(𝑝+π‘ž)

= (

𝑛

⨁

𝑖,𝑗=1,

𝑖 = 𝑗

𝑀𝑖𝑀𝑗

1 βˆ’ 𝑀𝑖

𝛼𝑝

π‘–βŠ— 𝛼

π‘ž

𝑗)

1/(𝑝+π‘ž)

.

(20)

Thus,

IIFOWBM𝑝,π‘ž(𝛼

1, 𝛼

2, . . . , 𝛼

𝑛)

= IIFOWBM𝑝,π‘ž(οΏ½οΏ½

1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛) .

(21)

Definition 12. Let ��𝑖= ([π‘Ž

𝑖, 𝑏

𝑖], [𝑐

𝑖, 𝑑

𝑖]) (𝑖 = 1, 2, . . . , 𝑛)

be a collection of IIFVs with the weight vector 𝑀 =

(𝑀1, 𝑀

2, . . . , 𝑀

𝑛) such that 𝑝, π‘ž, π‘Ÿ β‰₯ 0 and βˆ‘π‘›

𝑖=1𝑀𝑖= 1. If

GIIFOWBM𝑝,π‘ž,π‘Ÿ(οΏ½οΏ½

1, . . . , οΏ½οΏ½

𝑛)

=(

𝑛

⨁

𝑖,𝑗,π‘˜=1

𝑖 = 𝑗 = π‘˜

π‘€π‘–π‘€π‘—π‘€π‘˜

(1 βˆ’ 𝑀𝑖) (1 βˆ’ 𝑀

π‘–βˆ’ 𝑀

𝑗)

(��𝑝

π‘–βŠ— οΏ½οΏ½

π‘ž

π‘—βŠ— οΏ½οΏ½

π‘Ÿ

π‘˜))

1/(𝑝+π‘ž+π‘Ÿ)

,

(22)

then GIIFOWBM𝑝,π‘ž,π‘Ÿ is called the generalized interval-valued intuitionistic fuzzy optimized weighted Bonferronimean (GIIFOWBM).

Theorem 13. Letting ��𝑖= ([π‘Ž

𝑖, 𝑏

𝑖], [𝑐

𝑖, 𝑑

𝑖]) (𝑖 = 1, 2, . . . , 𝑛) be

a set of IIFVs with the weight vector (𝑀1, 𝑀

2, . . . , 𝑀

𝑛), such that

𝑝, π‘ž, π‘Ÿ β‰₯ 0 andβˆ‘π‘›

𝑖=1𝑀𝑖= 1, then the aggregated value by using

the GIIFOWBM is also an IIFV and

GIIFOWBM𝑝,π‘ž,π‘Ÿ (οΏ½οΏ½1, οΏ½οΏ½2, . . . , ��𝑛)

= (

𝑛

⨁

𝑖,𝑗,π‘˜=1

𝑖 = 𝑗 = π‘˜

π‘€π‘–π‘€π‘—π‘€π‘˜

(1 βˆ’ 𝑀𝑖) (1 βˆ’ 𝑀𝑖 βˆ’ 𝑀𝑗)

(��𝑝

π‘–βŠ— οΏ½οΏ½π‘ž

π‘—βŠ— οΏ½οΏ½π‘Ÿ

π‘˜))

1/(𝑝+π‘ž+π‘Ÿ)

= (

[[[[

[

(1 βˆ’

𝑛

∏

𝑖,𝑗,π‘˜=1

𝑖 = 𝑗 = π‘˜

(1 βˆ’ π‘Žπ‘

π‘–π‘Žπ‘ž

π‘—π‘Žπ‘Ÿ

π‘˜)

π‘€π‘–π‘€π‘—π‘€π‘˜/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

)

1/(𝑝+π‘ž+π‘Ÿ)

,

(1 βˆ’

𝑛

∏

𝑖,𝑗,π‘˜=1

𝑖 = 𝑗 = π‘˜

(1 βˆ’ 𝑏𝑝

π‘–π‘π‘ž

π‘—π‘π‘Ÿ

π‘˜)

π‘€π‘–π‘€π‘—π‘€π‘˜/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

)

1/(𝑝+π‘ž+π‘Ÿ)

]]]]

]

Γ—

[[[[

[

1 βˆ’(1 βˆ’

𝑛

∏

𝑖,𝑗,π‘˜=1

𝑖 = 𝑗 = π‘˜

(1 βˆ’ (1 βˆ’ 𝑐𝑖)𝑝(1 βˆ’ 𝑐𝑗)

π‘ž

Γ—(1 βˆ’ π‘π‘˜)π‘Ÿ)π‘€π‘–π‘€π‘—π‘€π‘˜

/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

)

1/(𝑝+π‘ž+π‘Ÿ)

,

1 βˆ’(1 βˆ’

𝑛

∏

𝑖,𝑗,π‘˜=1

𝑖 = 𝑗 = π‘˜

(1 βˆ’ (1 βˆ’ 𝑑𝑖)𝑝(1 βˆ’ 𝑑𝑗)

π‘ž

Γ—(1 βˆ’ π‘‘π‘˜)π‘Ÿ)π‘€π‘–π‘€π‘—π‘€π‘˜

/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

)

1/(𝑝+π‘ž+π‘Ÿ)

]]]]

]

).

(23)

Journal of Applied Mathematics 7

Proof. By the operational laws for IIFVs, we have

��𝑝

𝑖= ([π‘Ž

𝑝

𝑖, 𝑏

𝑝

𝑖] , [1 βˆ’ (1 βˆ’ 𝑐

𝑖)𝑝

, 1 βˆ’ (1 βˆ’ 𝑑𝑖)𝑝

]) ,

οΏ½οΏ½π‘ž

𝑗= ([π‘Ž

π‘ž

𝑗, 𝑏

π‘ž

𝑗] , [1 βˆ’ (1 βˆ’ 𝑐

𝑗)π‘ž

, 1 βˆ’ (1 βˆ’ 𝑑𝑗)π‘ž

]) ,

οΏ½οΏ½π‘Ÿ

π‘˜= ([π‘Ž

π‘Ÿ

π‘˜, 𝑏

π‘Ÿ

π‘˜] , [1 βˆ’ (1 βˆ’ 𝑐

π‘˜)π‘Ÿ

, 1 βˆ’ (1 βˆ’ π‘‘π‘˜)π‘Ÿ

]) ,

π‘€π‘–π‘€π‘—π‘€π‘˜

(1 βˆ’ 𝑀𝑖) (1 βˆ’ 𝑀

π‘–βˆ’ 𝑀

𝑗)

��𝑝

π‘–βŠ— οΏ½οΏ½

π‘ž

π‘—βŠ— οΏ½οΏ½

π‘Ÿ

π‘˜

= ([1 βˆ’ (1 βˆ’ π‘Žπ‘

π‘–π‘Žπ‘ž

π‘—π‘Žπ‘Ÿ

π‘˜)π‘€π‘–π‘€π‘—π‘€π‘˜/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

,

1 βˆ’ (1 βˆ’ 𝑏𝑝

π‘–π‘π‘ž

π‘—π‘π‘Ÿ

π‘˜)π‘€π‘–π‘€π‘—π‘€π‘˜/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

] ,

[(1 βˆ’(1 βˆ’ 𝑐𝑖)𝑝

(1βˆ’ 𝑐𝑗)π‘ž

(1 βˆ’ π‘π‘˜)π‘Ÿ

)π‘€π‘–π‘€π‘—π‘€π‘˜/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

,

(1 βˆ’ (1 βˆ’ 𝑑𝑖)𝑝

(1 βˆ’ 𝑑𝑗)π‘ž

Γ—(1 βˆ’ π‘‘π‘˜)π‘Ÿ

)π‘€π‘–π‘€π‘—π‘€π‘˜/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

]) .

(24)

Therefore,

GIIFOWBM𝑝,π‘ž,π‘Ÿ (οΏ½οΏ½1, οΏ½οΏ½2, . . . , ��𝑛)

= (

𝑛

⨁

𝑖,𝑗,π‘˜=1

𝑖 = 𝑗 = π‘˜

π‘€π‘–π‘€π‘—π‘€π‘˜

(1 βˆ’ 𝑀𝑖) (1 βˆ’ 𝑀𝑖 βˆ’ 𝑀𝑗)

(��𝑝

π‘–βŠ— οΏ½οΏ½π‘ž

π‘—βŠ— οΏ½οΏ½π‘Ÿ

π‘˜))

1/(𝑝+π‘ž+π‘Ÿ)

= (

[[[[

[

(1 βˆ’

𝑛

∏

𝑖,𝑗,π‘˜=1

𝑖 = 𝑗 = π‘˜

(1 βˆ’ π‘Žπ‘

π‘–π‘Žπ‘ž

π‘—π‘Žπ‘Ÿ

π‘˜)

π‘€π‘–π‘€π‘—π‘€π‘˜/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

)

1/(𝑝+π‘ž+π‘Ÿ)

,

(1 βˆ’

𝑛

∏

𝑖,𝑗,π‘˜=1

𝑖 = 𝑗 = π‘˜

(1 βˆ’ 𝑏𝑝

π‘–π‘π‘ž

π‘—π‘π‘Ÿ

π‘˜)

π‘€π‘–π‘€π‘—π‘€π‘˜/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

)

1/(𝑝+π‘ž+π‘Ÿ)

]]]]

]

,

[[[

[

1 βˆ’(1 βˆ’

𝑛

∏

𝑖,𝑗,π‘˜=1

𝑖 = 𝑗 = π‘˜

(1 βˆ’ (1 βˆ’ 𝑐𝑖)𝑝(1 βˆ’ 𝑐𝑗)

π‘ž

Γ—(1 βˆ’ π‘π‘˜)π‘Ÿ)π‘€π‘–π‘€π‘—π‘€π‘˜

/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

)

1/(𝑝+π‘ž+π‘Ÿ)

,

1 βˆ’(1 βˆ’

𝑛

∏

𝑖,𝑗,π‘˜=1

𝑖 = 𝑗 = π‘˜

(1 βˆ’ (1 βˆ’ 𝑑𝑖)𝑝(1 βˆ’ 𝑑𝑗)

π‘ž

Γ—(1 βˆ’ π‘‘π‘˜)π‘Ÿ)π‘€π‘–π‘€π‘—π‘€π‘˜

/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

)

1/(𝑝+π‘ž+π‘Ÿ)

]]]]

]

).

(25)

In addition, since

0≀(1βˆ’

𝑛

∏

𝑖,𝑗,π‘˜=1,

𝑖 = 𝑗 = π‘˜

(1βˆ’π‘Žπ‘

π‘–π‘Žπ‘ž

π‘—π‘Žπ‘Ÿ

π‘˜)π‘€π‘–π‘€π‘—π‘€π‘˜/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

)

1/(𝑝+π‘ž+π‘Ÿ)

≀ 1,

0≀(1 βˆ’

𝑛

∏

𝑖,𝑗,π‘˜=1,

𝑖 = 𝑗 = π‘˜

(1 βˆ’ 𝑏𝑝

π‘–π‘π‘ž

π‘—π‘π‘Ÿ

π‘˜)π‘€π‘–π‘€π‘—π‘€π‘˜/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

)

1/(𝑝+π‘ž+π‘Ÿ)

≀ 1,

(26)

then

0 ≀ 1 βˆ’(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ (1 βˆ’ 𝑐𝑖)𝑝

(1 βˆ’ 𝑐𝑗)π‘ž

Γ—(1 βˆ’ π‘π‘˜)π‘Ÿ

)π‘€π‘–π‘€π‘—π‘€π‘˜/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

)

1/(𝑝+π‘ž+π‘Ÿ)

≀ 1,

0 ≀ 1 βˆ’(1 βˆ’

𝑛

∏

𝑖,𝑗=1,

𝑖 = 𝑗

(1 βˆ’ (1 βˆ’ 𝑑𝑖)𝑝

(1 βˆ’ 𝑑𝑗)π‘ž

Γ—(1 βˆ’ π‘‘π‘˜)π‘Ÿ

)π‘€π‘–π‘€π‘—π‘€π‘˜/(1βˆ’π‘€π‘–)(1βˆ’π‘€π‘–βˆ’π‘€π‘—)

)

1/(𝑝+π‘ž+π‘Ÿ)

≀ 1

(27)

which completes the proof of Theorem 13.

Property 4 (idempotency). If all IIFVs ��𝑖= ([π‘Ž

𝑖, 𝑏

𝑖],

[𝑐𝑖, 𝑑

𝑖]) (𝑖 = 1, 2, . . . , 𝑛) are equal, that is, οΏ½οΏ½

𝑖=

([π‘Žπ‘–, 𝑏

𝑖], [𝑐

𝑖, 𝑑

𝑖]) = οΏ½οΏ½ = ([π‘Ž, 𝑏], [𝑐, 𝑑]), for all 𝑖, then

GIIFOWBM𝑝,π‘ž,π‘Ÿ(οΏ½οΏ½

1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛) = οΏ½οΏ½ = ([π‘Ž, 𝑏] , [𝑐, 𝑑]) .

(28)

Proof. The proof of Property 4 is similar to Property 1.

Corollary 14. If ��𝑖= ([π‘Ž

𝑖, 𝑏

𝑖], [𝑐

𝑖, 𝑑

𝑖]) (𝑖 = 1, 2, . . . , 𝑛) is a set

of the largest IIFVs, that is, ��𝑖= οΏ½οΏ½ = ([1, 1], [0, 0]), for all 𝑖,

and (π‘€πœŽ(1), 𝑀

𝜎(2), . . . , 𝑀

𝜎(𝑛)) is precise weight vector of οΏ½οΏ½

𝑖, then

GIIFOWBM𝑝,π‘ž(οΏ½οΏ½

1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛) = ([1, 1] , [0, 0]) (29)

which is also the largest IIFV.

8 Journal of Applied Mathematics

Property 5 (monotonicity). Let ��𝑖= ([π‘Ž

𝑖, 𝑏

𝑖], [𝑐

𝑖, 𝑑

𝑖]) and 𝛽

𝑗=

([π‘Žπ‘—, 𝑏

𝑗], [𝑐

𝑗, 𝑑

𝑗]) (𝑖, 𝑗 = 1, 2, . . . , 𝑛) be two sets of IIFVs; if π‘Ž

𝑖≀

π‘Žπ‘—, 𝑏

𝑖≀ 𝑏

𝑗, 𝑐

𝑖≀ 𝑐

𝑗and 𝑑

𝑖≀ 𝑑

𝑗, for all 𝑖, then

GIIFOWBM𝑝,π‘ž,π‘Ÿ(οΏ½οΏ½

1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛)

≀ GIIFOWBM𝑝,π‘ž,π‘Ÿ(𝛽

1, 𝛽

2, . . . , 𝛽

𝑛) .

(30)

Proof. The proof of Property 5 is similar to Property 2.

Property 6 (transformation). Letting ��𝑖= ([π‘Ž

𝑖, 𝑏

𝑖], [𝑐

𝑖, 𝑑

𝑖])

(𝑖 = 1, 2, . . . , 𝑛) be a collection of IIFVs and (𝛼1, 𝛼

2, . . . , 𝛼

𝑛)

is any permutation of (οΏ½οΏ½1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛), then

GIIFOWBM𝑝,π‘ž,π‘Ÿ(𝛼

1, 𝛼

2, . . . , 𝛼

𝑛)

= GIIFOWBM𝑝,π‘ž,π‘Ÿ(οΏ½οΏ½

1, οΏ½οΏ½

2, . . . , οΏ½οΏ½

𝑛) .

(31)

Proof. The proof of Property 6 is similar to Property 3.

5. Case Illustration

In the following,wewill apply the IIFOWBMandGIIFOWBMoperators to group decision making and utilize a practicalcase (adapted from Xu, 2007) [23] involving the assessmentof a set of agroecological regions in Hubei Province, China,to illustrate the developed methods.

Located in Central China and the middle reaches of theChangjiang (Yangtze) River, Hubei Province is distributed ina transitional belt where physical conditions and landscapesare on the transition from north to south and from eastto west. Thus, Hubei Province is well known as β€œa land ofrice and fish” since the region enjoys some of the favorablephysical conditions, with diversity of natural resources andthe suitability for growing various crops. At the same time,however, there are also some restrictive factors for developingagriculture such as a tight manland relation between a con-stant degradation of natural resources and a growing popu-lation pressure on land resource reserve. Despite cherishinga burning desire to promote their standard of living, peopleliving in the area are frustrated because they have no abilityto enhance the power to accelerate economic developmentbecause of a dramatic decline in quantity of natural resourcesand a deteriorating environment. Based on the distinctnessand differences in environment and natural resources, HubeiProvince can be roughly divided into four agroecologi-cal regions: π‘Ž

1-Wuhan-Ezhou-Huanggang; π‘Ž

2-Northeast of

Hubei; π‘Ž3-Southeast of Hubei; and π‘Ž

4-West of Hubei. In order

to prioritize these agroecological regions π‘Žπ‘–(𝑖 = 1, 2, 3, 4)

with respect to their comprehensive functions, a committeecomprised of four experts 𝑒

𝑗(𝑗 = 1, 2, 3, 4) (whose weight

vector is 𝑀 = (0.35, 0.20, 0.15, 0.30)) has been set up toprovide assessment information on π‘Ž

𝑖(𝑖 = 1, 2, 3, 4). The

expert 𝑒𝑗compared these four agroecological regions with

respect to their comprehensive functions and construct andrepresented the IIFVs 𝛼

𝑖𝑗= ([π‘Ž

𝑖𝑗, 𝑏

𝑖𝑗], [𝑐

𝑖𝑗, 𝑑

𝑖𝑗]), where [π‘Ž

𝑖𝑗, 𝑏

𝑖𝑗]

indicates the agreement degree and [𝑐𝑖𝑗, 𝑑

𝑖𝑗] indicates the

unagreement degree. To get the optimal alternative by thenew IIOWBM and GIIFOWBM operators, the followingsteps are given.

Table 1: Interval-valued intuitionistic fuzzy decision matrix 𝑅.

π‘Ž1

π‘Ž2

𝑒1

([0.1595, 0.6264],[0.1707, 0.2472])

([0.2034, 0.6718],[0.1539, 0.2335])

𝑒2

([0.2617, 0.6424],[0.1424, 0.2658])

([0.1776, 0.7239],[0.0000, 0.1971])

𝑒3

([0.2789, 0.6039],[0.1667, 0.2643])

([0.3000, 0.6120],[0.1438, 0.2877])

𝑒4

([0.1971, 0.7480],[0.0000, 0.0000])

([0.2827, 0.6000],[0.1668, 0.2678])

π‘Ž3

π‘Ž4

𝑒1

([0.2768, 0.6693],[0.1725, 0.2672])

([0.3068, 0.6319],[0.1819, 0.2677)

𝑒2

([0.2001, 0.6744],[0.1175, 0.2161])

([0.2959, 0.6343],[0.1879, 0.2493])

𝑒3

([0.3492, 0.5811],[0.2005, 0.3271])

([0.1941, 0.6091],[0.2127, 0.2947])

𝑒4

([0.2562, 0.5386],[0.2474, 0.2973])

([0.2728, 0.5636],[0.2576, 0.3826])

Step 1. We normalize π‘Žπ‘–π‘—to π‘Ÿ

𝑖𝑗and construct the normaliza-

tion interval-valued intuitionistic fuzzy decision matrix 𝑅 =(π‘Ÿπ‘–π‘—)4Γ—5

(see Table 1).

Step 2. Aggregate all the preference values π‘Ÿπ‘–π‘—(𝑖, 𝑗 = 1, 2, 3, 4)

of the 𝑖th line and get the overall performance value 𝑐𝑖corre-

sponding to the expert 𝑒𝑖by the IIFOWBMoperator (here we

let 𝑝 = π‘ž = 1):

𝑐1= ([0.2326, 0.6441] , [0.1707, 0.2532]) ,

𝑐2= ([0.2472, 0.6629] , [0.0000, 0.2381]) ,

𝑐3= ([0.2702, 0.6038] , [0.1790, 0.2868]) ,

𝑐4= ([0.2467, 0.6432] , [0.0000, 0.0000]) .

(32)

Step 3. Calculating the score 𝑠2(𝑐𝑖) of 𝑐

𝑖(𝑖 = 1, 2, 3, 4),

respectively, we can get

𝑠2(𝑐1) = 0.6132, 𝑠

2(𝑐2) = 0.6680,

𝑠2(𝑐3) = 0.6021, 𝑠

2(𝑐4) = 0.7225.

(33)

Therefore,

𝑠2(𝑐4) > 𝑠

2(𝑐2) > 𝑠

2(𝑐1) > 𝑠

2(𝑐3) (34)

and π‘Ž4> π‘Ž

2> π‘Ž

1> π‘Ž

3, and 𝑦

4is still the optimal alternative.

Based on GOWBM and GIIFOWBMoperators, the mainsteps are as follows.

Step 1∘. See Step 1.

Step 2∘. See Step 2.

Step 3∘. Utilize the GOWBM and GIIFOWBM operatorsto aggregate all the interval-valued individual intuitionistic

Journal of Applied Mathematics 9

Table 2: Interval-valued intuitionistic fuzzy decision matrix of 𝐷.

π‘Ž1

π‘Ž2

𝑒1

([0.1348, 0.5504],[0.2320, 0.3113])

([0.1705, 0.6424],[0.1761, 0.2825])

𝑒2

([0.2279, 0.6064],[0.1524, 0.2832])

([0.1555, 0.6917],[0.1006, 0.2293])

𝑒3

([0.2742, 0.5941],[0.1749, 0.2806])

([0.3000, 0.6020],[0.1539, 0.3120])

𝑒4

([0.1769, 0.6868],[0.1530, 0.2183])

([0.2657, 0.6000],[0.2109, 0.2846])

π‘Ž3

π‘Ž4

𝑒1

([0.2112, 0.6360],[0.2134, 0.2834])

([0.2924, 0.6154],[0.1998, 0.2733])

𝑒2

([0.1832, 0.6459],[0.1243, 0.2528])

([0.2469, 0.5951],[0.2188, 0.2995])

𝑒3

([0.3437, 0.5778],[0.2259, 0.3477])

([0.1770, 0.4885],[0.2534, 0.3349])

𝑒4

([0.2196, 0.5028],[0.3157, 0.3367])

([0.2427, 0.5387],[0.3145, 0.3915])

fuzzy decisionmatrices𝐷(π‘ž)= (𝑑

𝑖𝑗

π‘ž)4Γ—4(π‘ž = 1, 2, 3, 4) into the

collective interval-valued intuitionistic fuzzy decision matrix𝐷 = (𝑑

𝑖𝑗)4Γ—4

(see Table 2).

Step 4. Aggregate all the preference values𝑑𝑖𝑗(𝑖, 𝑗 = 1, 2, 3, 4)

of the 𝑖th line and get the overall performance value 𝑐𝑖

corresponding to the expert 𝑒𝑖by the GIIFOWBM operator

(here we let 𝑝 = π‘ž = π‘Ÿ = 1):

𝑐1= ([0.1907, 0.5999] , [0.2086, 0.2901]) ,

𝑐2= ([0.2093, 0.6250] , [0.1589, 0.2732]) ,

𝑐3= ([0.2532, 0.5593] , [0.2029, 0.3137]) ,

𝑐4= ([0.2179, 0.5931] , [0.2409, 0.3050]) .

(35)

Step 5. Calculating the score 𝑠2(𝑐𝑖) of 𝑐

𝑖(𝑖 = 1, 2, 3, 4),

respectively, we have

𝑠2(𝑐1) = 0.5729, 𝑠

2(𝑐2) = 0.6005,

𝑠2(𝑐3) = 0.5740, 𝑠

2(𝑐4) = 0.5663.

(36)

Therefore,

𝑠2(𝑐2) > 𝑠

2(𝑐3) > 𝑠

2(𝑐1) > 𝑠

2(𝑐4) (37)

and π‘Ž2> π‘Ž

3> π‘Ž

1> π‘Ž

4, and 𝑦

4is still the optimal alternative.

Based on the previous analysis, it could be found that themost comprehensive function is the West of Hubei.

It should be noted out that the whole ranking of the alter-natives has changed. The IIFOWBM1,1 produces the rankingof all the alternatives as π‘Ž

4> π‘Ž

2> π‘Ž

1> π‘Ž

3, which is slightly

different from the ranking of alternatives π‘Ž2> π‘Ž

3> π‘Ž

1>

π‘Ž4, derived by the GIIFOWBM1,1,1.Therefore, we can see that

the value derived by the IIFOWBMorGIIFOWBMoperatorsdepends on the choice of the parameters 𝑝, π‘ž, and π‘Ÿ.

6. Concluding Remarks

To further develop the BM, we have proposed the optimizedweighted Bonferroni mean (OWBM) and the generalizedoptimized weighted Bonferroni mean (GOWBM) in thispaper. Then, we proposed two new BM operators underthe interval-valued intuitionistic fuzzy environment, that is,the interval-valued intuitionistic fuzzy optimized weightedBonferroni mean (IIFOWBM) and the generalized interval-valued intuitionistic fuzzy optimized weighted Bonferronimean (GIIFOWBM).The new BMs can reflect the preferenceand interrelationship of the aggregated arguments and cansatisfy the basic properties of the aggregation techniquessimultaneously. Furthermore, some desirable properties ofthe IFIOWBM andGIIFOWBMoperators are investigated indetail, including idempotency,monotonicity, transformation,and boundary. Finally, based on IIFOWBMandGIIFOWBM,we give a utilized practical case involving the assessment of aset of agroecological regions in China to illustrate these newBMs.

Acknowledgment

This work was supported by National Basic Research Pro-gram of China (973 Program, no. 2010 CB328104-02).

References

[1] C. Bonferroni, β€œSullemediemultiple di potenze,” vol. 5, pp. 267–270, 1950.

[2] R. R. Yager, β€œOn generalized Bonferroni mean operators formulti-criteria aggregation,” International Journal of Approxi-mate Reasoning, vol. 50, no. 8, pp. 1279–1286, 2009.

[3] G. Choquet, β€œTheory of capacities,”Annales de l’Institut Fourier,vol. 5, pp. 131–295, 1955.

[4] R. R. Yager, β€œOn ordered weighted averaging aggregation op-erators in multicriteria decisionmaking,” IEEE Transactions onSystems, Man, and Cybernetics, vol. 18, no. 1, pp. 183–190, 1988.

[5] J. Mordelova and T. Ruckschlossova, β€œABC-aggregation func-tions,” in Proceedings of the 5th International Summer School onAggregation Operators, pp. 167–170, Palmade Mallorca, Spain,2009.

[6] G. Beliakov, S. James, J. Mordelova, T. Ruckschlossova, and R.R. Yager, β€œGeneralized Bonferroni mean operators in multi-criteria aggregation,” Fuzzy Sets and Systems, vol. 161, no. 17, pp.2227–2242, 2010.

[7] L. A. Zadeh, β€œFuzzy sets,” Information and Computation, vol. 8,pp. 338–353, 1965.

[8] L. A. Zadeh, β€œThe concept of a linguistic variable and its ap-plication to approximate reasoning. I,” Learning Systems andIntelligent Robots, vol. 8, pp. 199–249, 1975.

[9] K. T. Atanassov, β€œIntuitionistic fuzzy sets,” Fuzzy Sets and Sys-tems, vol. 20, no. 1, pp. 87–96, 1986.

[10] K. Atanassov and G. Gargov, β€œInterval valued intuitionisticfuzzy sets,” Fuzzy Sets and Systems, vol. 31, no. 3, pp. 343–349,1989.

[11] V. Torra, β€œHesitant fuzzy sets,” International Journal of IntelligentSystems, vol. 25, no. 6, pp. 529–539, 2010.

[12] Z. Xu and R. R. Yager, β€œIntuitionistic fuzzy bonferroni means,”IEEE Transactions on Systems, Man, and Cybernetics B, vol. 41,no. 2, pp. 568–578, 2011.

10 Journal of Applied Mathematics

[13] Z. Xu andQ.Chen, β€œAmulti-criteria decisionmaking procedurebased on interval-valued intuitionistic fuzzy bonferronimeans,”Journal of Systems Science and Systems Engineering, vol. 20, no.2, pp. 217–228, 2011.

[14] M. Xia, Z. Xu, and B. Zhu, β€œGeneralized intuitionistic fuzzyBonferroni means,” International Journal of Intelligent Systems,vol. 27, no. 1, pp. 23–47, 2012.

[15] W. Zhou and J. M. He, β€œIntuitionistic fuzzy geometric bon-ferroni means and their application in Multi-Criteria decisionmaking,” International Journal of Intelligent Systems, vol. 27, pp.995–1019, 2012.

[16] G. Beliakov and S. James, β€œDefining Bonferroni means overlattices,” in Proceedings of the IEEE International Conference onFuzzy Systems, pp. 1–8, 2012.

[17] W. Zhou and J. M. He, β€œIntuitionistic fuzzy Normalized weight-ed Bonferroni mean and its application in multiCriteria deci-sion making,” Journal of Applied Mathematics, vol. 2012, ArticleID 136254, 22 pages, 2012.

[18] M. M. Xia, Z. S. Xu, and B. Zhu, β€œGeometric Bonferronimeans with their application inmulti-criteria decisionmaking,”Knowledge-Based Systems, vol. 40, pp. 99–100, 2013.

[19] G. Beliakov and S. James, β€œOn extending generalizedBonferronimeans to Atanassov orthopairs in decision making contexts,”Fuzzy Sets and Systems, vol. 211, pp. 84–98, 2013.

[20] Z. Xu, β€œIntuitionistic fuzzy aggregation operators,” IEEE Trans-actions on Fuzzy Systems, vol. 15, no. 6, pp. 1179–1187, 2007.

[21] D. G. Park, Y. C. Kwun, J. H. Park, and I. Y. Park, β€œCorrelationcoefficient of interval-valued intuitionistic fuzzy sets and itsapplication to multiple attribute group decision making prob-lems,”Mathematical and Computer Modelling, vol. 50, no. 9-10,pp. 1279–1293, 2009.

[22] C. Tan, β€œA multi-criteria interval-valued intuitionistic fuzzygroup decision making with Choquet integral-based TOPSIS,”Expert Systems with Applications, vol. 38, no. 4, pp. 3023–3033,2011.

[23] Z. Xu, β€œIntuitionistic preference relations and their applicationin group decision making,” Information Sciences, vol. 177, no. 11,pp. 2363–2379, 2007.

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of


Top Related