+ All Categories
Home > Documents > Technical Characteristics

Technical Characteristics

Date post: 22-Jul-2016
Category:
Upload: abdulaziz19578155
View: 217 times
Download: 0 times
Share this document with a friend
Description:
Cables Installation Recommendations
6
IEEE 45/1580 & UL 1309/1072 Sales Office Tel:82-2-2140-3042 Fax:82-2-2140-3098 Head Office Tel:82-43-530-2000 Fax:82-43-530-2140 Pusan Office Tel:82-51-817-0295 Fax:82-51-817-0297 IEEE 45/1580 & UL 1309/1072 Sales Office Tel:82-2-2140-3042 Fax:82-2-2140-3098 Head Office Tel:82-43-530-2000 Fax:82-43-530-2140 Pusan Office Tel:82-51-817-0295 Fax:82-51-817-0297 Installation Recommendations The following installation recommendations are in accordance with IEEE 2002 1. Minimum bending radius D:cable’s diameter(mm) 2. Cable pulling-in force Care should be taken to prevent damage to insulation or distortion of cable during installation. The pulling force in Newtons should not exceed 0.036 times the circular mil area of the copper cross-sectional area times the number of conductors in the cable when pulling on the conductors utilizing pulling eyes and bolts. Pulling force for multicore cables when utilizing eyes or bolts should not include drain or ground conductors in the copper cross-sectional area. When pulling with a basket weave grip, maximum pulling tension (per grip) should not exceed 4.5kN, or the value calculated for eyes or bolts, whichever is greater. The sidewall pressure should not exceed a maximum of 7.3kN per meter of the inside radius of the bend. Cables should not be pulled in freezing conditions. If conditions are below 0 , consult the manufacturer. If it is necessary to pull in these conditions, cables shoulld be stored at a temperature above 10 for 24 h prior to installation, if the cable has been previously stored in an area under 0 . When installing low smoke cables, additional consideration should be given to handling and lubrication due to their possible lower tear strength and higher coefficient of friction than other marine cable. For more guidance concerning this subject, refer to IEEE Std 576-2001 Armored Cable 8D Unarmored Cable 6D Cable type Minimum bending radius , 3. Single-conductor ac cables To avoid an undesirable inductive effect in ac installlations, the following precautions should be observed. Closed magnetic circuits around single-conductor ac cable should be avoided, and no magnetic material should be permitted between cables of different phases of a circuit. a) Single-conductor ac cables should not be located closer than 76mm from parallel magnetic material. b) Single-conductor ac cable should be supported on insulators. Armor, if used, should be grounded only at approximately the midpoint of the cable run. c) Where single-conductor ac cables penetrate the bulkhead, conductors of each phase of the same circuit should pass through a common nonferrous bulkhead plate to prevent heating of the bulkhead. d) Single-conductor cables in-groups should be arranged to minimize their inductive effect. This may be accomplished by the transposition of cables in groups of three (one each phase) to give the effect of triplexed cable. This transposition should be made at intervals of not over 15m and need not be made in cable runs of less than 30m. 4. Cable continuity and grounding All cable should be continuous between terminations, however, splicing is permitted under certain conditions. For cable provided with armor, the armor should be electrically continuous between terminations and should be grounded at each end (multiconductor cables only); except that for final subcircuits, the armor may be grounded at the supply end only. 5. Cable locations Cable installation should avoid spaces where excessive heat and gases may be encountered such as galleys, boiler rooms and pump rooms, and spaces where cables may be exposed to damage such as cargo spaces and exposed sides of deck houses. Cables should not be located in cargo tanks, ballast tanks, fuel tanks, or water tanks except to supply equipment and instrumentaion specifically designed for such locations and whose functions require it to be installed on the tank. Such equipment may include submerged cargo pumps and associated control devices, cargo monitoring, and underwater navigation systems. Unless unavoidable, cables should not be located behind or embedded in structural heat insulation. Where cables are installed behind paneling, all connections should be readily accessible and the location of concealed connection boxes should be indicated. Cables should preferably not be run through refrigerated cargo spaces. Cables should not be located below the faceplate of the vessel s main bottom structural members or within .6m above any double bottom tanktop. Low Voltage Distribution Low Voltage Control cable Low Voltage Signal cable High Voltage Distribution Information Data
Transcript
Page 1: Technical Characteristics

IEEE 45/1580 & UL 1309/1072

Sales Office Tel:82-2-2140-3042 Fax:82-2-2140-3098Head Office Tel:82-43-530-2000 Fax:82-43-530-2140 Pusan Office Tel:82-51-817-0295 Fax:82-51-817-0297

IEEE 45/1580 & UL 1309/1072

Sales Office Tel:82-2-2140-3042 Fax:82-2-2140-3098Head Office Tel:82-43-530-2000 Fax:82-43-530-2140 Pusan Office Tel:82-51-817-0295 Fax:82-51-817-0297

Installation Recommendations

The following installation recommendations are in accordance with IEEE 2002

1. Minimum bending radius

D:cable’s diameter(mm)

2. Cable pulling-in force

Care should be taken to prevent damage to insulation or distortion of cable during installation.

The pulling force in Newtons should not exceed 0.036 times the circular mil area of the coppercross-sectional area times the number of conductors in the cable when pulling on the conductorsutilizing pulling eyes and bolts. Pulling force for multicore cables when utilizing eyes or bolts shouldnot include drain or ground conductors in the copper cross-sectional area. When pulling with abasket weave grip, maximum pulling tension (per grip) should not exceed 4.5kN, or the valuecalculated for eyes or bolts, whichever is greater.

The sidewall pressure should not exceed a maximum of 7.3kN per meter of the inside radius of thebend.

Cables should not be pulled in freezing conditions. If conditions are below 0 , consult themanufacturer.

If it is necessary to pull in these conditions, cables shoulld be stored at a temperature above 10for 24 h prior to installation, if the cable has been previously stored in an area under 0 .

When installing low smoke cables, additional consideration should be given to handling andlubrication due to their possible lower tear strength and higher coefficient of friction than othermarine cable.

For more guidance concerning this subject, refer to IEEE Std 576-2001

Armored Cable 8D

Unarmored Cable 6D

Cable type Minimum bending radius

,

3. Single-conductor ac cables

To avoid an undesirable inductive effect in ac installlations, the following precautions should beobserved.

Closed magnetic circuits around single-conductor ac cable should be avoided, and no magneticmaterial should be permitted between cables of different phases of a circuit.

a) Single-conductor ac cables should not be located closer than 76mm from parallel magneticmaterial.

b) Single-conductor ac cable should be supported on insulators. Armor, if used, should be groundedonly at approximately the midpoint of the cable run.

c) Where single-conductor ac cables penetrate the bulkhead, conductors of each phase of the samecircuit should pass through a common nonferrous bulkhead plate to prevent heating of thebulkhead.

d) Single-conductor cables in-groups should be arranged to minimize their inductive effect. This maybe accomplished by the transposition of cables in groups of three (one each phase) to give theeffect of triplexed cable. This transposition should be made at intervals of not over 15m and neednot be made in cable runs of less than 30m.

4. Cable continuity and grounding

All cable should be continuous between terminations, however, splicing is permitted under certain conditions. For cableprovided with armor, the armor should be electrically continuous between terminations and should be grounded at eachend (multiconductor cables only); except that for final subcircuits, the armor may be grounded at the supply end only.

5. Cable locations

Cable installation should avoid spaces where excessive heat and gases may be encountered such as galleys, boiler roomsand pump rooms, and spaces where cables may be exposed to damage such as cargo spaces and exposed sides of deckhouses. Cables should not be located in cargo tanks, ballast tanks, fuel tanks, or water tanks except to supply equipmentand instrumentaion specifically designed for such locations and whose functions require it to be installed on the tank. Suchequipment may include submerged cargo pumps and associated control devices, cargo monitoring, and underwaternavigation systems.

Unless unavoidable, cables should not be located behind or embedded in structural heat insulation. Where cables areinstalled behind paneling, all connections should be readily accessible and the location of concealed connection boxesshould be indicated. Cables should preferably not be run through refrigerated cargo spaces.

Cables should not be located below the faceplate of the vessel s main bottom structural members or within .6m above anydouble bottom tanktop.

Low

Vol

tage

Dis

tribu

tion

Low

Vol

tage

Con

trol c

able

Low

Vol

tage

Sig

nal c

able

Hig

h V

olta

ge D

istri

butio

nIn

form

atio

n D

ata

Page 2: Technical Characteristics

Electrical Data

1. Construction and resistance of conductor

(1) Temperature correction factors for annealed high conductivity copper

Values of the correction factor (Kc) and reciprocal of factor (Kr) are given in following table for a normal range oftemperatures in accordance with IEC Pub. 60228.The values are based on the following formula :

1 254.5 Kc = = , Kr = 1/Kc

1+0.00393 (t 20) 234.5+t

Note) /1000ft = 0.3048 /km/km = 3.281 /1000ft

IEEE 45/1580 & UL 1309/1072

Sales Office Tel:82-2-2140-3042 Fax:82-2-2140-3098Head Office Tel:82-43-530-2000 Fax:82-43-530-2140 Pusan Office Tel:82-51-817-0295 Fax:82-51-817-0297

IEEE 45/1580 & UL 1309/1072

Sales Office Tel:82-2-2140-3042 Fax:82-2-2140-3098Head Office Tel:82-43-530-2000 Fax:82-43-530-2140 Pusan Office Tel:82-51-817-0295 Fax:82-51-817-0297

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Temperature

( )

1.063

1.067

1.071

1.075

1.079

1.082

1.086

1.090

1.094

1.098

1.102

1.106

1.110

1.114

1.118

1.122

1.126

1.130

1.134

1.138

1.142

1.146

1.149

1.153

1.157

1.177

1.197

1.216

1.235

1.256

1.275

Reciprocalof factor

(Kr)

0.940

0.936

0.933

0.930

0.927

0.923

0.920

0.917

0.914

0.910

0.907

0.904

0.901

0.898

0.894

0.891

0.888

0.885

0.882

0.879

0.876

0.873

0.870

0.867

0.864

0.850

0.836

0.822

0.809

0.797

0.784

Correctionfactor

(Kr)

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

65

70

75

80

85

90

Temperature

( )

0.941

0.945

0.949

0.953

0.957

0.961

0.965

0.969

0.972

0.976

0.980

0.984

0.988

0.992

0.966

1.000

1.004

1.008

1.012

1.016

1.020

1.024

1.028

1.031

1.035

1.039

1.043

1.047

1.051

1.055

1.059

Reciprocalof factor

(Kr)

1.063

1.058

1.054

1.050

1.045

1.041

1.037

1.033

1.028

1.024

1.020

1.016

1.012

1.008

1.004

1.000

0.996

0.992

0.988

0.985

0.981

0.977

0.973

0.970

0.966

0.962

0.958

0.955

0.951

0.947

0.944

Correctionfactor

(Kr)

Low

Vol

tage

Dis

tribu

tion

Low

Vol

tage

Con

trol c

able

Low

Vol

tage

Sig

nal c

able

Hig

h V

olta

ge D

istri

butio

nIn

form

atio

n D

ata

6. Cable protection

Cables should be adequately protected where exposed to mechanical damage. Cables should be securedagainst chafing or displacement due to vibration. Cables in bunkers, and where particularly liable to damage,such as locations in way of cargo ports, hatches, tank tops, and where passing through decks, should beprotected by removable metal coverings, angle irons, or other equivalent means.

Where cables pass through insulation, they should be protected by a continuous pipe. For wiring enteringrefrigerated compartments, the pipe should be of heat-insulating material (fiber or phenolic tubing) joined tothe bulkhead-stuffing tube, or a section of such material should be inserted between the bulkhead-stuffing tubeand the metallic pipe.

Where cables are installed in pipes, the space factor (ratio of the sum of the cross-sectional areascorresponding to the external diameter of the cables to the internal cross-sectional areas of the pipe) shall notbe greater than 0.41, except for two cables, where the space factor shall not exceed 0.31, Pipes shall be soarranged or designed to prevent the accumulation of internal condensation.

Page 3: Technical Characteristics

(3) Construction and resistances of flexible stranded conductors.

* Rope lay strandedNote) The number of strands are nominal and may vary so as to comply with both the d.c resistance and maximum

diameter requirements.Resistance( /km) were calculated from the ICEA formula and converted to /km at 20 .R=Ro Ko(3.281) K1(0.98073)

Ro ; Norminal conductor resistance in /1000ft @ 25Ko ; Converts /1000ft to /km (Ko=3.281)K1 ; Converts 25 values to 20 , ICEA S 61 402 Table 6 1 (K1=0.98073)

IEEE 45/1580 & UL 1309/1072

Sales Office Tel:82-2-2140-3042 Fax:82-2-2140-3098Head Office Tel:82-43-530-2000 Fax:82-43-530-2140 Pusan Office Tel:82-51-817-0295 Fax:82-51-817-0297

IEEE 45/1580 & UL 1309/1072

Sales Office Tel:82-2-2140-3042 Fax:82-2-2140-3098Head Office Tel:82-43-530-2000 Fax:82-43-530-2140 Pusan Office Tel:82-51-817-0295 Fax:82-51-817-0297

22

20

18

16

14

12

10

8

6*

5*

4*

3*

2*

1*

1/0*

2/0*

3/0*

4/0*

262*MCM

313*MCM

373*MCM

444*MCM

535*MCM

646*MCM

777*MCM

1111*MCM

ConductorSize

AWG/MCM

19/34

19/32

19/30

19/29

19/27

19/25

27/24

37/24

61/24

91/24

105/24

125/24

150/24

225/24

275/24

325/24

450/24

550/24

650/24

775/24

925/24

1100/24

1325/24

1600/24

1925/24

2750/24

Stranding No.& size eachwire in strand

1 19

1 19

1 19

1 19

1 19

1 19

1 27

1 37

1 61

7 13

7 15

7 18

7 21

7 32

19 15(7 15+12 14)

19 17

19 24(7 23+12 24)

19 29(7 28+12 29)

19 34

19 41

37 25

37 30

37 36

37 43

37 52

61 45

Suggestedconstruction

0.030

0.039

0.048

0.054

0.068

0.086

0.120

0.142

0.198

0.235

0.261

0.286

0.318

0.381

0.433

0.450

0.555

0.605

0.654

0.720

0.790

0.860

0.940

1.040

1.128

1.338

NominalDiameter

(inch)

0.031(0.787)

0.039(0.991)

0.052(1.321)

0.062(1.575)

0.074(1.880)

0.094(2.388)

0.128(3.251)

0.147(3.734)

0.207(5.258)

0.244(6.198)

0.264(6.706)

0.288(7.315)

0.325(8.255)

0.390(9.906)

0.440(11.176)

0.477(12.116)

0.565(14.351)

0.620(15.748)

0.660(16.764)

0.725(18.415)

0.795(20.193)

0.870(22.098)

0.970(24.638)

1.060(26.924)

1.130(28.702)

1.340(34.036)

MaximumDiameter

(inch) (mm)

16.01

9.91

6.34

4.92

3.11

1.96

1.125*

0.7899

0.483

0.330

0.287

0.236

0.203

0.135

0.110

0.094

0.068

0.055

0.047

0.0393

0.0326

0.0273

0.0227

0.0188

0.0156

0.0110

Maximum dcResistance at25

( /1000ft)

51.51

31.89

20.40

15.83

10.01

6.31

3.62

2.542

1.554

1.062

0.923

0.759

0.653

0.434

0.354

0.302

0.219

0.177

0.151

0.1265

0.1049

0.0878

0.0730

0.0605

0.0502

0.0354

Maximum acResistance at20

( /km)

Low

Vol

tage

Dis

tribu

tion

Low

Vol

tage

Con

trol c

able

Low

Vol

tage

Sig

nal c

able

Hig

h V

olta

ge D

istri

butio

nIn

form

atio

n D

ata

(2) Construction and resistances of standard class B concentric conductors.

Note) Resistance( /km) were calculated from the ICEA formula and converted to /km at 20 .R=Ro Ko(3.281) K1(0.98073) K2(1.02) K3(1.02 or 1.04)

Ro ; Norminal conductor resistance in /1000ft @ 25Ko ; Converts /1000ft to /km (Ko=3.281)K1 ; Converts 25 values to 20 , ICEA S 61 402 Table 6 1 (K1=0.98073)K2 ; Converts nominal resistance to maximum, ICEA S 61 402 Table 2 3 (K2=1.02)K3 ; Converts single conductor resistance to multiple conductor resistance

K3 = 1.02 for multiple conductorK3 = 1.04 for pair or other precabled units

22

20

18

16

14

12

10

8

7

6

5

4

3

2

1

1/0

2/0

3/0

4/0

250MCM

300MCM

350MCM

400MCM

500MCM

600MCM

750MCM

1000MCM

7

7

7

7

7

7

7

7

7

7

7

7

7

7

19

19

19

19

19

37

37

37

37

37

61

61

61

9.6 0.244

12.1 0.307

15.2 0.386

19.2 0.488

24.2 0.615

30.5 0.775

38.5 0.978

48.6 1.234

54.5 1.384

61.2 1.554

68.8 1.748

77.2 1.961

86.7 2.202

97.4 2.474

66.4 1.687

74.5 1.892

83.7 2.126

94.0 2.388

105.5 2.680

82.2 2.088

90.0 2.286

97.3 2.471

104.0 2.642

116.2 2.951

99.2 2.520

110.9 2.817

128.0 3.251

ConductorSize

AWG/MCM

Numberof wires

EA

Diameterof wires

(mm) (mm)

0.0288 0.732

0.036 0.922

0.046 1.158

0.058 1.463

0.073 1.844

0.092 2.324

0.116 2.946

0.146 3.708

0.164 4.166

0.184 4.674

0.206 5.232

0.232 5.893

0.260 6.604

0.292 7.417

0.332 8.433

0.373 9.474

0.418 10.643

0.470 11.938

0.528 13.411

0.573 14.605

0.630 16.002

0.681 17.297

0.728 18.491

0.813 20.650

0.893 22.682

0.998 25.349

1.152 29.261

Conductordiameter

(mm) (mm)

16.7

10.6

7.05

4.44

2.73

1.72

1.08

0.679

0.539

0.427

0.339

0.269

0.213

0.169

0.134

0.106

0.0843

0.0669

0.0525

0.0449

0.0374

0.0320

0.0278

0.0222

0.0187

0.0148

0.0111

54.81 55.90 57.00

34.79 35.48 36.18

23.14 23.60 24.06

14.57 14.86 15.15

8.96 9.14 9.32

5.64 5.76 5.87

3.54 3.62 3.69

2.228 2.273 2.318

1.769 1.804 1.840

1.401 1.429 1.457

1.113 1.135 1.157

0.883 0.901 0.918

0.699 0.713 -

0.555 0.566 -

0.440 0.449 -

0.348 0.355 -

0.2767 0.2822 -

0.2196 0.2240 -

0.1723 0.1757 -

0.1474 0.1503 -

0.1227 0.1252 -

0.1050 0.1071 -

0.0912 0.0931 -

0.0729 0.0743 -

0.0614 0.0626 -

0.0486 0.0495 -

0.0364 0.0372 -

Nominal dcResistanceat 25

( /1000ft)

Maximum dc Resistane at 20

Single Multi Pairconductors conductors conductors

( /km) ( /km) ( /km)

Page 4: Technical Characteristics

IEEE 45/1580 & UL 1309/1072

Sales Office Tel:82-2-2140-3042 Fax:82-2-2140-3098Head Office Tel:82-43-530-2000 Fax:82-43-530-2140 Pusan Office Tel:82-51-817-0295 Fax:82-51-817-0297

IEEE 45/1580 & UL 1309/1072

Sales Office Tel:82-2-2140-3042 Fax:82-2-2140-3098Head Office Tel:82-43-530-2000 Fax:82-43-530-2140 Pusan Office Tel:82-51-817-0295 Fax:82-51-817-0297

4. Maximum current-carrying capacity

Distribution, control and signal cables-single banked maximum ampacity in air(IEEE 45-1998, Type P @ 45 ambient)

20 0.6 1022

18 1.0 1624

16 1.2 2583

14 2.1 4110

12 3.3 6530

10 5.3 10400

8 8.4 16500

7 10.6 20800

6 13.3 26300

5 16.8 33100

4 21.1 41700

3 26.7 52600

2 33.6 66400

1 42.4 83700

1/0 53.5 106000

2/0 67.4 133000

3/0 85.0 168000

4/0 107.2 212000

250MCM 127 250000

262MCM 133.1 262600

300MCM 152 300000

313MCM 158.7 313100

350MCM 177 350000

373MCM 189.4 373700

400MCM 203 400000

444MCM 225.2 444400

500MCM 253 500000

535MCM 271.3 535000

600MCM 304 600000

646MCM 327.6 646000

750MCM 380 750000

777MCM 394.2 777000

1000MCM 507 1000000

1111MCM 563.1 1111000

1250MCM 633 1250000

1500MCM 706 1500000

2000MCM 1013 2000000

Conductor

AWG/MCM mm2 Citcular mils

12 10 9

16 14 12

23 19 16

37 31 25

45 40 31

58 49 41

72 64 52

84 78 63

96 85 70

109 101 82

128 110 92

146 132 108

169 149 122

194 174 143

227 199 164

262 242 188

300 265 218

351 307 252

389 344 282

407 358 294

449 385 316

455 391 321

485 421 344

516 442 361

533 455 371

588 504 411

609 520 428

662 566 465

678 585 478

731 632 516

786 656 537

822 684 562

939

1025 854 701

1072

1195

1400

Single Conductor Two Conductor Three Conductor Cable Cable Cable

Maximum conductor temperature : 100 Low

Vol

tage

Dis

tribu

tion

Low

Vol

tage

Con

trol c

able

Low

Vol

tage

Sig

nal c

able

Hig

h V

olta

ge D

istri

butio

nIn

form

atio

n D

ata

2. Temperature correction factors for insulation resistance

The insulation resistance shall be measured at room temperature and corrected to 15.5 by the correction factors given inthe following table

3. Minimum insulation resistance and high-voltage ac test potentials

(1) Type P(X110) Insulated Cables

(2) Type E Insulated cables for 5~15kv shielded conductors

Note) Based on a conductor kilometer : K=6100(see, table 12.6 of UL 1072)

5 41

10 50

15.5 60

20 68

25 77

30 86

Temperature

0.75 0.098

0.83 0.29

1.00 1.00

1.20 2.5

1.57 6.6

2.10 16.5

Correction Factors for Tye P(X110) or Type E Insulated Cables

AWG/kcmil

22 ~ 16

14 ~ 9

8 ~ 2

1 ~ 4/0

250 ~ 525

526 and larger

ConductorSize

5kV

8kV

15kV

8-1000(1111)

6-1000(1111)

2-1000(1111)

20,000

20,000

20,000

13 N/A

18 45

27 70

Voltage rating ofcable(phase-to-phase circuit voltage)

Sizeofconductor

AWG-kcmil

Insulation resistanceconstart K (based on 1000 feet, 15.6 )

-

100% Insulation level(grounded neutral)

a.c. d.c.

kV kV

0 ~ 2000V

3,000

1,600

1,200

800

650

550

InsulationResistance

( 1000ft at 15.5 )

0 ~ 600V 601 ~ 2000V

1,500 -

3,500 5,500

5,500 7,000

7,000 8,000

8,000 9,500

10,000 11,500

Test Potentials

133% Insulation level(grounded neutral)

a.c. d.c.

kV kV

13 N/A

22 45

33 80

Page 5: Technical Characteristics

IEEE 45/1580 & UL 1309/1072

Sales Office Tel:82-2-2140-3042 Fax:82-2-2140-3098Head Office Tel:82-43-530-2000 Fax:82-43-530-2140 Pusan Office Tel:82-51-817-0295 Fax:82-51-817-0297

IEEE 45/1580 & UL 1309/1072

Sales Office Tel:82-2-2140-3042 Fax:82-2-2140-3098Head Office Tel:82-43-530-2000 Fax:82-43-530-2140 Pusan Office Tel:82-51-817-0295 Fax:82-51-817-0297

Maximum current-carrying capacity

Distribution, Power cables - single banked maximum ampacity in air(IEEE 45-1998, Type E @ 45 ambient)

Notes:1) Current ratings are for ac or dc.2) Current-carrying capacity of four conductor cables where one conductor is neutral, is the same as three conductor

cables.3) If ambient temperatures differ from 45 the values shown above should be multiplied by the following factors:

16,500 17 8 8.4

20,800 21 7 10.6

26,230 26 6 13.3

33,100 33 5 16.8

41,700 42 4 21.1

52,600 53 3 26.7

66,400 66 2 33.6

83,700 84 1 42.4

106,000 106 1/0 53.5

133,000 133 2/0 67.4

168,000 168 3/0 85.0

212,000 212 4/0 107.2

250,000 250 127.0

262,000 262 133.1

300,000 300 152.0

313,000 313 158.7

350,000 350 177.0

373,000 373 189.4

400,000 400 203.0

444,000 444 225.2

500,000 500 253.0

535,000 535 271.3

600,000 600 304.0

646,000 646 327.6

750,000 750 380.0

777,000 777 394.2

1,000,000 1000 507.0

1,111,000 1111 563.1

Conductor

MC MCM AWG MM2

68 48

77 59

88 65

100 75

118 83

134 99

156 111

180 131

207 150

240 173

278 201

324 232

359 259

378 273

412 290

423 298

446 317

474 332

489 342

546 382

560 393

615 432

623 440

671 474

723 494

755 516

867

942 644

Single Conductor Cable Three Conductor Cable

Maximum conductor temperature : 90

Type E insulated cables

Type P(X110) insulated cables

Ambient temperature

1.05

1.04

40

0.94

0.95

50

0.82

0.85

60

-

0.74

70

Low

Vol

tage

Dis

tribu

tion

Low

Vol

tage

Con

trol c

able

Low

Vol

tage

Sig

nal c

able

Hig

h V

olta

ge D

istri

butio

nIn

form

atio

n D

ata

Distribution, control and signal cables - single banked maximum ampacity in air(IEEE 45-1995, Type X110 @ 45 ambient)

14 2.1 4410

12 3.3 6530

10 5.3 10400

8 8.4 16900

7 10.6 20800

6 13.3 26300

5 16.8 33100

4 21.1 41700

3 26.7 52600

2 33.6 66400

1 42.4 83700

1/0 53.5 106000

2/0 67.4 133000

3/0 85.0 168000

4/0 107 212000

250MCM 127 250000

300MCM 152 300000

350MCM 177 350000

400MCM 203 400000

500MCM 253 500000

535MCM 271 535000

600MCM 304 600000

646MCM 327 646000

750MCM 380 750000

777MCM 394 777000

1000MCM 507 1000000

1111MCM 562 1111000

1250MCM 633 1250000

1500MCM 706 1500000

2000MCM 1013 2000000

Conductor

AWG/MCM mm2 Citcular mils

39 33 27

49 41 33

61 52 43

77 68 55

88 82 67

100 90 74

114 105 85

134 115 95

153 138 113

178 156 126

205 183 149

236 208 171

274 265 197

317 279 229

369 323 264

409 360 295

470 403 330

508 441 361

557 494 390

638 546 448

660 565 464

710 614 502

- - -

824 686 536

-

988

-

1128

1254

1473

Single Conductor Two Conductor Three Conductor Cable Cable Cable

Maximum conductor temperature : 110

Page 6: Technical Characteristics

IEEE 45/1580 & UL 1309/1072

Sales Office Tel:82-2-2140-3042 Fax:82-2-2140-3098Head Office Tel:82-43-530-2000 Fax:82-43-530-2140 Pusan Office Tel:82-51-817-0295 Fax:82-51-817-0297

IEEE 45/1580 & UL 1309/1072

Sales Office Tel:82-2-2140-3042 Fax:82-2-2140-3098Head Office Tel:82-43-530-2000 Fax:82-43-530-2140 Pusan Office Tel:82-51-817-0295 Fax:82-51-817-0297

Technical information

Short circuit current ratings

(1) The following short current ratings are for cable normally operating at a maximum conductor temperature of 100(2) The theoretical temperature that arises in the conductor during a short circuit, which is used as a basis of the

calculation, is 250 in accordance with IEC 60724.(3) EPR and XLPE insulation are capable of withstanding of short term temperature up to 250(4) The short circuit current ratings for copper conductors given in the table are values for one second for other duration

the current may be calculated from the following formula;

lt = short circuit current for t second (kA)l1 = short circuit current for one second (kA)t = short circuit duration (second)

(5) The duration of the short circuit based on these assumptions should be between 0.2 sec. and 5 sec.

lt = l1

t

159 112 71 50 35

259 183 16 82 58

401 283 179 127 90

551 390 246 174 123

868 614 388 275 194

1,373 971 614 434 307

2,183 1,543 976 690 488

3,159 2,234 1,413 999 706

5,213 3,686 2,331 1,648 1,166

8,810 6,230 3,940 2,786 1,970

13,985 9,889 6,254 4,423 3,127

17,858 12,628 7,987 5,647 3,993

22,725 16,069 10,163 7,186 5,081

29,219 20,661 13,067 9,240 6,533

35,713 25,253 15,971 11,293 7,986

45,454 32,141 20,327 14,374 10,164

55,195 39,028 24,684 17,454 12,342

66,384 46,940 29,688 20,992 14,844

79,029 55,882 35,343 24,991 17,672

94,834 67,058 42,411 29,989 21,206

113,803 80,471 50,894 35,988 25,447

135,931 96,118 60,790 42,985 30,395

164,382 116,235 73,514 51,982 36,757

234,526 165,835 104,883 74,164 52,442

22

20

18

16

14

12

10

8

6

4

2

1

1/0

2/0

3/0

4/0

262

313

373

444

535

646

777

111

Short circuit current (A)

Short circuit duration (second)

0.1 0.2 0.5 1 2

AWGor

Kcmil

-

4) The above current-carrying capacities are for marine installations with cables arranged in a single bank per hanger andare 85% of the ICEA calculated values. Double banking of distribution-type cables should be avoided. For thoseinstances where cable must be double banked, the current-carrying capacities in the above table should be multipliedby 0.8.

5) The ICEA calculated current capacities of these cables are based on cables installed in free air, that is, at least onecable diameter spacing between adjacent cables.

6) Ampacity adjustment factors for more than 3 conductors in a cable with no load diversity:

4 through 6

7 through 9

10 through 20

21 through 30

31 through 40

41 through 60

Number of conductors

80

70

50

45

40

35

Percent of values in the above table for threeconductor cable as adjusted for ambienttemperature, if necessary


Recommended