1. 2 Electronics Beyond Nano-scale CMOS Shekhar Borkar Intel Corp. July 27, 2006.

Post on 26-Dec-2015

223 views 2 download

Tags:

transcript

1

2

Electronics Beyond Electronics Beyond Nano-scale CMOSNano-scale CMOS

Shekhar Borkar Shekhar Borkar

Intel Corp.Intel Corp.

July 27, 2006July 27, 2006

3

OutlineOutlineEvolution of Electronics to CMOSEvolution of Electronics to CMOSThe three tenetsThe three tenetsTechnology outlookTechnology outlookChallengesChallengesPotential solutionsPotential solutionsSummarySummary

4

Evolution of ElectronicsEvolution of Electronics0

1

1850 1875 1900 1925 1950 1975 2000 2025

MechanicalMechanical

Electro-MechanicalElectro-Mechanical

Electronic-VTElectronic-VT

BipolarBipolar

NMOSNMOS

CMOS……. ?CMOS……. ?

All cross-road technologies show1. Gain2. Signal/Noise3. Scalability

All cross-road technologies show1. Gain2. Signal/Noise3. Scalability

PerformanceEnergyPrice/Performance

PerformanceEnergyPrice/Performance

5

The Three TenetsThe Three Tenets

GainGainInput Output

Energy

(1)

Signal/Noise

Signal/NoiseInput Output

(2)

Scalability, in some shape or form

(3)

6

Electro-Mechanical scaling—Electro-Mechanical scaling—RelaysRelays

1928, Otis Elevator

8

SemiconductorsSemiconductors

The first transistor

The first integrated circuit 4004 Pentium® 4

9

1.E-21

1.E-18

1.E-15

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

1940 1960 1980 2000 2020

Cu

bic

Met

er

Vacuum tube

Transistor

NMOS

CMOS

Benefits of ScalingBenefits of Scaling

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

1940 1960 1980 2000 2020

Del

ay (

Sec

) Vacuum tube

Transistor

NMOS

CMOS

1.E-161.E-141.E-121.E-101.E-081.E-061.E-041.E-021.E+00

1940 1960 1980 2000 2020

Jou

les

Vacuum tube

Transistor

NMOS

CMOS

1.E-061.E-051.E-041.E-031.E-021.E-011.E+001.E+011.E+02

1940 1960 1980 2000 2020

Co

st (

$)

Vacuum tube

Transistor

NMOS

CMOS

10

Technology OutlookTechnology OutlookHigh Volume High Volume ManufacturingManufacturing

20042004 20062006 20082008 20102010 20122012 20142014 20162016 20182018

Technology Node Technology Node (nm)(nm)

9090 6565 4545 3232 2222 1616 1111 88

Integration Integration Capacity (BT)Capacity (BT)

2 4 8 16 32 64 128 256

Delay = CV/I Delay = CV/I scalingscaling

0.70.7 ~0.7~0.7 >0.7>0.7 Delay scaling will slow downDelay scaling will slow down

Energy/Logic Op Energy/Logic Op scalingscaling

>0.35>0.35 >0.5>0.5 >0.5>0.5 Energy scaling will slow downEnergy scaling will slow down

Bulk Planar CMOSBulk Planar CMOS High Probability Low ProbabilityHigh Probability Low Probability

Alternate, 3G etcAlternate, 3G etc Low Probability High ProbabilityLow Probability High Probability

VariabilityVariability Medium High Very HighMedium High Very High

ILD (K)ILD (K) ~3~3 <3<3 Reduce slowly towards 2-2.5Reduce slowly towards 2-2.5

RC DelayRC Delay 11 11 11 11 11 11 11 11

Metal LayersMetal Layers 6-76-7 7-87-8 8-98-9 0.5 to 1 layer per generation0.5 to 1 layer per generation

11

Si Substrate

Metal Gate

High-kTri-Gate

S

G

D

III-V

S

Carbon Nanotube FET

50 nm

35 nm

30 nm

SiGe S/D

Strained Silicon

SiGe S/D

Strained Silicon

90 nm65 nm

45 nm32 nm

20042006

20082010

2012+

Technology Generation

20 nm 10 nm

5 nm5 nm

5 nm

Nanowire

Manufacturing Development Research

CMOS Research Continues…CMOS Research Continues…

12

CMOS—Cross Road?CMOS—Cross Road?Cross Road False AlarmsCross Road False Alarms

1 1 Short Channel EffectsShort Channel Effects Device EngineeringDevice Engineering

0.5 0.5 InterconnectsInterconnects More metals, CuMore metals, Cu

Low K ILDLow K ILD

130 nm130 nm SD LeakageSD Leakage Leakage control, Leakage control, avoidance, avoidance, tolerancetolerance

65 nm65 nm Gate LeakageGate Leakage Hi-K + Metal GateHi-K + Metal Gate

22 nm22 nm LithographyLithography EUV, Self assemblyEUV, Self assembly

…… …… ……

< 1.5nm< 1.5nm SD TunnelingSD Tunneling ??

13

What’s in sight after CMOS?What’s in sight after CMOS?

Which technology shows gain?Which technology shows gain?Satisfactory signal to noise ratio?Satisfactory signal to noise ratio?

– At room temperature?At room temperature?

Scalability in some shape or form?Scalability in some shape or form?–Performance, Energy, CostPerformance, Energy, Cost

Research must continue to find oneResearch must continue to find oneThen it will take 10-15 years to matureThen it will take 10-15 years to matureUntil then…Until then…

CMOS will continue…CMOS will continue…CMOS will continue…CMOS will continue…

14

……But With Challenges!But With Challenges!

0

50

100

150

200

250H

ea

t F

lux

(W

/cm

2)

Heat Flux (W/cm2)—Vcc variation

40

50

60

70

80

90

100

110

Te

mp

era

ture

(C

)

Temp Variation & Hot spots

10

100

1000

10000

1000 500 250 130 65 32

Technology Node (nm)

Mea

n N

um

ber

of

Do

pan

t A

tom

s

Random Dopant Fluctuations

0.01

0.1

1

1980 1990 2000 2010 2020

micron

10

100

1000

nm

193nm193nm248nm248nm

365nm365nm LithographyLithographyWavelengthWavelength

65nm65nm90nm90nm

130nm130nm

GenerationGeneration

GapGap

45nm45nm32nm32nm

13nm 13nm EUVEUV

180nm180nm

Source: Mark Bohr, Intel

Sub-wavelength Lithography

15

Yesterday’s Freelance LayoutYesterday’s Freelance Layout

Vss

Vdd

OpIp

Vss

Vdd

Op

No layout restrictionsNo layout restrictionsNo layout restrictionsNo layout restrictions

16

Transistor Orientation RestrictionsTransistor Orientation Restrictions

Vss

Vdd

OpIp

Vss

Vdd

Op

Transistor orientation restricted to improve Transistor orientation restricted to improve manufacturing controlmanufacturing control

Transistor orientation restricted to improve Transistor orientation restricted to improve manufacturing controlmanufacturing control

17

Op

Vss

Vdd

Ip

Vss

Vdd

Op

Transistor Width QuantizationTransistor Width Quantization

18

Today’s Unrestricted Today’s Unrestricted RoutingRouting

19

Future Metal RestrictionsFuture Metal Restrictions

20

ReliabilityReliability

Soft Error FIT/Chip (Logic & Mem)

0

50

100

150

Re

lati

ve

~8% degradation/bit/generation

Time dependent device degradation

0

1

1 2 3 4 5 6 7 8 9 10

Time

Ion

Re

lati

ve

Burn-in may phase out…?

1

10

100

1000

10000

180 90 45 22

Jo

x (

Re

lati

ve

)Hi-K?

?

Extreme device variations

0

50

100

100 120 140 160 180 200

Vt(mV)

Re

lati

ve

Wider

21

Implications to ReliabilityImplications to Reliability

Extreme variations (Static & Dynamic) Extreme variations (Static & Dynamic) will result in unreliable componentswill result in unreliable components

Impossible to design reliable system Impossible to design reliable system as we know todayas we know today–Transient errors (Soft Errors) Transient errors (Soft Errors)

–Gradual errors (Variations)Gradual errors (Variations)

–Time dependent (Degradation)Time dependent (Degradation)

Reliable systems with unreliable components Reliable systems with unreliable components ——Resilient Resilient ArchitecturesArchitectures

Reliable systems with unreliable components Reliable systems with unreliable components ——Resilient Resilient ArchitecturesArchitectures

22

Implications to Design & TestImplications to Design & Test

Design with regular fabricDesign with regular fabricOne-time-factory testing will be outOne-time-factory testing will be outBurn-in to catch chip infant-mortality Burn-in to catch chip infant-mortality

will not be practicalwill not be practicalTest HW will be part of the designTest HW will be part of the designDynamically self-test, detect errors, Dynamically self-test, detect errors,

reconfigure, & adaptreconfigure, & adapt

23

In a Nut-shell…In a Nut-shell…

100 Billion

Transistors

100 Billion

Transistors

100 BT integration capacity

Billions unusable (variations)

Some will fail over time

Yet, deliver high performance in the power & Yet, deliver high performance in the power & cost envelopecost envelope

Yet, deliver high performance in the power & Yet, deliver high performance in the power & cost envelopecost envelope

Intermittent failures

24

Recipe for ResiliencyRecipe for Resiliency

1.1. DetectDetect

2.2. IsolateIsolate

3.3. ConfineConfine

4.4. ReconfigureReconfigure

5.5. Recover & adaptRecover & adapt

1.1. CircuitCircuit

2.2. FirmwareFirmware

3.3. PlatformPlatform

4.4. SoftwareSoftware

5.5. ApplicationApplication

25

Resiliency with ReconfigurationResiliency with Reconfiguration

Dynamic on-chip testingDynamic on-chip testing Performance profilingPerformance profiling Spare hardwareSpare hardware Binning strategyBinning strategy Dynamic, fine grain, Dynamic, fine grain,

performance and power performance and power managementmanagement

Coarse-grain redundancy Coarse-grain redundancy checkingchecking

Dynamic error detection & Dynamic error detection & reconfiguration reconfiguration

Decommission aging HW, Decommission aging HW, swap with spareswap with spare

Dynamically…Dynamically…1.1. Self test & detectSelf test & detect2.2. Isolate errorsIsolate errors3.3. ConfineConfine4.4. Reconfigure, andReconfigure, and5.5. AdaptAdapt

Dynamically…Dynamically…1.1. Self test & detectSelf test & detect2.2. Isolate errorsIsolate errors3.3. ConfineConfine4.4. Reconfigure, andReconfigure, and5.5. AdaptAdapt

CC

CC

CC

CC

CC

CC

CC

CC

26

Why Bother?Why Bother?

$1

$10

$100

$1,000

$10,000

$100,000

1960 1970 1980 1990 2000 2010

Lit

ho

To

ol

Co

st (

$K)

G. MooreISSCC 03

Litho Cost

$1

$10

$100

$1,000

$10,000

1960 1970 1980 1990 2000 2010

Fab

Co

st (

$M)

www.icknowledge.com

FAB Cost

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1960 1970 1980 1990 2000 2010

$/T

ran

sist

or

$ per Transistor

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1960 1970 1980 1990 2000 2010

$/M

IPs

$ per MIPS

27

SummarySummary

Three tenets: Gain, Signal/Noise, Three tenets: Gain, Signal/Noise, ScalabilityScalability

Nothing on the horizon satisfies themNothing on the horizon satisfies themResearch must continue to find oneResearch must continue to find oneBut until then, CMOS rulesBut until then, CMOS rulesSeveral challenges lay ahead, but when Several challenges lay ahead, but when

have they not?have they not?