A 60GHz 16QAM/8PSK/QPSK/BPSK Direct …...A 60GHz 16QAM/8PSK/QPSK/BPSK Direct-Conversion Transceiver...

Post on 26-Jan-2020

18 views 0 download

transcript

Kenichi Okada, Kota Matsushita, Keigo Bunsen, Rui Murakami, Ahmed Musa, Takahiro Sato, Hiroki Asada, Naoki Takayama, Ning Li, Shogo Ito, Win

Chaivipas, Ryo Minami, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Matsuzawa& Okada Lab.

A 60GHz 16QAM/8PSK/QPSK/BPSK Direct-Conversion Transceiver

for IEEE 802.15.3c

1

Background

1980 1985 1990 1995 2000 2005 2010 2015

101

102

103

104

105

106

WDMOC-192

2λ4λ

8λ32λ

160λ

40Gbps40Gbps

Capacity[Mbps]

OC-48OC-24

OC-12OC-3

Wireline

802.11802.11b802.11a

802.11g 802.11nUWB

100 Bluetooth

PHSPDC

Millimeter-Wave

10Mbps

Wireless(PAN~WAN)

10Gbps

Contents

2

Motivation• 60GHz CMOS direct-conversion transceiver

for multi-Gbps wireless communication

57.24GHz - 65.88GHzが利用可能QPSK 14Gbps/ch16QAM 28Gbps/ch64QAM 42Gbps/ch

3

IEEE 802.15.3c Specifications57.24GHz - 65.88GHz 2.16GHz/ch x 4 channelsQPSK 3.5Gbps/ch16QAM 7Gbps/ch

57 58 59 60 61 62 63 64 65 66

ChannelNumber

Low Freq.(GHz)

Center Freq.(GHz)

High Freq.(GHz)

Nyquist BW(GHz)

Roll-OffFactor

A1 57.24 58.32 59.40 1.76 0.25A2 59.40 60.48 61.56 1.76 0.25A3 61.56 62.64 63.72 1.76 0.25A4 63.72 64.80 65.88 1.76 0.25

ChannelNumber

Low Freq.(GHz)

Center Freq.(GHz)

High Freq.(GHz)

Nyquist BW(GHz)

Roll-OffFactor

A1 57.24 58.32 59.40 1.76 0.25A2 59.40 60.48 61.56 1.76 0.25A3 61.56 62.64 63.72 1.76 0.25A4 63.72 64.80 65.88 1.76 0.25

1 2 4

240MHz

120MHz

1.76 GHz2.16 GHz

3fGHz

from IEEE802.15.3c-2009

まだ報告なし

Data rate / Modulation

Distancefor BER <10-3 Integration Power

consumption Area

[1] Gatech 7Gbps/QPSK15Gbps/16QAM –

90nm, Tx, Rx, 49- 55GHz PLL, 8-9GHz QPLL

173mW (Tx) 189mW (Rx) 6.5mm2

[2] NEC 2.6Gbps/QPSK wired 90nm, Tx, Rx w/o LO 133mW (Tx) 206mW (Rx) 4.5mm2

[3] UCB 4Gbps/QPSK 1m with 25dBi external horn antenna

90nm, single-chip TRx inc. 30GHz PLL and BB

170mW (Tx mode) 138mW (Rx mode) 6.88mm2

[4]U. Toronto 4Gbps/BPSK 2m with 25dBi external

horn antenna65nm, single-chip TRx w/o LO

374mW with 1.2V (233mW with 1.0V) 1mm2

[5] NTU 4Gbps/OOK 2cm with 5dBi on- board antenna

90nm, Tx, Rx, VCO, on-board antenna

183mW (Tx) 103mW (Rx)

0.43mm2(Tx) 0.68mm2(Rx)

[6] NTU 2Gbps/FSK120cm (1Gbps) 55cm (2Gbps) with 5dBi on-board antenna

90nm, single-chip TRx inc. PLL with on-board antenna

280mW (Tx) 150mW (Rx)80mW (PLL)

1.26mm2

[1] S. Pinel et al., ISSCC 2008, pp.130-131 [2] M. Tanomura et al., ISSCC 2008, pp.558-559 [3] C. Marcu et al., ISSCC 2009, pp. 314-315 [4] A. Tomkins et al., JSSC, vol.44, no.8, pp.2085-2099, Aug. 2009 [5] J. Lee et al., ISSCC 2009, pp.316-317 [6] H. Wang et al., VLSI Circuits 2010, pp.95-96

性能比較

16QAMダイレクトコンバージョンが重要ターゲット

4

トロント大のBPSK無線機

• 差動LO(not 直交)によるBPSK変調

• QPSK以上は対応不可

• LOは未実装

• 4Gbps/QPSK

5

UCBのDirect-conversion無線機

• 90o hybridにより直交信号を生成

• 60.48GHz QPSKのみ対応

• LPFなし

(帯域制限していない)• 16QAM対応不可:-72dBc/Hz-1MHz offset (60GHz)

6

7

Challenges for 60GHz Transceivers• Direct-conversion full CMOS integration• 16QAM/8PSK/QPSK/BPSK support for

IEEE802.15.3c, WiGig, Wireless HD, etc.• 60GHz quadrature LO

– Low phase noise for 16QAM– Wide frequency tuning (58-to-65GHz)– I/Q phase balance

• 60GHz LNA– Low NF & High linearity– Wide bandwidth (gain flatness)

• 60GHz PA– 10dBm output– High PAE (>10%)

8

Phase Noise RequirementFor 16QAM direct-conversion, -90dBc/Hz@60GHz is required.

0

1

2

3

4

5

-100 -98 -96 -94 -92 -90 -88 -86 -84

AM-AM of PA

16QAM8PSK

QPSKΔ R

equi

red

CN

R [d

B]

Phase noise [dBc/Hz] @ 1MHz offset

9

60GHz Quadrature LO Scenario• 60GHz quadrature PLL

– Phase noise degradatione.g. -75dBc/Hz@1MHz-offset at 60GHz [1]

• 60GHz PLL with 90o hybrid [2]

– I/Q mismatch• 60GHz quadrature ILO with 20GHz PLL [3,4]

– ILO: Injection-locked oscillator– Very wide tuning (58GHz-64GHz [4])– Excellent phase noise (-96dBc/Hz@1MHz-offset [4])

[1] K. Scheir, et al., ISSCC 2009[2] C. Marcu, et al., ISSCC 2009[3] W. Chan, el al., ISSCC 2008 [4] A. Musa, et al., A-SSCC 2010

10

LNAI Mixer

Q Mixer

PLL

36MHz REFCLK

I+I-

Q+Q-

PA I Mixer

Q Mixer

I+I-

Q+Q-

Rx input

Tx output

20GHz PLL

60GHz QILO

60GHz QILO

Direct-Conversion Architecture

Two 60GHz QILOswith 20GHz PLL

11

60GHz Quadrature LO

36MHz ref.Injection-lock

PFD CP LPF19.44GHz20.16GHz20.88GHz21.60GHz 58.32GHz

60.48GHz62.64GHz64.80GHz

IQ

20GHz PLL 60GHz QILO

• Wide frequency tuning range• Phase noise improvement by injection locking

4 CML5(27,28,29,30)

12

PPF

Injection-Locked Oscillator

I Q

20GHz

60GHz

PPF:polyphase filter[3] W. Chan, el al., ISSCC 2008

Δθ

20GHz

60GHz

I Q

3Δθ

Previous work [3] This work

I/Q mismatch Single-side injection- Small I/Q mismatch - The same locking range

13

VDD

INJp

INJn

Ip

In

Qp

Qn

mat

chin

g bl

ock

dum

my

Quadrature Injection-Locked Oscillator

• Phase noise is not important.• Frequency coverage• I/Q phase balance

60GHz

20GHz

60GHz

14

Nor

mal

ized

Pou

t [dB

m]

Frequency [GHz]

-40

-30

-20

-10

0

60.13 60.15 60.17 60.46 60.48 60.50

Phas

e N

oise

[dB

c/H

z]

100kHz 1MHz 10MHzOffset Frequency

10kHz-140

-120

-100

-80

-40

-20

-60

Phase Noise• Operation range: 54-61GHz• Phase noise: -95dBc/Hz @1MHz (60.48GHz)• Ref. spur: < -58dBc @20.16GHz• 15mW (60GHz QILO), 66mW (20GHz PLL)

60GHz ILO

20GHz PLLlocked

freerun

15

0123456789

101112

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

0.95V 1.00V 1.05V

ILO Lock Test #c

hip

Required injection power [dBm]

Pout of PLL-2dBm

20 chips with 5% Vdd variation at room temp.±

16

Performance Comparison of 60GHz LO

This work [1] [5] [6]

fref [MHz] 36.0 100.0 251.3 234.1

Freq. range [GHz] 54~61 57~66 64~66 58~60

Phase noise @1MHz[dBc/Hz]

-95 -75 -84 -85

Pdc [mW] 81 78 72 80Output type Quadrature Quadrature Differential Differential

[1] K. Scheir, et al., ISSCC 2009 [5] K.-H. Tsai, et al., RFIC 2008[6] C. Lee, et al., ISSCC 2007

17

• TL-based design for simulation accuracy• Low-loss TL & MIM TL

1st, 2nd stage 3rd, 4th satge

4-Stage PA

MIM TL for decoupling

50Ω, 0.8dB/mmZ0=3Ω

W=2μm x20 W=2μm x40

18

Low-Loss Transmission Line• 0.8dB/mm• Manually-placed dummy

metal

GNDdummy

signal(10μm)

gap(15μm) GND

M1&M2 shieldGND GND

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70Frequency [GHz]

[dB

/mm

]

`

manualauto

303540455055606570

0 10 20 30 40 50 60 70Frequency [GHz]

Z0 [o

hm]

manualauto

19

MIM Transmission Line• De-coupling use• Modeling accuracy• Avoiding self-resonance of

parallel-plate capacitors

0123456789

10

0 10 20 30 40 50 60 70Frequency [GHz]

Z0[O

hm]

MeasuredModel

GND

MIM TL

GND

GND

GND

TL

MIM capacitor

MIM transmission line

50Ω

transmission line

[7] T. Suzuki, et al., ISSCC 2008

20

Up-Conversion Mixer• Double-balanced Gilbert mixer• Only one side is used

to PA

from LO

from BB I/Q

21

Tx Measurement

Psat: 10.9dBmP1dB: 9.5dBmPAE: 8.8% (only PA)

CG: 18.3dBLO freq.: 60.48GHz (ch2)PDC: 186mW

Pin [dBm]

Pout

[dBm

]

-6-4-202468

101214

-30 -25 -20 -15 -10 -5 0 5 10

9.5dBm @ P1dB

22

4-Stage CS-CS LNA• Wf=1μm (1st & 2nd stages) for noise opt.• Wf=2μm (3rd & 4th stages) for gain opt.• Small resistors to prevent oscillations• Variable gain by adjusting bias voltages

W=1μm x40 1μm x40 2μm x20 2μm x20

23

Down-Conversion Mixer• Parallel-line transformer• High common-mode rejection in

matching blocks

to BB I/Q

from LNA

from LO

Mat

chin

gbl

ock

with

com

mon

-mod

ere

ject

ion

Matching blockwith CMR

Ip/Qp In/Qn

Mat

chin

gbl

ock

with

CM

R

24

Parallel-Line Transformer• Split patterned

ground shield (PGS)• Center-tap with C

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

0 10 20 30 40 50 60 70Frequency [GHz]

MA

G [d

B]

-0.8dB@60GHz

Frequency [GHz]

Phas

e di

ff. [d

eg.]

160165170175180185190195200

0 10 20 30 40 50 60 70

5deg@60GHz

GND

GND

MIM TLVbias

GND out-

out+in

80μm

1.12μm 5μm

PGS

slit

25

Rx Measurement

NF: <6.8dBCG: 17.3dB (high-gain mode)CG: 4.7dB (low-gain mode)

-202468

101214161820

59.40 59.76 60.12 60.48 60.84 61.20 61.56Frequency [GHz]

CG

,NF

[dB

] CG(high-gain)

CG(low-gain)NF

LO freq.: 60.48GHz (ch2)Lower cut-off freq: 5MHzPDC: 106mW

26

LNA

I MIXER

Q MIXER

Q. OSC.

PA

LO BUFFER

Q MIXER

I MIXER

LO BUFFER

LO BUFFER

LO BUFFER

QUADRATUREOSCILLATOR

Die Photo

4.2mm

65nm CMOSRx:3.8mm2

Tx:3.5mm2

PLL:1.2mm2

20GHz PLL

4.2m

m Buf.

VCOLPF

27

Package and PCB

Face-up mount with a 270μm wire on a BGA package[8] R. Suga, et al., IEEE T-MTT 2010

I/Q output (Rx)

I/Q input (Tx)

DC supply

DC supply

60GHz Rx2dBi antenna

20GHz PLL60GHz Tx2dBi antenna

28

Performance SummaryTxCG 18.3dBP1dB 9.5dBmPsat 10.9dBmPAE 8.8% (only for PA)

RxCG 17.3dB (high-gain mode)

4.7dB (low-gain mode)

NF <6.8dB (high-gain mode)

IIP3 -5dBm (only for LNA)

LOInjection PLL 18-21GHz

Ref. spur <-58dBc @20.16GHzPout -2dBm @20.16GHzPhase noise at 1MHz-offset -108dBc/Hz @20.16GHzQuadrature ILO 54-61GHzPhase noise at 1MHz-offset -95dBc/Hz @60.48GHz

29

19.44GHz, 20.16GHz,20.88GHz, 21.60GHz

LNA

60GHz

I Mixer

Q Mixer

PLL

36MHz REFCLK

I+I-

Q+Q-

VGA, ADC

VGA, ADC

PA

60GHz

I Mixer

Q Mixer

I+I-

Q+Q- DAC

Rx input

Tx output

20GHz PLL

DAC

LO BUF

LO BUF

LO BUF

LO BUF

IFamp

IFamp

Power Consumption

20.7mW

114.6mW

30.4mW5.0mW

5.0mW

14.9mW

30.4mW

23.0mW5.0mW

5.0mW

14.9mW

23.0mW

Rx: 106mW

Tx: 186mW

1.0V

1.0V

1.2V65.5mW

1.2V

1.0V

30

Mag

nitu

de [d

B]

-50

-40

-30

-20

-10

0

10

57.24 58.32 59.40 60.48 61.56 62.64 63.72Frequency [GHz]

Measured Spectrum• 1.760Gs/s QPSK with 25% roll-off, 3dB back-off

IEEE802.15.3cspectrum mask

2.16GHz

31

Constellation

1585 points 3170 points 4755 points 6340 points

Modulation BPSK QPSK 8PSK 16QAMData rate 2.16GHz-BW 1.76Gb/s 3.52Gb/s 5.28Gb/s 7.04Gb/s

EVM-18dB

(-24dB with DFE)

-18dB(-28dB with

DFE)-17dB -17dB

Distance(BER < 10-3 ) 0.5–274cm 0.5–270cm 0.5–20cm 0.5–17cm

Modulation Characteristics

8Gb/s(QPSK) and 11Gb/s(16QAM) with wider-BW

32

Performance ComparisonData rate / Modulation Architecture Antenna

NEC [9] 2.6Gbps/QPSK Heterodyne w/o LO Wired

NTU [10] 4Gbps/OOK 60GHz VCO (Tx)50GHz VCO (Rx) On-board

U. Toronto[11] 4Gbps/BPSK Direct conversion w/o LO External

UCB [2] 4Gbps/QPSK 7Gbps/QPSK (loop-back)

Direct conversion with 30GHz PLL and 90o hybrid External

Tokyo Tech

1.76Gbps/BPSK3.52Gbps/QPSK 5.28Gbps/8PSK7.04Gbps/16QAMwithin 2.16GHz-BW>8Gbps/QPSK>11Gbps/16QAM

Direct conversion with 60GHz quadrature oscillators

In-package

[9] M. Tanomura, et al., ISSCC 2008, pp.558-559 [10] J. Lee, et al., ISSCC 2009, pp.316-317[11] A. Tomkins, et al., JSSC, vol.44, no.8, pp.2085-2099, Aug. 2009 [2] C. Marcu, et al., ISSCC 2009, pp. 314-315

伝送レート比較

世界初の60GHz帯16QAMダイレクト コンバージョン無線機を実現

0123456789

101112

2007 2008 2009 2010 2011 2012

Toronto Univ.(only BPSK)

Tokyo Tech

NEC(QPSK)

UCB(QPSK)

OOK

OOKFSK

QPSK

16QAM

Year

Dat

a ra

te [G

bps]

direct-conversionother arch.

33

34

Summary and Conclusion• The first 16QAM direct-conversion transceiver• 60GHz quadrature ILO with 20GHz PLL

– 20dB improvement in phase noise• Full-rate 16QAM/8PSK/QPSK/BPSK

for IEEE802.15.3c• Ch1(57.24-59.40GHz) and Ch2(59.40-61.56GHz)• Standard 65nm CMOS• Antenna built into a package

– Post-wall waveguide aperture antenna (PWAA)• Tx (186mW), Rx (106mW), and PLL (66mW)• 11Gb/s (16QAM), 8Gb/s (QPSK)

35

AcknowledgementThis work was partially supported by MIC, MEXT, STARC, SCOPE, NEDO, Canon Foundation, and VDEC in collaboration with Cadence Design Systems, Inc., and Agilent Technologies Japan, Ltd. The authors thank Dr. Hirose, Dr. Suzuki, Dr. Sato, and Dr. Kawano of Fujitsu Laboratories, Ltd., Dr. Taniguchi of JRC, Dr. Hirachi of AMMSys Inc., Dr. Noda, Mr. Kondo, Mr. Yamagishi, and Dr. Fukuzawa of SONY, and Prof. Ando of Tokyo Institute of Technology for their valuable discussions and technical support.

36

For additional multimedia material: See http://www.isscc.org

37

60GHz Research Team

Han(modeling) Bunsen(Rx)Matsushita(Tx)

Minami(TRx)

Sato(VCO) Asada(PA)

Musa(PLL)Murakami(ILO)

Yamaguchi(ILO)Okada

Bu(LNA)

2010/9/7@ South Bldg. 9, 5F cleanroom

+W. Chaivipas, N. Li, N.Takayama, S.Ito, Y.Nomiyama+W. Chaivipas, N. Li, N.Takayama, S.Ito, Y.Nomiyama

15 Ph.D. & Master students in 4 years

38

Reference[1] K. Scheir, G. Vandersteen, Y. Rolain, and P. Wambacq, “A 57-to-66GHz Quadrature PLL in 45nm

Digital CMOS,” IEEE ISSCC, 29.6, pp.494-495, Feb. 2009.[2] C. Marcu, et al., “A 90nm CMOS Low-Power 60GHz Transceiver with Integrated Baseband

Circuitry,” IEEE ISSCC, 18.5, pp.315-315, Feb. 2009.[3] W. Chan, and J. Long, “A 56-65GHz Injection-Locked Frequency Tripler with Quadrature Outputs in

90-nm CMOS,” IEEE JSSC, vol. 43, no. 12, pp. 2739-2746, Dec. 2008.[4] A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, "A 58-63.6GHz

Quadrature PLL Frequency Synthesizer,“ IEEE A-SSCC, pp.189-192, Nov. 2010.[5] K.-H. Tsai, J.-H. Wu, and S.-I. Liu, "A Digitally Calibrated 64.3-66.2GHz Phase-Locked Loop," IEEE

RFIC, pp.307-310, June 2008.[6] C. Lee, and S.-l. Li, "A 58-to-60.4GHz Frequency Synthesizer in 90nm CMOS," IEEE ISSCC, 10.5,

pp.196-197, Feb. 2007.[7] T. Suzuki, Y. Kawano, M. Sato, T. Hirose, and K. Joshin, “60 and 77GHz Power Amplifiers in

Standard 90nm CMOS,” IEEE ISSCC, 31.3, pp.562-563, Feb. 2008.[8] R. Suga, et al., “Cost-Effective 60-GHz Antenna-Package with End-Fire Radiation for Wireless File-

Transfer System,” IEEE Trans. on MTT, vol.58, no.12, pp.3989-3995, Dec. 2010.[9] M. Tanomura, et al., “TX and RX Front-Ends for 60GHz Band in 90nm Standard Bulk CMOS,” IEEE

ISSCC, 31.1, pp.558-559, Feb. 2008.[10] J. Lee, et al., “A Low-Power Low-Cost Fully-Integrated 60-GHz Transceiver System with OOK

Modulation and On-Board Antenna Assembly,” IEEE ISSCC, 18.6, pp.316-317, Feb. 2009.[11] A. Tomkins, et al., “A Zero-IF 60GHz 65nm CMOS Transceiver with Direct BPSK Modulation

Demonstrating up to 6Gb/s Data Rates over a 2m Wireless Link,” IEEE JSSC, vol.44, no.8, pp.2085- 2099, Aug. 2009

39

Backup slides

40

Power ConsumptionTx 186mW

PA 114.6mWMixer 23.0mW x2LO buf. 5.0mW x2QILO 14.9mW

Rx 106mWLNA 20.7mWMixer inc. IF amp. 30.4mW x2LO buf. 5.0mW x2QILO 14.9mW

PLL 66mW

41

Low-Loss Transmission Line

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70Frequency [GHz]

[dB

/mm

]

02468

101214161820

0 10 20 30 40 50 60 70Frequency [GHz]

Q

0.00.5

1.01.5

2.02.5

3.03.5

0 10 20 30 40 50 60 70Frequency [GHz]

[rad

/mm

]

manualauto

303540455055606570

0 10 20 30 40 50 60 70Frequency [GHz]

Z0[O

hm]

42

Low-Loss Transmission Line

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70Frequency [GHz]

R[O

hm/m

m]

0.00.51.01.52.02.53.03.54.0

0 10 20 30 40 50 60 70Frequency [GHz]

G[m

S/m

m]

050

100150200250300350400450500

0 10 20 30 40 50 60 70Frequency [GHz]

L[p

H/m

m]

020406080

100120140160180200

0 10 20 30 40 50 60 70Frequency [GHz]

C[fF

/mm

]

manualauto