A Pharmaceutical Industry Perspective: a New Era in...

Post on 15-Oct-2020

0 views 0 download

transcript

Kelly Zhang

Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA

Input to NAS Study:A Research Agenda for a New Era in Separations Science

May 7-8, 2018, Irvine, CA

A Pharmaceutical Industry Perspective:a New Era in Separation Science

Background: Pharmaceutical R&D productivity

2

Pammolli et al, Nature Rev. Drug Discov., 2011, 10, 428

10 years in 1990s

14 years after 2000

Longer development time

Avg. time for products launched

Complex emerging drug discovery paradigm

3Valeur et al, Angew. Chem. Int. Ed. 2017, 56, 1029

Examples…

Complex drug delivery technologies

Kolate et. al. J Control. Release, 2014, 192, 67

4

Chang et al, J Pharm Sci., 2015, 104, 3404

Long Acting drug Release Fab-PLGA

Procko et al, Cell, 2014, 157, 1644

It takes too many tools and too long to characterize one sample – Need multi-attributes characterization simultaneously

5

And more…

Challenges in pharmaceutical HPLC analysis

K. Zhang et. al., Am. Pharm. Rev., 2013, 16 (7), 39-44.

6

Better Separation Science

• Material

• Instrumentation

Material: e.g. mixed-mode, “total separation”

7

Ideally, a column or such a material that…

Although not yet to make this total separation, mixed-mode column technology has been greatly advanced in the past few years.

Mixed-Mode ChromatographySample Mixed-mode Stationary Phase

K Zhang, X, Liu, JPBA, 2016, 128, 73

Mixed-Mode Stationary Phases

8X. Liu, C. Pohl, J. Sep.Sci. 33 (2010) 779–786.

RP/IEX bimodal mixed-mode phases

RP/AEX/CEX trimodal mixed-mode phases Restricted access

GE Capto Core 700 particle

BimodalRP/AEXRP/CEXHILIC/AEXHILIC/CEXTrimodalRP/AEX/CEX HILIC/AEX/CEX

K Zhang, X, Liu, JPBA, 2016, 128, 73

Generic method for 25 common counterions using mix-mode column coupled with CAD

Ca

Lact

ate

Proc

aine

TRIS

K

NaChol

ine

Meg

lum

ine

NO3

Mal

eate

Gluc

onat

e

BrCl

Tosy

late

Succ

inat

e

Besy

late

Zn

Mal

ate

PO4

Fum

arat

eTa

rtra

teCi

trat

e

Mes

ylat

eSO4

Mg

9K Zhang, L Dai, N Chetwyn, J. Chromatogr. A. 1217 (2010) 5776-5784

Applications in drug, counterion and trace level residual metal analysis

10L. Dai, L. Wigman, K. Zhang, J Chromatogr. A, 2015, 1408, 87

API

Li

LOQ: 8 ppb (w/w) in sample matrix

API

Fumarate

NaproxeneNa

Adenine

Cl

Separation of API and counterions

K Zhang, L Dai, N Chetwyn, J. Chromatogr. A. 2010, 1217, 5776

Sensitive quantification of Lithium in drug substance by HILIC separation

Instrumentation:On-line multidimensional UHPLC with hyphenated detection

K Zhang, et al, J. Sep. Sci. 2013, 36, 2986

11

Analysis of unconjugated small molecules in ADC by 2D-LC/MS

Y. Li et al, J. Chromatogra. A, 2015, 1393, 81–88.12

2D-LC/CAD-MS characterization and stability study of polysorbate in mAb formulation

13Li, Y.; Hewitt, D.; Lentz, Y. K.; Ji , J. A.; Zhang, T. Y.; Zhang, K.;, Anal Chem, 2014, 86, 5150.

2D-LC• Mixed mode (AEX/RP)–RP • CEX-RP

POE isosorbide

POE

POE sorbitan

mAb: 10-100 mg/mL polysorbate: 0.02-0.05%

2D-LC/MS study of the degradation product and mechanism in microdose PEG formulation

14

Microdosing for Bioavailability Study

3µg API in 100mL IV bag: 10% Degradation ~ 3 ppb (w/v) level4% PEG in saline

PVC infusion tubing

L. Dai et al, JPBA, 2017, 127, 182

Co-eluting impurity

IV device

1st Dimension

01

23

45

67

89

Time (min)

10 20 30 40 50 60 70 80 90

100

Relative Abundance

N

O

H3N

R1

Dehydrochlorination on PVC tubing surface and PEG auto-oxidation formed an oxidative environment.

Trace analysis: genotoxic impurity hydrazine by derivatization

15

H2N NH2

O

H

OH+

OH

NN

HO

HNA

406

230

Wavelength (nm)200 300 400 500 600

Inte

nsity

(mA

U)

Ultraviolet Visible

DerivativeStrong Absorbanceλmax = 406 nm

GNE API

AU

0.000

0.002

0.004

Minutes0.00 2.00 4.00 6.00 8.00

Background of drug matrixUV = 260 nm

AU

0.000

0.002

0.004

Minutes0.00 2.00 4.00 6.00 8.00

UV = 406 nm

High sensitivity High resolution No matrix interference

10 ppm Hydrazine

HN

A

API

260

Wang, et al, JPBA, 2016, 126, 141

Matrix interference

Separation of Compounds with Multiple Chiral Centers by 2DLC

Page 16

Drug with 3 chiral centers

2n Rule

e.g, n=3, 8 chiral isomers

It is highly challenging to separate compounds with multiple chiral centers 2DLC strategy

1st D: Well-developed achiral reversed-phase method (typically QC assay/impurity method) separate diastereomers and other impurities 2nd: Chiral method to separate each enantiomers

Reaction screening, Scavenger

High Throughput Experiment and Automation

17

Gas phase reaction

Informatics

Form and Salt selection Crystallization

Excipient Compatibility/Forced Degradation

Solubility

• HPLC analysis is the bottleneck

Absorbent Screening

Chiral,Product isolation

Summary

• Fast, sensitive, selective, robust separation methods

• New separation materials and instrumentation

• Complex modality characterization that can predict drug activity

• Characterization multiple attributes simultaneously

• Platform technology, less compound specific method development

• Miniaturization

• Green chemistry

• Intelligent software

• Well-trained scientists in separation science

18

Acknowledgements

Genentech• Peter Yehl

• Larry Wigman

• Joe Pease

• Colin Masui

• Geoffrey Yeh

• Francis Gosselin

• Nik Chetwyn

19