Algorithmics - Lecture 8-91 LECTURE 8: Divide and conquer.

Post on 31-Dec-2015

225 views 1 download

transcript

Algorithmics - Lecture 8-9 1

LECTURE 8:

Divide and conquer

Algorithmics - Lecture 8-9 2

In the previous lecture we saw …

… how to analyze recursive algorithms– write a recurrence relation for the running time– solve the recurrence relation by forward or backward substitution

… how to solve problems by decrease and conquer– decrease by a constant/variable– decrease by a constant/variable factor

… sometimes decrease and conquer lead to more efficient algorithms than brute force techniques

Algorithmics - Lecture 8-9 3

Outline

• Basic idea of divide and conquer

• Examples

• Master theorem

• Mergesort

• Quicksort

Algorithmics - Lecture 8-9 4

Basic idea of divide and conquer

• The problem is divided in several smaller instances of the same problem– The subproblems must be independent (each one will be

solved at most once)– They should be of about the same size

• These subproblems are solved (by applying the same strategy or directly – if their size is small enough)– If the subproblem size is less than a given value (critical size)

it is solved directly, otherwise it is solved recursively

• If necessary, the solutions obtained for the subproblems are combined

Algorithmics - Lecture 8-9 5

Basic idea of divide and conquer

Divide&conquer (n)

IF n<=nc THEN <solve P(n) directly to obtain r>

ELSE

<divide P(n) in P(n1), …, P(nk)>

FOR i:=1,k DO

ri = Divide&conquer(ni)

ENDFOR

<combine r1, … rk to obtain r>

ENDIF

RETURN r

Algorithmics - Lecture 8-9 6

Example 1Compute the maximum of an array x[1..n]

3 2 7 5 1 6 4 5 n=8, k=2

3 2 7 5 1 6 4 5

3 2 7 5 1 6 4 5

3 7 6 5

7 6

7

Divide

Conquer

Combine

Algorithmics - Lecture 8-9 7

Example 1

Algorithm:

Maximum(x[left..right])IF n=1 then RETURN x[left]ELSE m=(left+right) DIV 2 max1=maximum(x[left..m]) max2=maximum(x[m+1..right]) if max1>max2 THEN RETURN max1 ELSE RETURN max2 ENDIFENDIF

Efficiency analysis

Problem size: n

Dominant operation: comparison

Recurrence relation:

0, n=1

T(n)=

T([n/2])+T(n-[n/2])+1, n>1

Algorithmics - Lecture 8-9 8

Example 1Backward substitution:

T(2m) = 2T(2m-1)+1

T(2m-1)=2T(2m-2)+1 |* 2

T(2)=2T(1)+1 |* 2m-1

T(1)=0

----------------------------

T(n)=1+…+2m-1=2m-1=n-1

0, n=1

T(n)=

T([n/2])+T(n-[n/2])+1, n>1

Particular case: n=2m

0, n=1

T(n)=

2T(n/2)+1, n>1

Algorithmics - Lecture 8-9 9

Example 1General case.

(a) Proof by complete mathematical induction

First step. n=1 =>T(n)=0=n-1

Inductive step.

Let us suppose that T(k)=k-1 for all k<n.

Then

T(n)=[n/2]-1+n-[n/2]-1+1=n-1

Thus T(n) =n-1 =>

T(n) belongs to Θ(n).

0, n=1

T(n)=

T([n/2])+T(n-[n/2])+1, n>1

Particular case:

n=2m => T(n)=n-1

Algorithmics - Lecture 8-9 10

Example 1General case.

(b) Smoothness rule

If T(n) belongs to (f(n)) for n=bm

T(n) is eventually nondecreasing (for n>n0 it is nondecreasing)

f(n) is smooth (f(cn) belongs to (f(n)) for any positive constant c)

then T(n) belongs to (f(n)) for all n

Remarks.• All functions that do not grow too fast are smooth (polynomial and

logarithmic)

• For our example (“maximum” algorithm): T(n) is eventually

nondecreasing, f(n)=n is smooth, thus T(n) is from (n)

Algorithmics - Lecture 8-9 11

Example 2 – binary search

Check if a given value, v, is an element of an increasingly sorted array, x[1..n] (x[i]<=x[i+1])

x1 … xm-1 xm xm+1 … xn

x1 … xm’-1 xm’ xm’+1 … xm-1 xm+1 … xm’-1 xm’ xm’+1 … xn

xm=v

True

v<xm v>xm

True

xm=v

xleft…..xright Falseleft>right (empty array)

Algorithmics - Lecture 8-9 12

Example 2 – binary search

Recursive variant:

binsearch(x[left..right],v)IF left>right THEN RETURN FalseELSE m:=(left+right) DIV 2 IF v=x[m] THEN RETURN True ELSE IF v<x[m] THEN RETURN binsearch(x[left..m-1],v) ELSE RETURN binsearch(x[m+1..right],v) ENDIF ENDIFENDIF

Remarks:

nc=0

k=2

Only one of the two subproblems is solved

This is rather a decrease & conquer approach

Algorithmics - Lecture 8-9 13

Example 2 – binary search

First iterative variant:

binsearch(x[1..n],v)

left:=1

right:=n

WHILE left<=right DO

m:=(left+right) DIV 2

IF v=x[m] THEN RETURN True

ELSE

IF v<x[m]

THEN right:=m-1

ELSE left:=m+1

ENDIF / ENDIF/ ENDWHILE

RETURN False

Second iterative variant:

binsearch(x[1..n],v)

left:=1

right:=n

WHILE left<right DO

m:=(left+right) DIV 2

IF v<=x[m]

THEN right:=m

ELSE left:=m+1

ENDIF / ENDWHILE

IF x[left]=v THEN RETURN True

ELSE RETURN False

ENDIF

Algorithmics - Lecture 8-9 14

Example 2 – binary search

Second iterative variant:binsearch(x[1..n],v) left:=1 right:=n WHILE left<right DO m:=(left+right) DIV 2 IF v<=x[m] THEN right:=m ELSE left:=m+1 ENDIF / ENDWHILE IF x[left]=v THEN RETURN True ELSE RETURN False ENDIF

Correctness

Precondition: n>=1

Postcondition:

“returns True if v is in x[1..n] and False otherwise”

Loop invariant: “if v is in x[1..n] then it is in x[left..right]”

(i) left=1, right=n => the loop invariant is true

(ii) It remains true after the execution of the loop body

(iii) when right=left it implies the postcondition

Algorithmics - Lecture 8-9 15

Example 2 – binary search

Second iterative variant:binsearch(x[1..n],v) left:=1 right:=n WHILE left<right DO m:=(left+right) DIV 2 IF v<=x[m] THEN right:=m ELSE left:=m+1 ENDIF / ENDWHILE IF x[left]=v THEN RETURN True ELSE RETURN False ENDIF

Efficiency:

Worst case analysis (n=2m)

1 n=1

T(n)=

T(n/2)+1 n>1

T(n)=T(n/2)+1

T(n/2)=T(n/4)+1

T(2)=T(1)+1

T(1)=1

T(n)=lg n+1 O(lg n)

Algorithmics - Lecture 8-9 16

Example 2 – binary searchRemarks:

• By applying the smoothness rule one obtains that this result is true for arbitrary values of n

• The first iterative variant and the recursive one also belong to O(lg n)

Algorithmics - Lecture 8-9 17

Master theoremLet us consider the following recurrence relation:

T0 n<=nc

T(n)=

kT(n/m)+TDC(n) n>nc

If TDC(n) belongs to (nd) (d>=0) then

(nd) if k<md

T(n) belongs to (nd lgn) if k=md

(nlgk/lgm) if k>md

A similar result holds for O and Ω notations

Algorithmics - Lecture 8-9 18

Master theoremUsefulness:• It can be applied in the analysis of divide & conquer algorithms• It avoids solving the recurrence relation• In most practical applications the running time of the divide and

combine steps has a polynomial order of growth• It gives the efficiency class but it does not give the constants

involved in the running time

Example: maximum computation:

k=2 (division in two subproblems, both should be solved)

m=2 (each subproblem size is almost n/2)

d=0 (the divide and combine steps are of constant cost)

Since k>md by applying the third case of the master theorem we obtain that T(n) belongs to (nlg k/lg m)= (n)

Algorithmics - Lecture 8-9 19

Master theoremExample 1: maximum computation:

k=2 (division in two subproblems, both should be solved)

m=2 (each subproblem size is almost n/2)

d=0 (the divide and combine steps are of constant cost)

Since k>md by applying the third case of the master theorem we obtain that T(n) belongs to (nlg k/lg m)= (n)

Example 2: binary search

k=1 ( only one subproblem should be solved)

m=2 (the subproblem size is almost n/2)

d=0 (the divide and combine steps are of constant cost)

Since k=md by applying the second case of the master theorem we obtain that T(n) belongs to O(nd lg(n))= (lg n)

Algorithmics - Lecture 8-9 20

Efficient sorting• Elementary sorting methods belong to O(n2)

• Idea to increase the efficiency of sorting process:

– divide the sequence in contiguous subsequences (usually two)

– sort each subsequence

– combine the sorted subsequences to obtain the sorted sequence

Divide

Combine

By position

Merging Concatenation

By value

Merge sort

Quicksort

Algorithmics - Lecture 8-9 21

Merge sort

Basic idea:• Divide x[1..n] in two subarrays x[1..[n/2]] and x[[n/2]+1..n]

• Sort each subarray

• Merge the elements of x[1..[n/2]] and x[[n/2]+1..n] and construct the sorted temporary array t[1..n] . Transfer the content of the temporary array in x[1..n]

Remarks:• Critical value: 1 (an array containing one element is already

sorted)• The critical value can be larger than 1 (e.g.10) and for the

particular case one applies a basic sorting algorithm (e.g. insertion sort)

Algorithmics - Lecture 8-9 22

Merge sort

1 5 8 3 4 2 1 0

1 5 8 3

1 5 8 3

1 5 8 3

1 5 3 8

1 3 5 8

4 2 1 0

4 2 1 0

4 2 1 0

2 4 0 1

0 1 2 4

0 1 1 2 3 4 5 8

D iv id e

M er g in g

S im p le c as e

Algorithmics - Lecture 8-9 23

Mergesort

Algorithm:

mergesort(x[left..right])IF left<right THEN m:=(left+right) DIV 2 x[left..m]:=mergesort(x[left..m]) x[m+1..right]:=mergesort(x[m+1..right]) x[left..right]:=merge(x[left..m],x[m+1..right])ENDIFRETURN x[left..right]

Remark: the algorithm will be called as mergesort(x[1..n])

Algorithmics - Lecture 8-9 24

Mergesort

Merge step:

merge (x[left..m],x[m+1..right]) i:=left; j:=m+1; k:=0;// scan simultaneously the arrays// and transfer the smallest element

in t WHILE i<=m AND j<=right DO IF x[i]<=x[j] THEN k:=k+1 t[k]:=x[i] i:=i+1 ELSE k:=k+1 t[k]:=x[j] j:=j+1ENDIF ENDWHILE

// transfer the last elements of the first array (if it is the case)

WHILE i<=m DO k:=k+1 t[k]:=x[i] i:=i+1ENDWHILE// transfer the last elements of the

second array (if it is the case)WHILE j<=right DO k:=k+1 t[k]:=x[j] j:=j+1ENDWHILERETURN t[1..k]

Algorithmics - Lecture 8-9 25

Mergesort• The merge step can be used independently of the sorting process• Variant of merge based on sentinels:

– Merge two sorted arrays a[1..p] and b[1..q]

– Add large values to the end of each array a[p+1]=, b[q+1]=

Merge(a[1..p],b[1..q])

a[p+1]:= ; b[q+1]= i:=1; j=1;

FOR k:=1,p+q DO

IF a[i]<=b[j]

THEN c[k]:=a[i]

i:=i+1

ELSE c[k]:=b[j]

j:=j+1

ENDIF / ENDFOR

RETURN c[1..p+q]

Efficiency analysis of merge step

Dominant operation: comparison

T(p,q)=p+q

In mergesort (p=[n/2], q=n-[n/2]):

T(n)<=[n/2]+n-[n/2]=n

Thus T(n) belongs to O(n)

Algorithmics - Lecture 8-9 26

MergesortEfficiency analysis:

0 n=1

T(n)=

T([n/2])+T(n-[n/2])+TM(n) n>1

Since k=2, m=2, d=1 (TM(n) is from O(n)) it follows (by the second case of the Master theorem) that T(n) belongs to O(nlgn). In fact T(n) is from (nlgn)

Remark.

1. The main disadvantage of merge sort is the fact that it uses an additional memory space of the array size

2. If in the merge step the comparison is <= then the mergesort is stable

Algorithmics - Lecture 8-9 27

QuicksortIdea:

• Divide the array x[1..n] in two subarrays x[1..q] and x[q+1..n] such that all elements of x[1..q] are smaller than the elements of x[q+1..n]

• Sort each subarray

• Concatenate the sorted subarrays

Algorithmics - Lecture 8-9 28

Quicksort

Example 1

3 1 2 4 7 5 8

3 1 2 7 5 8

1 2 3 5 7 8

1 2 3 4 5 7 8

• An element x[q] having the properties:

(a) x[q]>=x[i], for all i<q

(b) x[q]<=x[i], for all i>q

is called pivot

• A pivot is placed on its final position• A good pivot divides the array in

two subarrays of almost the same size

• Sometimes– The pivot divides the array in an

unbalanced manner

– Does not exist a pivot => we must create one by swapping some elements

Divide

Combine

Algorithmics - Lecture 8-9 29

Quicksort

Example 2

3 1 2 7 5 4 8

3 1 2 7 5 4 8

1 2 3 4 5 7 8

1 2 3 4 5 7 8

• A position q having the property:(a) x[i]<=x[i], for all 1<=i<=q and all

q+1<=j<=n

is called partitioning position

• A good partitioning position divides the array in two subarrays of almost the same size

• Sometimes– The partitioning position divides the

array in an unbalanced manner

– Does not exist such a partitioning position => we must create one by swapping some elements

Divide

Combine

Algorithmics - Lecture 8-9 30

Quicksort

The variant which uses a pivot:

quicksort1(x[le..ri])

IF le<ri THEN

q:=pivot(x[le..ri])

x[le..q-1]:=quicksort1(x[le..q-1])

x[q+1..ri]:=quicksort1(x[q+1..ri])

ENDIF

RETURN x[le..ri]

The variant which uses a partitioning position:

quicksort2(x[le..ri])

IF le<ri THEN

q:=partition(x[le..ri])

x[le..q]:=quicksort2(x[le..q])

x[q+1..ri]:=quicksort2(x[q+1..ri])

ENDIF

RETURN x[le..ri]

Algorithmics - Lecture 8-9 31

Quicksort

Constructing a pivot:• Choose a value from the array (the first one, the last one or a random

one)• Rearrange the elements of the array such that all elements which are

smaller than the pivot value are before the elements which are larger than the pivot value

• Place the pivot value on its final position (such that all elements on its left are smaller than it and all elements on its right are larger than it)

Idea for rearranging the elements:• use two pointers one starting from the first element and the other

starting from the last element• Increase/decrease the pointers until an inversion is found• Repair the inversion• Continue the process until the pointers cross each other

Algorithmics - Lecture 8-9 32

QuicksortHow to construct a pivot

1 7 5 3 8 2 4 4 1 7 5 3 8 2 4

4 1 7 5 3 8 2 4

4 1 2 5 3 8 7 4

• Choose the pivot value: 4 (the last one)

• Place a sentinel on the first position (only for the initial array)

i=0, j=7

i=2, j=6

i=3, j=4

i=4, j=3 (the pointers crossed)

The pivot is placed on its final position

0 1 2 3 4 5 6 7

4 1 2 3 5 8 7 4

4 1 2 3 4 8 7 5

Pivot value

Algorithmics - Lecture 8-9 33

Quicksort

pivot(x[left..right]) v:=x[right] i:=left-1 j:=right WHILE i<j DO REPEAT i:=i+1 UNTIL x[i]>=v REPEAT j:=j-1 UNTIL x[j]<=v IF i<j THEN x[i]↔x[j] ENDIF ENDWHILE x[i] ↔ x[right] RETURN i

Remarks:• x[right] plays the role of a

sentinel at the right• At the left margin we can place

explicitly a sentinel on x[0] (only for the initial array x[1..n])

• The conditions x[i]>=v, x[j]<=v allow to stop the search when the sentinels are encountered. Also they allow obtaining a balanced splitting when the array contains equal elements.

• At the end of the while loop the pointers satisfy either i=j or i=j+1

Algorithmics - Lecture 8-9 34

Quicksort

pivot(x[left..right])

v:=x[right]

i:=left-1

j:=right

WHILE i<j DO

REPEAT i:=i+1 UNTIL x[i]>=v

REPEAT j:=j-1 UNTIL x[j]<=v

IF i<j THEN x[i] ↔x[j] ENDIF

ENDWHILE

x[i] ↔x[right]

RETURN i

Correctness:

Loop invariant:

If i<j then x[k]<=v for k=left..i x[k]>=v for k=j..right

If i>=j then x[k]<=v for k=left..i x[k]>=v for k=j+1..right

Algorithmics - Lecture 8-9 35

Quicksort

pivot(x[left..right])

v:=x[right]

i:=left-1

j:=right

WHILE i<j DO

REPEAT i:=i+1 UNTIL x[i]>=v

REPEAT j:=j-1 UNTIL x[j]<=v

IF i<j THEN x[i] ↔x[j] ENDIF

ENDWHILE

x[i] ↔x[right]

RETURN i

Efficiency:

Input size: n=right-left+1

Dominant operation: comparison

T(n)=n+c, c=0 if i=j and c=1 if i=j+1

Thus T(n) belongs to (n)

Algorithmics - Lecture 8-9 36

Quicksort

Remark: the pivot position does not always divide the array in a balanced manner

Balanced manner: • the array is divided in two sequences of size almost n/2• If each partition is balanced then the algorithm executes few

operations (this is the best case)

Unbalanced manner:• The array is divided in a subsequence of (n-1) elements the pivot

and an empty subsequence• If each partition is unbalanced then the algorithm executes much

more operations (this is the worst case)

Algorithmics - Lecture 8-9 37

Quicksort

Backward substitution:

T(n)=T(n-1)+(n+1)

T(n-1)=T(n-2)+n

T(2)=T(1)+3

T(1)=0

---------------------

T(n)=(n+1)(n+2)/2-3

Thus in the worst case quicksort belongs to (n2)

Worst case analysis:

0 if n=1

T(n)=

T(n-1)+n+1, if n>1

Algorithmics - Lecture 8-9 38

Quicksort

By applying the second case of the master theorem (for k=2,m=2,d=1) one obtains that in the best case quicksort is (nlgn)

Best case analysis:

0, if n=1

T(n)=

2T(n/2)+n, if n>1

Thus quicksort belong to Ω(nlgn) and O(n2)

An average case analysis should be useful

Algorithmics - Lecture 8-9 39

Quicksort

Average case analysis.

Hypotheses:• Each partitioning step needs at most (n+1) comparisons

• There are n possible positions for the pivot. Let us suppose that each position has the same probability to be selected (Prob(q)=1/n)

• If the pivot is on the position q then the number of comparisons satisfies

Tq(n)=T(q-1)+T(n-q)+(n+1)

Algorithmics - Lecture 8-9 40

Quicksort

The average number of comparisons is

Ta(n)=(T1(n)+…+Tn(n))/n

=((Ta(0)+Ta(n-1))+(Ta(1)+Ta(n-2))+…+(Ta(n-1)+Ta(0)))/n + (n+1)

=2(Ta(0)+Ta(1)+…+Ta(n-1))/n+(n+1)

Thus

n Ta(n) = 2(Ta(0)+Ta(1)+…+Ta(n-1))+n(n+1)

(n-1)Ta(n-1)= 2(Ta(0)+Ta(1)+…+Ta(n-2))+(n-1)n

-----------------------------------------------------------------

By computing the difference between the last two equalities:

nTa(n)=(n+1)Ta(n-1)+2n

Ta(n)=(n+1)/n Ta(n-1)+2

Algorithmics - Lecture 8-9 41

Quicksort

Average case analysis.

By backward substitution:

Ta(n) = (n+1)/n Ta(n-1)+2

Ta(n-1)= n/(n-1) Ta(n-2)+2 |*(n+1)/n

Ta(n-2)= (n-1)/(n-2) Ta(n-3)+2 |*(n+1)/(n-1)

Ta(2) = 3/2 Ta(1)+2 |*(n+1)/3

Ta(1) = 0 |*(n+1)/2

-----------------------------------------------------

Ta(n) = 2+2(n+1)(1/n+1/(n-1)+…+1/3) ≈ 2(n+1)(ln n-ln 3)+2

In the average case the complexity order is nlgn

Algorithmics - Lecture 8-9 42

Quicksort -variants

Another way to construct a pivot

pivot(x[left..right]) v:=x[left] i:=left FOR j=left+1,right IF x[j]<=v THEN i=i+1 x[i] ↔ x[j] ENDIF ENDFORRETURN i

Invariant: x[k]<=v for all left<=k<=i x[k]>v for all i<k<=j

3 7 5 2 1 4 8 v=3, i=1,j=2 3 7 5 2 1 4 8 i=2, j=4

3 2 5 7 1 4 8 i=3, j=5

3 2 1 7 5 4 8 i=3, j=8

Plasare pivot:

1 2 3 7 5 4 8

Pivot position: 3

Complexity order of partition: O(n)

Algorithmics - Lecture 8-9 43

Quicksort -variants

Finding a partitioning position

partition(x[left..right]) v:=x[left] i:=left j:=right+1 WHILE i<j DO REPEAT i:=i+1 UNTIL x[i]>=v REPEAT j:=j-1 UNTIL x[j]<=v IF i<j THEN x[i] ↔x[j] ENDIF ENDWHILERETURN j

3 7 5 2 1 4 8 v=3 3 7 5 2 1 4 8 i=2, j=5

3 1 5 2 7 4 8 i=3, j=4

3 1 2 5 7 4 8 i=4, j=3

Partitioning position: 3

Complexity order of partition: O(n)

Remark: The partition algorithm is to be used in the variant quicksort2

Algorithmics - Lecture 8-9 44

Next lecture will be on …

… greedy strategy

… and its applications