An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Post on 28-Mar-2015

219 views 2 download

Tags:

transcript

An Analysis of Convex Relaxations

M. Pawan Kumar

Vladimir Kolmogorov

Philip Torr

for MAP Estimation

Aim

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Labelling m = {1, 0, 0, 1}

Random Variables V = {V1, ... ,V4}

Label Set L = {0, 1}

• To analyze convex relaxations for MAP estimation

Aim

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Cost(m) = 2 + 1 + 2 + 1 + 3 + 1 + 3 = 13

Which approximate algorithm is the best?

Minimum Cost Labelling? NP-hard problem

• To analyze convex relaxations for MAP estimation

Aim

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Objectives• Compare existing convex relaxations – LP, QP and SOCP

• Develop new relaxations based on the comparison

• To analyze convex relaxations for MAP estimation

Outline

• Integer Programming Formulation

• Existing Relaxations

• Comparison

• Generalization of Results

• Two New SOCP Relaxations

Integer Programming Formulation

2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Unary Cost

Unary Cost Vector u = [ 5

Cost of V1 = 0

2

Cost of V1 = 1

; 2 4 ]

Labelling m = {1 , 0}

2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Unary Cost

Unary Cost Vector u = [ 5 2 ; 2 4 ]T

Labelling m = {1 , 0}

Label vector x = [ -1

V1 0

1

V1 = 1

; 1 -1 ]T

Recall that the aim is to find the optimal x

Integer Programming Formulation

2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Unary Cost

Unary Cost Vector u = [ 5 2 ; 2 4 ]T

Labelling m = {1 , 0}

Label vector x = [ -1 1 ; 1 -1 ]T

Sum of Unary Costs = 12

∑i ui (1 + xi)

Integer Programming Formulation

2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Pairwise Cost

Labelling m = {1 , 0}

0Cost of V1 = 0 and V1 = 0

0

00

0Cost of V1 = 0 and V2 = 0

3

Cost of V1 = 0 and V2 = 11 0

00

0 0

10

3 0

Pairwise Cost Matrix P

Integer Programming Formulation

2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Pairwise Cost

Labelling m = {1 , 0}

Pairwise Cost Matrix P

0 0

00

0 3

1 0

00

0 0

10

3 0

Sum of Pairwise Costs14

∑ij Pij (1 + xi)(1+xj)

Integer Programming Formulation

2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Pairwise Cost

Labelling m = {1 , 0}

Pairwise Cost Matrix P

0 0

00

0 3

1 0

00

0 0

10

3 0

Sum of Pairwise Costs14

∑ij Pij (1 + xi +xj + xixj)

14

∑ij Pij (1 + xi + xj + Xij)=

X = x xT Xij = xi xj

Integer Programming Formulation

Constraints

• Uniqueness Constraint

∑ xi = 2 - |L|i Va

• Integer Constraints

xi {-1,1}

X = x xT

Integer Programming Formulation

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi {-1,1}

X = x xT

ConvexNon-Convex

Integer Programming Formulation

Outline

• Integer Programming Formulation

• Existing Relaxations– Linear Programming (LP-S)– Semidefinite Programming (SDP-L)– Second Order Cone Programming (SOCP-MS)

• Comparison

• Generalization of Results

• Two New SOCP Relaxations

LP-S

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi {-1,1}

X = x xT

Retain Convex PartSchlesinger, 1976

Relax Non-ConvexConstraint

LP-S

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi [-1,1]

X = x xT

Retain Convex PartSchlesinger, 1976

Relax Non-ConvexConstraint

LP-S

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

Retain Convex PartSchlesinger, 1976

Xij [-1,1] 1 + xi + xj + Xij ≥ 0

∑ Xij = (2 - |L|) xij Vb

LP-Sxi [-1,1]

Outline• Integer Programming Formulation

• Existing Relaxations– Linear Programming (LP-S)– Semidefinite Programming (SDP-L)– Second Order Cone Programming (SOCP-MS)

• Comparison

• Generalization of Results

• Two New SOCP Relaxations

• Experiments

SDP-L

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi {-1,1}

X = x xT

Retain Convex PartLasserre, 2000

Relax Non-ConvexConstraint

SDP-L

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi [-1,1]

X = x xT

Retain Convex Part

Relax Non-ConvexConstraint

Lasserre, 2000

SDP-L

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi [-1,1]

Retain Convex Part

Xii = 1 X - xxT 0

Accurate Inefficient

Lasserre, 2000

Outline

• Integer Programming Formulation

• Existing Relaxations– Linear Programming (LP-S)– Semidefinite Programming (SDP-L)– Second Order Cone Programming (SOCP-MS)

• Comparison

• Generalization of Results

• Two New SOCP Relaxations

SOCP Relaxation

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi [-1,1]

Xii = 1 X - xxT 0

Derive SOCP relaxation from the SDP relaxation

Further Relaxation

2-D Example

X11 X12

X21 X22

1 X12

X12 1

=X =

x1x1 x1x2

x2x1 x2x2

xxT =x1

2 x1x2

x1x2

=x2

2

2-D Example(X - xxT)

1 - x12 X12-x1x2

X12-x1x2 1 - x22

C1 0 C1 0

(x1 + x2)2 2 + 2X12

SOC of the form || v ||2 st

01 1

1 1

2-D Example(X - xxT)

1 - x12 X12-x1x2

X12-x1x2 1 - x22

C2 0 C2 0

(x1 - x2)2 2 - 2X12

SOC of the form || v ||2 st

01 -1

-1 1

SOCP Relaxation

Consider a matrix C1 = UUT 0

(X - xxT)

||UTx ||2 X . C1

C1 . 0

Continue for C2, C3, … , Cn

SOC of the form || v ||2 st

Kim and Kojima, 2000

SOCP Relaxation

How many constraints for SOCP = SDP ?

Exponential.

Specify constraints similar to the 2-D example

xi xj

Xij

(xi + xj)2 2 + 2Xij

(xi + xj)2 2 - 2Xij

SOCP-MS

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi [-1,1]

Xii = 1 X - xxT 0

Muramatsu and Suzuki, 2003

SOCP-MS

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi [-1,1]

(xi + xj)2 2 + 2Xij (xi - xj)2 2 - 2Xij

Specified only when Pij 0

Muramatsu and Suzuki, 2003

Outline

• Integer Programming Formulation

• Existing Relaxations

• Comparison

• Generalization of Results

• Two New SOCP Relaxations

Dominating Relaxation

For all MAP Estimation problem (u, P)

A dominates B

A B

Dominating relaxations are better

Equivalent Relaxations

A dominates B

B dominates A

Strictly Dominating Relaxation

A dominates B

B does not dominate A

SOCP-MS

(xi + xj)2 2 + 2Xij (xi - xj)2 2 - 2Xij

min ij Pij Xij

• Pij ≥ 0(xi + xj)2

2- 1Xij =

• Pij < 0(xi - xj)2

21 -Xij =

SOCP-MS is a QP

Same as QP by Ravikumar and Lafferty, 2006

SOCP-MS ≡ QP-RL

LP-S vs. SOCP-MSDiffer in the way they relax X = xxT

Xij [-1,1]

1 + xi + xj + Xij ≥ 0

∑ Xij = (2 - |L|) xij Vb

LP-S

(xi + xj)2 2 + 2Xij

(xi - xj)2 2 - 2Xij

SOCP-MS

F(LP-S)

F(SOCP-MS)

LP-S vs. SOCP-MS

• LP-S strictly dominates SOCP-MS

• LP-S strictly dominates QP-RL

• Where have we gone wrong?

• A Quick Recap !

Recap of SOCP-MS

xi xj

Xij

Can we use different C matrices ??

Can we use a different subgraph ?? 1 -1

-1 1

C =

(xi - xj)2 2 - 2Xij

1 1

1 1

C =

(xi + xj)2 2 + 2Xij

Outline

• Integer Programming Formulation

• Existing Relaxations

• Comparison

• Generalization of Results– SOCP Relaxations on Trees– SOCP Relaxations on Cycles

• Two New SOCP Relaxations

SOCP Relaxations on Trees

Choose any arbitrary tree

SOCP Relaxations on Trees

Choose any arbitrary C 0

Repeat over trees to get relaxation SOCP-T

LP-S strictly dominates SOCP-T

LP-S strictly dominates QP-T

Outline

• Integer Programming Formulation

• Existing Relaxations

• Comparison

• Generalization of Results– SOCP Relaxations on Trees– SOCP Relaxations on Cycles

• Two New SOCP Relaxations

SOCP Relaxations on Cycles

Choose an arbitrary even cycle

Pij ≥ 0 Pij ≤ 0OR

SOCP Relaxations on Cycles

Choose any arbitrary C 0

Repeat over even cycles to get relaxation SOCP-E

LP-S strictly dominates SOCP-E

LP-S strictly dominates QP-E

SOCP Relaxations on Cycles

• True for odd cycles with Pij ≤ 0

• True for odd cycles with Pij ≤ 0 for only one edge

• True for odd cycles with Pij ≥ 0 for only one edge

• True for all combinations of above cases

Outline

• Integer Programming Formulation

• Existing Relaxations

• Comparison

• Generalization of Results

• Two New SOCP Relaxations– The SOCP-C Relaxation– The SOCP-Q Relaxation

The SOCP-C Relaxation Include all LP-S constraints True SOCP

a b

c d

Cycle of size 4

Define SOCP Constraint using appropriate C

SOCP-C strictly dominates LP-S

SOCP-C strictly dominated by cycle inequalities?

Open Question !!!

Outline

• Integer Programming Formulation

• Existing Relaxations

• Comparison

• Generalization of Results

• Two New SOCP Relaxations– The SOCP-C Relaxation– The SOCP-Q Relaxation

The SOCP-Q Relaxation Include all cycle inequalities True SOCP

a b

c d

Clique of size n

Define an SOCP Constraint using C = 1

SOCP-Q strictly dominates LP-S

SOCP-Q strictly dominates cycle inequalities

Conclusions

• Large class of SOCP/QP dominated by LP-S

• New SOCP relaxations dominate LP-S

• Preliminary experimental results in poster

Future Work

• Comparison with cycle inequalities

• Determine best SOC constraints

• Develop efficient algorithms for new relaxations

Questions ??

4-Neighbourhood MRF

Test SOCP-C

50 binary MRFs of size 30x30

u ≈ N (0,1)

P ≈ N (0,σ2)

4-Neighbourhood MRF

σ = 2.5

8-Neighbourhood MRF

Test SOCP-Q

50 binary MRFs of size 30x30

u ≈ N (0,1)

P ≈ N (0,σ2)

8-Neighbourhood MRF

σ = 1.125

Equivalent Relaxations

A dominates B

A B

=

B dominates A

For all MAP Estimation problem (u, P)

Strictly Dominating Relaxation

A dominates B

A B

>

B does not dominate A

For at least one MAP Estimation problem (u, P)