+ All Categories
Home > Documents > An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Date post: 28-Mar-2015
Category:
Upload: sophia-rivera
View: 219 times
Download: 2 times
Share this document with a friend
Popular Tags:
57
An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation
Transcript
Page 1: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

An Analysis of Convex Relaxations

M. Pawan Kumar

Vladimir Kolmogorov

Philip Torr

for MAP Estimation

Page 2: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Aim

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Labelling m = {1, 0, 0, 1}

Random Variables V = {V1, ... ,V4}

Label Set L = {0, 1}

• To analyze convex relaxations for MAP estimation

Page 3: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Aim

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Cost(m) = 2 + 1 + 2 + 1 + 3 + 1 + 3 = 13

Which approximate algorithm is the best?

Minimum Cost Labelling? NP-hard problem

• To analyze convex relaxations for MAP estimation

Page 4: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Aim

2

5

4

2

6

3

3

7

0

1 1

0

0

2 3

1

1

4 1

0

V1 V2 V3 V4

Label ‘0’

Label ‘1’

Objectives• Compare existing convex relaxations – LP, QP and SOCP

• Develop new relaxations based on the comparison

• To analyze convex relaxations for MAP estimation

Page 5: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Outline

• Integer Programming Formulation

• Existing Relaxations

• Comparison

• Generalization of Results

• Two New SOCP Relaxations

Page 6: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Integer Programming Formulation

2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Unary Cost

Unary Cost Vector u = [ 5

Cost of V1 = 0

2

Cost of V1 = 1

; 2 4 ]

Labelling m = {1 , 0}

Page 7: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Unary Cost

Unary Cost Vector u = [ 5 2 ; 2 4 ]T

Labelling m = {1 , 0}

Label vector x = [ -1

V1 0

1

V1 = 1

; 1 -1 ]T

Recall that the aim is to find the optimal x

Integer Programming Formulation

Page 8: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Unary Cost

Unary Cost Vector u = [ 5 2 ; 2 4 ]T

Labelling m = {1 , 0}

Label vector x = [ -1 1 ; 1 -1 ]T

Sum of Unary Costs = 12

∑i ui (1 + xi)

Integer Programming Formulation

Page 9: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Pairwise Cost

Labelling m = {1 , 0}

0Cost of V1 = 0 and V1 = 0

0

00

0Cost of V1 = 0 and V2 = 0

3

Cost of V1 = 0 and V2 = 11 0

00

0 0

10

3 0

Pairwise Cost Matrix P

Integer Programming Formulation

Page 10: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Pairwise Cost

Labelling m = {1 , 0}

Pairwise Cost Matrix P

0 0

00

0 3

1 0

00

0 0

10

3 0

Sum of Pairwise Costs14

∑ij Pij (1 + xi)(1+xj)

Integer Programming Formulation

Page 11: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

2

5

4

2

0

1 3

0

V1 V2

Label ‘0’

Label ‘1’Pairwise Cost

Labelling m = {1 , 0}

Pairwise Cost Matrix P

0 0

00

0 3

1 0

00

0 0

10

3 0

Sum of Pairwise Costs14

∑ij Pij (1 + xi +xj + xixj)

14

∑ij Pij (1 + xi + xj + Xij)=

X = x xT Xij = xi xj

Integer Programming Formulation

Page 12: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Constraints

• Uniqueness Constraint

∑ xi = 2 - |L|i Va

• Integer Constraints

xi {-1,1}

X = x xT

Integer Programming Formulation

Page 13: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi {-1,1}

X = x xT

ConvexNon-Convex

Integer Programming Formulation

Page 14: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Outline

• Integer Programming Formulation

• Existing Relaxations– Linear Programming (LP-S)– Semidefinite Programming (SDP-L)– Second Order Cone Programming (SOCP-MS)

• Comparison

• Generalization of Results

• Two New SOCP Relaxations

Page 15: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

LP-S

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi {-1,1}

X = x xT

Retain Convex PartSchlesinger, 1976

Relax Non-ConvexConstraint

Page 16: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

LP-S

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi [-1,1]

X = x xT

Retain Convex PartSchlesinger, 1976

Relax Non-ConvexConstraint

Page 17: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

LP-S

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

Retain Convex PartSchlesinger, 1976

Xij [-1,1] 1 + xi + xj + Xij ≥ 0

∑ Xij = (2 - |L|) xij Vb

LP-Sxi [-1,1]

Page 18: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Outline• Integer Programming Formulation

• Existing Relaxations– Linear Programming (LP-S)– Semidefinite Programming (SDP-L)– Second Order Cone Programming (SOCP-MS)

• Comparison

• Generalization of Results

• Two New SOCP Relaxations

• Experiments

Page 19: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

SDP-L

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi {-1,1}

X = x xT

Retain Convex PartLasserre, 2000

Relax Non-ConvexConstraint

Page 20: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

SDP-L

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi [-1,1]

X = x xT

Retain Convex Part

Relax Non-ConvexConstraint

Lasserre, 2000

Page 21: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

SDP-L

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi [-1,1]

Retain Convex Part

Xii = 1 X - xxT 0

Accurate Inefficient

Lasserre, 2000

Page 22: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Outline

• Integer Programming Formulation

• Existing Relaxations– Linear Programming (LP-S)– Semidefinite Programming (SDP-L)– Second Order Cone Programming (SOCP-MS)

• Comparison

• Generalization of Results

• Two New SOCP Relaxations

Page 23: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

SOCP Relaxation

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi [-1,1]

Xii = 1 X - xxT 0

Derive SOCP relaxation from the SDP relaxation

Further Relaxation

Page 24: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

2-D Example

X11 X12

X21 X22

1 X12

X12 1

=X =

x1x1 x1x2

x2x1 x2x2

xxT =x1

2 x1x2

x1x2

=x2

2

Page 25: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

2-D Example(X - xxT)

1 - x12 X12-x1x2

X12-x1x2 1 - x22

C1 0 C1 0

(x1 + x2)2 2 + 2X12

SOC of the form || v ||2 st

01 1

1 1

Page 26: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

2-D Example(X - xxT)

1 - x12 X12-x1x2

X12-x1x2 1 - x22

C2 0 C2 0

(x1 - x2)2 2 - 2X12

SOC of the form || v ||2 st

01 -1

-1 1

Page 27: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

SOCP Relaxation

Consider a matrix C1 = UUT 0

(X - xxT)

||UTx ||2 X . C1

C1 . 0

Continue for C2, C3, … , Cn

SOC of the form || v ||2 st

Kim and Kojima, 2000

Page 28: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

SOCP Relaxation

How many constraints for SOCP = SDP ?

Exponential.

Specify constraints similar to the 2-D example

xi xj

Xij

(xi + xj)2 2 + 2Xij

(xi + xj)2 2 - 2Xij

Page 29: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

SOCP-MS

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi [-1,1]

Xii = 1 X - xxT 0

Muramatsu and Suzuki, 2003

Page 30: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

SOCP-MS

x* = argmin 12

∑ ui (1 + xi) + 14

∑ Pij (1 + xi + xj + Xij)

∑ xi = 2 - |L|i Va

xi [-1,1]

(xi + xj)2 2 + 2Xij (xi - xj)2 2 - 2Xij

Specified only when Pij 0

Muramatsu and Suzuki, 2003

Page 31: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Outline

• Integer Programming Formulation

• Existing Relaxations

• Comparison

• Generalization of Results

• Two New SOCP Relaxations

Page 32: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Dominating Relaxation

For all MAP Estimation problem (u, P)

A dominates B

A B

Dominating relaxations are better

Page 33: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Equivalent Relaxations

A dominates B

B dominates A

Strictly Dominating Relaxation

A dominates B

B does not dominate A

Page 34: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

SOCP-MS

(xi + xj)2 2 + 2Xij (xi - xj)2 2 - 2Xij

min ij Pij Xij

• Pij ≥ 0(xi + xj)2

2- 1Xij =

• Pij < 0(xi - xj)2

21 -Xij =

SOCP-MS is a QP

Same as QP by Ravikumar and Lafferty, 2006

SOCP-MS ≡ QP-RL

Page 35: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

LP-S vs. SOCP-MSDiffer in the way they relax X = xxT

Xij [-1,1]

1 + xi + xj + Xij ≥ 0

∑ Xij = (2 - |L|) xij Vb

LP-S

(xi + xj)2 2 + 2Xij

(xi - xj)2 2 - 2Xij

SOCP-MS

F(LP-S)

F(SOCP-MS)

Page 36: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

LP-S vs. SOCP-MS

• LP-S strictly dominates SOCP-MS

• LP-S strictly dominates QP-RL

• Where have we gone wrong?

• A Quick Recap !

Page 37: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Recap of SOCP-MS

xi xj

Xij

Can we use different C matrices ??

Can we use a different subgraph ?? 1 -1

-1 1

C =

(xi - xj)2 2 - 2Xij

1 1

1 1

C =

(xi + xj)2 2 + 2Xij

Page 38: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Outline

• Integer Programming Formulation

• Existing Relaxations

• Comparison

• Generalization of Results– SOCP Relaxations on Trees– SOCP Relaxations on Cycles

• Two New SOCP Relaxations

Page 39: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

SOCP Relaxations on Trees

Choose any arbitrary tree

Page 40: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

SOCP Relaxations on Trees

Choose any arbitrary C 0

Repeat over trees to get relaxation SOCP-T

LP-S strictly dominates SOCP-T

LP-S strictly dominates QP-T

Page 41: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Outline

• Integer Programming Formulation

• Existing Relaxations

• Comparison

• Generalization of Results– SOCP Relaxations on Trees– SOCP Relaxations on Cycles

• Two New SOCP Relaxations

Page 42: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

SOCP Relaxations on Cycles

Choose an arbitrary even cycle

Pij ≥ 0 Pij ≤ 0OR

Page 43: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

SOCP Relaxations on Cycles

Choose any arbitrary C 0

Repeat over even cycles to get relaxation SOCP-E

LP-S strictly dominates SOCP-E

LP-S strictly dominates QP-E

Page 44: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

SOCP Relaxations on Cycles

• True for odd cycles with Pij ≤ 0

• True for odd cycles with Pij ≤ 0 for only one edge

• True for odd cycles with Pij ≥ 0 for only one edge

• True for all combinations of above cases

Page 45: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Outline

• Integer Programming Formulation

• Existing Relaxations

• Comparison

• Generalization of Results

• Two New SOCP Relaxations– The SOCP-C Relaxation– The SOCP-Q Relaxation

Page 46: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

The SOCP-C Relaxation Include all LP-S constraints True SOCP

a b

c d

Cycle of size 4

Define SOCP Constraint using appropriate C

SOCP-C strictly dominates LP-S

SOCP-C strictly dominated by cycle inequalities?

Open Question !!!

Page 47: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Outline

• Integer Programming Formulation

• Existing Relaxations

• Comparison

• Generalization of Results

• Two New SOCP Relaxations– The SOCP-C Relaxation– The SOCP-Q Relaxation

Page 48: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

The SOCP-Q Relaxation Include all cycle inequalities True SOCP

a b

c d

Clique of size n

Define an SOCP Constraint using C = 1

SOCP-Q strictly dominates LP-S

SOCP-Q strictly dominates cycle inequalities

Page 49: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Conclusions

• Large class of SOCP/QP dominated by LP-S

• New SOCP relaxations dominate LP-S

• Preliminary experimental results in poster

Page 50: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Future Work

• Comparison with cycle inequalities

• Determine best SOC constraints

• Develop efficient algorithms for new relaxations

Page 51: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Questions ??

Page 52: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

4-Neighbourhood MRF

Test SOCP-C

50 binary MRFs of size 30x30

u ≈ N (0,1)

P ≈ N (0,σ2)

Page 53: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

4-Neighbourhood MRF

σ = 2.5

Page 54: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

8-Neighbourhood MRF

Test SOCP-Q

50 binary MRFs of size 30x30

u ≈ N (0,1)

P ≈ N (0,σ2)

Page 55: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

8-Neighbourhood MRF

σ = 1.125

Page 56: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Equivalent Relaxations

A dominates B

A B

=

B dominates A

For all MAP Estimation problem (u, P)

Page 57: An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.

Strictly Dominating Relaxation

A dominates B

A B

>

B does not dominate A

For at least one MAP Estimation problem (u, P)


Recommended