Analyses of spherical antennas.ppt -...

Post on 26-Mar-2020

21 views 2 download

transcript

Analyses of Spherical antennas

K. W. LeungState Key Laboratory of Millimeter Waves &

Department of Electronic Engineering,City University of Hong Kong

1

Characteristics of spherical array

Array elements distributed on a sphere surface.

Conformal, low profile, light weight, easy to install on aircraft surfaces

Stable antenna gain and radiation pattern for scanning

Wide angular coverage by activating different arrayelements

2

Spherical array application

Earth-orbiting scientific satellite system

The user satellite is using the spherical array

[Stockton and Hockensmith 1977]

Stockton & Hockensmith, "Application of spherical arrays -- A simple approach," Antennas and Propagation Society International Symposium, 1977 , vol.15, pp. 202- 205, June 1977. 3

Hemispherical coverage with a moderate gain for steered beams (~13 dBic).

A cluster of 12 patch elements out of a total 120 are activated at a time. Beam steering was accomplished by shifting the active part in small steps.

[Stockton 1978]

Hemispherical patch array for satellite data link:Electronic Switching Spherical Array (ESSA)

76 cm

2.0-2.3 GHz

551 pre-programedBeams

3-dB Beam width:26°

Max. VSWR: 1.5

R. Stockton, "Electronic switching spherical array antenna", NASA (Unspecified Center), Apr. 1, 1978.4

Elements of the ESSA: RHCP Microstrip Patch Antenna

[Stockton 1978]

Heigth :0.635 cm

Spacing :0.6 - 0.8 λ

5

Proposed by Mei

Radiate circularly polarizedfields over a wide beamwidth.

Suitable for systems requiringwide-beamwidths (e.g., GPS).

Spherical helical antenna

K. K. Mei and M. Meyer, “Solutions to spherical anisotropic antennas,” IEEE Trans. Antennas Progagat., vol. 12, pp.459-463, 1964.

A. Safaai-Jazi and J. C. Cardoso,"Radiation characteristics of a spherical helical antenna," IEE Proc. Microw. Antennas Propag., vol. 143, no. I, Feb. 1996

Radiation pattern of a 7-turn spherical helical antenna

3dB beamwidths: 60o

Radiation patterns of spherical helical antenna

7

Measured electric field patterns of the 6-turn cylindrical helical antenna

3dB Beamwidth: ~ 40o

Comparison:radiation pattern of the cylindrical helical antenna

J. D. Kraus,"Helical Beam Antennas for Wide-Band Applications," Proceedings of the IRE,vol. 36, no.10, pp1236-1242,1948. 8

9

Spherical Solutions

No edge-shaped boundaries as found in cylindrical and rectangular structures

Closed-form Green’s functions obtainable

Exact solutions used as references for checking the accuracy of numerical or approximation techniques

Helmholtz Equation in Spherical Cooridnates

Solution

where bn(kr) is the spherical Bessel function

is the Associated Legendre function of the first kind

is sinusoidal function.

)(cosmnP

jmnmnnm ePkrb )(cos)(,

jme

Remark: Since the associated Legendre function of the second kind, is singular at = 0 or , it is generally not used for engineering EM problems.

)(cosmnQ

0sin1sin

sin11 2

2

2

2222

2

k

rrrr

rr

10

Spherical Bessel Functions

)(2

)( 2/1 krBkr

krb nn

where is the ordinary (cylindrical) Bessel function

)(2/1 krBn

)(),(~)( krykrjkrb nnn

11

Riccati-Bessel Functions (Schelkunoff-typeSpherical Bessel Function)

• All EM fields can be found from 2 potential functions

• Define and

• But Ar, Fr, are not solutions of Helmholtz equation

• Instead, Ar/r, Fr/r are solutions of Helmholtz equation

• Define Riccati-Bessel function

rAA r ˆ

rFF r ˆ

)(2

)()(ˆ2/1 krBkrkrkrbkrB nnn

12

General Solutions of Sphericl PotentialFunctions

mjmnnrr ePkrBFA )(cos)(ˆ~,,

13

Legendre Functions

m = 0 m = 1

14

E & H fields in Electromagnetics

15

16

Grounded Spherical Hemispherical Dielectric Resonator Antenna: Embedded Magnetic Source

17

(a) Side View (b) Top View

18

19

')(ˆ)'('ˆ')(ˆ)'('ˆ

)(cos)2(

)2(

0 rrkrJkrHrrkrHkrJePAG

nn

nnjmmn

n

n

nmnm

FM

rp

arrkHCarkrJBePG

nnm

nnm

n

n

nm

jmmn

FM

rh

)(ˆ)(ˆ

)(cos0

)2(0

')(ˆ)'(ˆ')(ˆ)'(ˆ

)(cos)2(

)2(

0 rrkrJkrHrrkrHkrJePDG

nn

nnjmmn

n

n

nmnm

AM

rp

arrkHFarkrJEePG

nnm

nnm

n

n

nm

jmmn

AM

rh

)(ˆ)(ˆ

)(cos0

)2(0

: Associated Legendre function of the first kind (order m,degree n)

: Spherical Bessel function of the first kind (Schelkunoff type)

: Spherical Hankel function of the second kind (Schelkunoff type)

0kk r

P xnm( ) ( )J xn

( )( )H xn2

Electric & Magnetic Green’s Functions Due to M

sMEE

Particular solutions obtained by matching theboundary conditions at the source point (r = r’)

0 EE

0 HH

0 HH

0

2

0)(cos

)!()!(

)1(12

4' ddePMm

mnmn

nnnrA jmm

nsnm

ddePddM

mnmn

nnn

krD jmm

nso

nm

)(cossin)!()!(

)1(12

4'

0

2

0

20

21

For a point source

sin')'()'(

2rM s

')(ˆ)'('ˆ')(ˆ)'('ˆ

)'(sin)(cos)'(cos'sin'

1)2(

)2(

1 1 rrkrJkrHrrkrHkrJmPPa

rG

nn

nnmn

mn

n

n

mnm

FM

rp

')(ˆ)'(ˆ')(ˆ)'(ˆ

)'(cos)(cos)'(cos''

1)2(

)2(

1 0 rrkrJkrHrrkrHkrJmPP

ddd

rG

nn

nnmn

mn

n

n

mnm

AM

rp

mmnmn

nnnjanm

)!()!(

)1(12

2

where

)!()!(

)1(12

2 mnmn

nnn

kd

m

onm

0 for 20 for 1

mm

m

,0 EE

Homogenous solutions obtained by matching theboundary conditions at the dielectric surface ( r = a)

,0 EE ,0

HH 0 HH

arrkHcarkrJbkrJmPP

rG

nnm

nnmn

n

n

m

mn

mn

FM

rh

)(ˆ)(ˆ

)'('ˆ)'(sin)(cos)'(cos'sin'

1

0)2(

1 1

arrkHfarkrJekrJmPP

dd

rG

nnm

nnmn

n

n

m

mn

mn

AM

rh

)(ˆ)(ˆ

)'(ˆ)'(cos)(cos)'(cos''

1

0)2(

1 0

)(ˆ)('ˆ)('ˆ)(ˆ0

)2()2()2()2( akHkaHkkakHkaHab nno

onnTEn

nmnm

)('ˆ)(ˆ)(ˆ)('ˆ0

)2()2()2()2( akHkaHkkakHkaHde nno

onnTMn

nmnm

,TEn

nmonm

akkjc

where

TMn

nmnm

djf

22

Magnetic Green’s Function Due to Mr

sin)'()'()'()( 2

22

rrr

rrG

krp

r

FM

')(ˆ)'(ˆ')(ˆ)'(ˆ

)'(cos)(cos)'(cos'1

)2(

)2(

0 02 rrkrJkrH

rrkrHkrJmPPgr

Gnn

nn

n

n

m

mn

mnnm

FM

rp

r

Particular solution

)12()!()!(

2

nmnmn

kjg

mnm

Homogenous solution

arrkHiarkrJhkrJmPP

rG

nnm

nnmn

n

n

m

mn

mn

FM

rh

r )(ˆ)(ˆ

)'(ˆ)'(cos)(cos)'(cos'1

0)2(

0 02

,)(ˆ)('ˆ)('ˆ)(ˆ0

)2()2(

00

)2()2(

akHkaHkkakHkaHgh nnnnTE

n

nmnm

where

where

23

TEn

nmnm

gkkji

0

Define 3 Dyadic Green’s Function

rGrGrrGG HM

HM

HM

HM

rr

r

rr ˆˆˆˆˆˆ

rGrGrrG HM

HM

HM rr

r

rˆˆ,ˆˆ,ˆˆ

ˆˆˆˆˆˆ H

MHM

HM

HM GGrGG r

')]ˆ'()ˆ'([ dSMGrMGHHM

Sr

HM

o

r

Total H-field due to Mr & M is given by

'ˆ)''(ˆ)''(ˆ)''(

')ˆ'ˆ'ˆ'()ˆ'ˆ'ˆ'(

dSMGMGMGMGrMGMG

dSMGMGrMGMGMGrMGH

o

rr

rr

r

o

r

rr

r

r

S

HMr

HM

HMr

HM

HMr

HM

S

HM

HM

HMr

HMr

HMr

HM

24

cossin HHH ry Since

'sin'' yr MM

'cos'' yMM

o

y

y

o

r

rr

r

Sy

HM

Sy

HM

HM

HM

HM

dSMG

dSMGGGGH

''

'']cos)'cos'sin(sin)'cos'sin[(

cos)'cos'sin(sin)'cos'sin( H

MHM

HM

HM

HM GGGGG

r

rr

r

y

y

we have

Therefore, the required Green’s function is given by

25

HPHM GGG y

y

Expressing the Green’s function in GP & GH:

1 0

220

)()'()'(cos)(cos)'(cos)1('sin'sin1

nnn

mn

mn

n

mnmP krkrmPPgnn

rrjG

1 0

20

)()'(')'(sin)(cos)'(cos)1('

cos'cos1n

nnm

nm

n

n

mnm krkrmPPann

rrj

1 0

220

)(')'()'(sin)(cos)'(cos'

cos'sin-n

nnm

nm

n

n

mnm krkrmPPmg

rrjk

1 10

)()'()'(cos)(cos)'(cos''

cos'cos1-n

nnm

nm

n

n

mnm krkrmP

ddP

ddd

rr

1 00

)(')'(')'(cos)(cos)'(cos'cos'cos

nnn

mn

mn

n

mnm krkrmPPma

rrjk

where

'),'(ˆ'),'(ˆ

)'( )2( rrkrHrrkrJkr

n

nnin which

'),(ˆ'),(ˆ

)()2(

rrkrJrrkrHkr

n

nn

26

1 0

220

)(ˆ)'(ˆ)'(cos)(cos)'(cos)1('sin'sin1

nnn

mn

mn

n

mnmH krJkrJmPPhnn

rrjG

1 0

20

)(ˆ)'('ˆ)'(sin)(cos)'(cos)1('

cos'cos1n

nnm

nm

n

n

mnm krJkrJmPPbnn

rrj

1 0

20

)('ˆ)'(ˆ)'(sin)(cos)'(cos'cos'sin-

nnn

mn

mn

n

mnm krJkrJmPPmh

rrjk

1 10

)(ˆ)'(ˆ)'(cos)(cos)'(cos''

cos'cos1-n

nnm

nm

n

n

mnm krJkrJmP

ddP

dde

rr

1 00

)('ˆ)'('ˆ)'(cos)(cos)'(cos'cos'cos

nnn

mn

mn

n

mnm krJkrJmPPmb

rrjk

27

Converting double summations to single summation

By applying the addition theorem for Legendre polynomials

)(cos)(cos)(cos)!()!(2)(cos

om

mn

mn

mn mPP

mnmnP

where

)cos(sinsincoscoscos

28

HPHM GGG y

y

where we have used the fact that = =/2.

)()'())(cos()12)(1('sin'sin

41- '

122

0

krkrPnnnrrk

G nnnn

P

)()'('))(cos('

)12('

sin'cos4

1- '

12

0

krkrPnrr nnn

n

)(')'())'(cos()12('cos'sin

41-

12

0

krkrPnrr nnn

n

)()'())'(cos(')1(

12'cos'cos

4-

1

krkrPnnn

rrk nnnn

)(')'('))'(cos('')1(

12'cos'cos

4-

2

1

krkrPnnn

rrk

nnnno

29

)(ˆ)'(ˆ))'(cos()12)(1('sin'sin

41-

122

0

krJkrJPnnnbrrk

G nnnn

nH

)(ˆ)'('ˆ))'(cos('

)12('

sin'cos4

1-1

20

krJkrJPnbrr nnn

nn

)('ˆ)'(ˆ))'(cos('

)12('cos'sin

41-

12

0

krJkrJPnbrr nnn

nn

)(ˆ)'(ˆ))'(cos(')1(

12'cos'cos

4-

1

krJkrJPnnne

rrk nnnn

n

)('ˆ)'('ˆ))'(cos('')1(

12'cos'cos

4-

2

1

krJkrJPnnnb

rrk

nnnn

no

)(ˆ)('ˆ)('ˆ)(ˆ1 )2()2()2()2( akHkaHkkakHkaHb onno

onnTEn

n

where

)('ˆ)(ˆ)(ˆ)('ˆ1 )2()2()2()2( akHkaHkkakHkaHe onno

onnTMn

n

30

Numerical Problem for GP

- GP is an infinite summation over n- Hankel functions of very high orders have very large

ampliudes- Difficult to handle numerically

Recall that physically Gp represents a z-directed electricfield excited by a z-directed point current, therefore

Solution

Rek

yjG

jkR

oP 4

22

2

22 )'sin'()'cos'cos( ryrrR

where

31

Mathematical Identity

Based on this fact, a mathematical identity can be established:

Rek

yj jkR

o 42

2

2

)()'())'(cos()12)(1('sin'sin

41-

122

0

krkrPnnnrrk nnn

n

)()'('))(cos('

)12('

sin'cos4

1- '

12

0

krkrPnrr nnn

n

)(')'())(cos()12('cos'sin

41- '

12

0

krkrPnrr nnn

n

)()'())'(cos(')1(

12'cos'cos

4-

1

krkrPnnn

rrk nnnn

)(')'('))'(cos(')1(

12'cos'cos

4-

2

1

krkrPnnn

rrk

nnnno

))'sin'()'cos'cos(( 22 ryrrR

32

Rek

yjG

jkR

o

HM

y

y 42

2

2

)(ˆ)'(ˆ))'(cos()12)(1('sin'sin

41

122

0

krJkrJPnnnbrrk nnn

nn

)(ˆ)'('ˆ))'(cos('

)12('

sin'cos4

11

20

krJkrJPnbrr nnn

nn

)('ˆ)'(ˆ))'(cos()12('cos'sin

41

12

0

krJkrJPnbrr nnn

nn

)(ˆ)'(ˆ))'(cos(')1(

12'cos'cos

4 1

krJkrJPnnne

rrk nnnn

n

)('ˆ)'('ˆ))'(cos('')1(

12'cos'cos

4

2

1

krJkrJPnnnb

rrk

nnnn

n

Finally, the required Green’s function is given as follows:

33

Method-of-Moments Solution

Expand the equivalent magnetic current of the slot:

)()(),( npun yyfxfyxf

2/0

2/1)(

Wx

WxWxfu

N

nnn yfVyM

1

)()(

where

hy

hyhk

yhkyf e

e

p

0sin

)(sin)(

34

Hmn

pmn

amn YYY

0 0

')','(),(2S S

npmP

mn dSdSyxfGyxfY

MoM Admittance of the Grounded HemisphericalDielectric Resonator Antenna

where

0 0

')','(),(2S S

nHmH

mn dSdSyxfGyxfY

However, GP is singular

Difficult to integrate numerically pmnY

35

Formulation of the Microstrip Feed network- Apply the reciprocity approach as done by David Pozar* - Not repeated here.

D. M. Pozar, “A reciprocity method of analysis for printed slot and slot-coupled microstrip antennas,” IEEE Trans. Antennas Progagat., vol.34, pp. 1439-1446, Dec. 1986.*

Solution: Use the reduced kernel (Richmond form)

2

2

2

2

2222252 ')'()32)(1()(

42 L

L

L

L npeeeeee

jk

mpp

mn dydyyyfkaajkeyyfk

jYe

where

4/Wae

22)'( ee ayy

with being the equivalent radius of the slot.

36

Results

At the reference plane (slot position): a = 12.5 mm, ra = 9.5, xd = yd = 0.0, W = 0.9 mm, Wf= 1.45 mm, d = 0.635 mm, rs = 2.96, Ls = 13.6 mm .

37

At the reference plane (slot position): a = 12.5 mm, ra = 9.5, L = 13.5mm, yd = 0.0, W = 1.3mm, Wf = 1.45 mm, d = 0.635 mm, rs = 2.96, Ls = 13.6 mm .38

At the reference plane (slot position): a = 12.5 mm, ra = 9.5, L = 13.5mm, xd = 0.0, W = 1.3mm, Wf = 1.45 mm, d = 0.635 mm, rs = 2.96, Ls = 13.6 mm .39

40

Grounded Spherical Hemispherical Dielectric Resonator Antenna: Surface Electric Source

Ground Plane

HemisphericalDRA

Conducting Conformal Strip

la

W

zx

y

r CoaxialAperture

41

Advantages of Conformal-Strip Method

Compatible with the probe-feed method Drilling hole not required Very convenient post manufacturing trimmings

- Cut shorter without leaving an air hole- Extended longer without the need for

deepening the hole It is conformal

42

Hemispherical DRA for Demonstration

Analytical closed-form Green function can be obtained

Efficient in numerical implementation Excited in the fundamental broadside TE111

mode

43

Co-ordinate system in the analysis

z

W2l

x y

a

Spherical DRA

Conformalr

k k 0

strip

44

DRA Green’s FunctionInside the DRA (r < a)

0

1 )(cos)(ˆn

n

nm

jmmnnnmr ePkrJAF

0

1 )(cos)(ˆn

n

nm

jmmnnnmr ePkrJBA

Outside the DRA (r > a)

0

0)2(

2 )(cos)(ˆn

n

nm

jmmnnnmr ePrkHCF

0

0)2(

2 )(cos)(ˆn

n

nm

jmmnnnmr ePrkHDA

(1)

(2)

(3)

(4)

45

Boundary Conditions

At the DRA-air interface:

0)(ˆ 12 EEr

ˆˆ 12 sJHHr

where Js is the conformal strip current.

(5)

(6)

46

On the DRA surface, we have r = r = a and G1 = G2 = G,which is given by:

)'(cos'sin

)'(cossin

)(cos)!()!(2

)('ˆ)('ˆ)1(12

4

)'(cos'

)'(cos)(cos)!()!(2

)(ˆ)(ˆ)1(12

4

2

1 10

)2(TM2

0

1 00

)2(TE2

0

mPP

mnmnm

akHkaJnn

na

j

md

dPd

dPmnmn

akHkaJnn

na

jG

mn

mn

n

n

mnn

n

mn

mn

m

n

n

mnn

n

)(ˆ)('ˆ)('ˆ)(ˆ0

)2(

00

)2(TE akHkaJkkakHkaJ nnnnn

)('ˆ)(ˆ)(ˆ)('ˆ0

)2(

00

)2(TM akHkaJkkakHkaJ nnnnn

0,20,1

mm

m and 0 is the wave impedance in vacuum.

where

(7)

(8)

(9)

(10)

47

MoM Solution for the Strip Current

Using the MoM:

N

qqq fII

1

)()(

ha

hahk

ahkf

q

qe

qe

q

,0

,sin

)(sin)(

where

in which

,1

N

Lh ,2

1

qhLaq 02)1( kk re

(14)

(15)

(16-18)

48

MoM Solution for the Strip Current (Cont’)

By Galerkin’s procedure, the following matrix equation is obtained:

)]0([][][ pqpq fIZ where

dSdSfGfW

ZS S

qppq ')'()',';,()(1

0 0

2

The input impedance is given by

N

q qq fIZ

1

in)0(

1

(19)

(20)

(21)

49

Problems in Evaluating Zpq

The Green function G is singular as Excessive no. of modal terms required Higher-order Hankel functions difficult to

handle numerically Considerable computation time required

'rr

50

Solution

),,(),()!()!(2)('ˆ)('ˆ

),,(),()!()!(2)(ˆ)(ˆ

)1(12

4

12

21

20)2(

1 01

21

0)2(

20

2

mqpmnmnmnmakHkaJ

mqpmnmnmnakHkaJ

nnn

WjaZ

n

mTMn

nn

n

n

m mTEn

nnpq

Integral Zpq evaluated using novel recurrence formulas.

First express Zpq in the following form:

where

,sin)(cos),( 2

11

d

ddPmn

mn

dPmn m

n2

1

)(cos),(2

,')'()'(cos)(),,('1

hp

hp

hq

hq

ddfmfmqp qp

h = h/a.

51

Recurrence formulas for 2(n,m)(A) Recurrence formula recursive in n

Initial values : 2(0,0) = 2 sin-1x12(1,0) = 0

2(n,0) can be found for all n.

(B) Recurrence formula recursive in m

),())(1()(])1(1[2)2,( 211

2 mnmnmnxPmn mn

mn

),1()()(1)1(1)12()1)(1(

1),1( 21212 mnmnnxPxn

mnnmn m

nmn

Initial values : 2(n,0) [from (A) above]2(n, 1) = [(-1)n - 1] Pn(x1)

2(n, m) can be found for all m and n.

52

Evaluation of 2(n,m) and 1(p,q,m)

),1()1(),1()(12

1)(11)1(),( 221211 mnnmmnmn

nxPxmn m

nmn

1(n, m) are found in terms of 2(n, m):

Evaluation of 1(n,m)

Analytical evaluation of 1(p,q,m)

]cos[sin

coscos2

')'()'(cos)(),,(

2

'1

qpeee

hee

qp

makmakmhk

mhkak

ddfmfmqp hp

hp

hq

hq

53

Radiation Fields

),(4

),,(1

00

N

qqq

rjkEI

re

WajrE

),(4

),,(1

00

N

qqq

rjk

EIr

eWarE

),( qE),( qEwhere and are found in a similar fashion.

54

Convergence Check

2.8 3 3.2 3.4 3.6 3.8 4 4.2-100

-50

0

50

100

150

200

Frequency (GHz)

Input impedance ( )

n=1 to 10

n=1 to 20

n=1 to 40

n=1 to 60

n=1 to 80

a = 12.5 mm, r = 9.5, l = 12.0 mm, and W = 1.2 mm.

55

Measured and Calculated Input Impedances

2.8 3 3.2 3.4 3.6 3.8 4 4.2

-50

0

50

100

150

200

Frequency (GHz)

Input impedance ( )

TheoryExperiment

a = 12.5 mm, r = 9.5, l = 12.0 mm, and W = 1.2 mm

•Measured resonant frequency (zero reactance):3.60 GHz

•Calculated resonant frequency (zero reactance):3.56 GHz

•Error :1.1 %

56

Results

l = 12 mm

10.9 mm

9 mm

2.8 3 3.2 3.4 3.6 3.8 4 4.2-50

0

50

100

150

200

Frequency (GHz)

Input resistance ( )

2.8 3 3.2 3.4 3.6 3.8 4 4.2-50

0

50

100

150

200

Frequency (GHz)

Input reactance ( )

l = 12 mm

10.9 mm

9 mm

a = 12.5 mm, r = 9.5, and W = 1.2 mm

57

Modified Configuration with a Parasitic Patch

l2

a

o

W1

Grounded parasitic patch

Hemispherical DRA

Conformal excitation strip

Coaxial apertureGround plane

l1

z

x

y

W2

58

Modified Configuration with a Parasitic PatchSuperscript A : excitation strip Superscript B : parasitic patch

E-field vanishes on the excitation strip

0 iAJ

BJ

BJ

A EEEE

In terms of Green functions

0 iA

S

BEJ

S S

BEJ

AEJ ESdJGSdJGSdJG

BA B

59

Current expansions of Excitation & Parasitic Patches

2 4

1 1)()(),(

N

l

N

mm

Bl

Blm

B gfII

3 5

1 1

)()(),(N

v

N

n

Bvn

Bvn

B fgII

1

1

)()(N

p

Ap

Ap

A fII

elsewhere,0

||,sin

|)|sin(~)(),( hagf p

h

ph

θnB

l

where and are of the following form: )(Blf )(ng

60

New Integrals of Pnm(cos )

hp

hp

dfPmnp pm

n

)()(cos),,(1

hp

hp

dfd

dPmnp p

mn

)(sin)(cos),,(2

Their recurrence formulas have also been found [A] but are not included here for brevity.

[A] K. W. Leung, and H. K. Ng, “Theory and experiment of circularly polarized dielectricresonator antenna with a parasitic patch,” IEEE Trans. Antennas Propagat., vol. 51, pp.405-412, Mar. 2003.

Measured and Calculated Results

61

3 3.1 3.2 3.3 3.4 3.5 3.6

Frequency (GHz)

Inpu

t Im

peda

nce Rigorous Theory

Experiment

Resistance

Reactance

-40

-20

0

20

40

60

80

100

120

140

160

Simplified Thoery

a=12.5mm, =9.5, l1=14mm, l2=7.9mm, W1=1.2mm, W2=2.2mm, and o=157.4o.r

Measured and Calculated Results (Cont’d)

62

a=12.5mm, =9.5, l1=14mm, l2=7.9mm, W1=1.2mm, W2=2.2mm, and o=157.4o.r

Measured and Calculated Results (Cont’d)

63

f = 3.52 GHzo

(a) x-z plane (b) y-z Plane

30

60

90-40 -30 -20 -10 0

030

60

90o o

oo

oo

o

-40 -30 -20 -10 0

30300

6060

9090 oo

oo

oo

o

Right Hand

Left Hand

Right Hand

Left Hand

TheoryExperiment

The method can be used to formulatemicrostrip antenna problems.

64

Analysis of Spherical Slot Antenna

Perspective View Top View65

ceH

ceP

ce GGG ,,,

1 1

2,

)2(,

,2

1 0,

)2(,

,2

,

)'(cos)'(cos)(cos)!()!(2)('ˆ)('ˆ

)1(12

sinsin1

41

)'(cos'

)'(cos)(cos)!()!(2)(ˆ)(ˆ

)1(12

41

n

n

m

mn

mncencen

ce

n

n

m

mn

mn

mcencen

ce

ceP

mPPmnmnmakHakJ

nnn

a

md

dPd

dPmnmnakHakJ

nnn

aG

)'(cos)'(cos)(cos)!()!(2)('ˆ

)1(12

sinsin1

41

)'(cos'

)'(cos)(cos)!()!(2)(ˆ

)1(12

41

1 1

22)2(2

1 0

2)2(2

mPPmnmnmakH

nnn

a

md

dPd

dPmnmnakH

nnn

aG

mn

mn

n

n

men

TEn

e

n

n

m

mn

mn

men

TMn

e

eH

)'(cos)'(cos)(cos)!()!(2

)1(12)('ˆ)(ˆ)('ˆ)(ˆ

sinsin1

41

)'(cos'

)'(cos)(cos)!()!(2

)1(12)(ˆ)('ˆ)(ˆ)('ˆ

41

2

1 1

)2()2(2

1 0

)2()2(2

mPPmnmnm

nnnakHakJcakJakHb

a

md

dPd

dPmnmn

nnnakHakJfakJakHe

aG

mn

mn

n

n

mcncnncncnn

c

mn

mn

m

n

n

mcncnncncnn

c

cH

Green’s Function of the Antenna

66

MoM Admittances

dSdSfGfW

YS S

qceHPp

ceHpqP ')'()(1

0 0

,,2

,,

dSdSfGGfW

YS S

qce

ppq ')'()(1

0 0

2

where

ha

hahk

ahkf

q

qe

qe

q

,0

,'sin

)('sin)(

,1

N

Lh ,2

1

qhLaq

02)1(' kk re

Let

where

67

cpqH

epqH

cpqP

epqPpq YYYYY

Method A

1

1

1

1

,

')'(

)]'(sin)33(

)'cos()1([4)(1 2

2,

22,

2

,22

,2

5,

,

2,

,

ddaf

RjkRka

RjkRkRRk

ej

fY q

cece

cecece

Rjkce

pce

cepqP

ce

),,(),()!()!(2)(

),,(),()!()!(2)(

)1(12

4

22

1

2

1 0

212

2

mqpmnmnmnmnB

mqpmnmnmnnA

nnn

WaY

n

m

n

n

m mpqH

where2

122 ]2/)'[(sin4 raR

)(ˆ)('ˆ)(ˆ)('ˆ1)(ˆ)( )2()2(2)2( akHbkJfakJakHeakHnA cncnncncnnc

ene

TMn

)('ˆ)(ˆ)('ˆ)(ˆ1)('ˆ)( )2()2(2)2( akHbkJcakJakHbakHnB cncnncncnnc

ene

TEn

68

Numerical integration

Recurrence formulas

69

Method B

• Combine the particular and homogeneous solutions

• Only recurrence formulas are used

• Advantage: Easy to implement and fast (no numerical integration required)

• Disadvantage: ??

70

Convergence Check for Method A

a = 6.25 cm, b = 3 cm, L = 12.46 cm, W = 2.4 mm, and r = 1.

71

Convergence Check for Method B

a = 6.25 cm, b = 3 cm, L = 12.46 cm, W = 2.4 mm, and r = 1.

72

Comparison between Methods A & BAdvantages of Method A

• Method A converges much faster than Method B• More suitable for problems of larger spherical sizesAdvantages of Method B

• Numerical integrations not required• Easier to implement• Much faster than Method A

Method A Method BNumerical

integration for both Gp, GH

32 sec. 112 sec. 77 sec.

73

Measured and calculated input impedances of the rectangular slot for a = 6.25 cm, b= 4.0 cm, L = 12.46 cm, W = 2.4 mm, and r = 1.

Measured & Calculated (Method B) Results

74

Recurrence Formulas for Integral of )(ˆ krJ n

Side View Top View

MoM Admittance

1

,

0

, )()()12)(1(2

1n

nnCD

nCD

pqH qApAnnnk

Y

1

1 sin)(sin)(ˆ

)( 2i

i

y

ye

ienn dy

hkyyhk

ykyJiA

where

1

122

2

2

2

2

2

)(ˆ)(

sin

)()12)(12(

)2)(1()(])32)(12(

)322([)()32)(12(

)3)(2(

j ji

jin

e

e

nne

n

ykyJ

jBhkk

k

iAnn

nniAnn

nnkkiA

nnnn

Recurrence formula for An(i)

Define YD & YC as the dielectric & cavity admittances, respectively.

Backward recurrence for An(i), needless to know A0, A1, A2, & A3.

a = 12.5 mm, r1 = 9.5, L = 20.0 mm, W = 1.0 mm, = 0, and N = 5

Measured and Calculated Results

Input resistance Input reactance

Solving Planar annular problem usingspherical solution

Top View Side View

MoM Solution

• First obtain the spherical Green’s function of Hdue to a -directed magnetic point current

• Substitute = = /2 (both source & field one the ground plane)

2

2

1

1212

2

2

1

12

112

21

)()()0()1(

)()()0(1)!1()!1(

)1(12

nnPq

nnPqnqn

nnn

WY

TETEq

n

TMTMq

nqn

qqq

where

odd0

even)(642)1(531)1()0(

2)(

mn

mnmn

mnP

mnm

n

MoM Solution (Cont’d)

N

q qqYZ

1in

1

in which

otherwise112

1

qq

a = 19.25 mm, b = 10.75 mm, W = 1.5 mm, r1 = 4, and r2 = 1

Measured and Calculated Results

Q & A