ARM 2007 liangalei@sjtu.edu.cn Chapter 12 Caches Optimization Technique in Embedded System (ARM)...

Post on 15-Dec-2015

247 views 4 download

Tags:

transcript

ARM 2007 liangalei@sjtu.edu.cn

Chapter 12

Caches

Optimization Technique in Embedded System (ARM)LiangAlei@SJTU.edu.cn, 2008 April

ARM 2007 liangalei@sjtu.edu.cn

Introduction

• Cache – is a small, fast array of memory placed between the pro

cessor core and main memory that store portions of recently referenced main memory.

– The word cache is a French word meaning “a concealed place for storage”.

• Write Buffer– Often used with a cache is a write buffer a very small fir

st-in-first-out (FIFO) memeory placed between the processor core and main memory.

– The purpose of a write buffer is to free the processor core and cache memory from the slow write time associated with writing to main memory.

ARM 2007 liangalei@sjtu.edu.cn

12.1 The Memory Hierarchy and Cache Memory

ARM 2007 liangalei@sjtu.edu.cn

Memory Hierarchy

ARM 2007 liangalei@sjtu.edu.cn

Cache & Write Buffer

ARM 2007 liangalei@sjtu.edu.cn

Overview

• Cache, Write-Buffer– N-Way set associate

– ARM940T’s cache

– Test a cache

• Cache Clean & Flush(or Invalidate)

• Cache Lockdown

ARM 2007 liangalei@sjtu.edu.cn

12.1.1 Caches and Memory Management Units

• Virtual vs. Physical cache– Virtual cahce: ARM7 ~ ARM10, StrongARM, XScale– Physical cache: ARM11

• Locality of reference– The cache make use of this local reference in both time

and space.» If the reference is in time, it is called Temporal local

ity.» If it is by address proximity, then it is called Spatial

locality.

ARM 2007 liangalei@sjtu.edu.cn

Logical and Physical Caches

ARM 2007 liangalei@sjtu.edu.cn

12.2 Cache Architecture

ARM 2007 liangalei@sjtu.edu.cn

Two Bus Architecture

• ARM uses two bus architecture in its cached cores, the Von Neumann and the Harvard.

– In processor core using Von Neumann architecture, there is a single cache used for both instruction and data. This type is known as a unified cache.

– The Harvard architecture has separate instruction and data buses to improve overall system performance. This type of cache is known as a split cache.

ARM 2007 liangalei@sjtu.edu.cn

12.2.1 Basic Architecture of a Cache Memory

• Three main parts in a cache: Directory store, Status information, and Data section

ARM 2007 liangalei@sjtu.edu.cn

Cache Organization

• Directory– The cache must know where the information

stored in a cache line originates from in main memory.

– The directory entry is known as a cache-tag.

• Data section– stores the data read from main memory.

– “The size of a cache “ is defined as the actual code and data the cache can store from main memory.

• Status Bits– The two common bits are: Valid, Dirty

ARM 2007 liangalei@sjtu.edu.cn

12.2.2 Basic Operations ofa Cache Controller

• The Cache Controller – is hardware that copies code and data from

main memory to cache memory automatically.

– The cache controller intercepts read and write memory requests before passing them on to the memory controller.

– It processes a request by dividing the address of the request into three fields: tag, set index, data index.

ARM 2007 liangalei@sjtu.edu.cn

Access Cache

• First, use “set index” to locate the cache line within cache memory.

– Check the “valid” bit of the line;

– Compare the cache-tag to “tag” field.

– It’s a cache “hit” if both the status check and comparison succeed; or “miss” if either fails.

• On a cache miss, – the controller copies an entire cache line from main

memory and provide the requested code or data to the processor.

• On a cache hit– the controller supplies the code and data directly from

cache to the processor (selected by “data index”).

ARM 2007 liangalei@sjtu.edu.cn

12.2.3 Direct Mapped Cache

• In a direct-mapped cache– each addressed location in main memory maps to a

single location in cache memory.» Since main memory is much larger than the cache

memory, there are many addresses in main memory that map to the same single location in cache memory.

• Data streaming– During a cache line fill, the cache controller may forward

the loading data to the core at the same time it is copying it to the cache.

• Thrashing– Direct-mapped caches are subject to high levels of

thrashing – a software battle for the same location in cache memory.

– The result of thrashing is the repeated loading and eviction of a cache line.

ARM 2007 liangalei@sjtu.edu.cn

12.2.4 Set Associativity

• Some caches include an additional feature to reduce the frequency of thrashing

– This structural design feature is a change that divides the cache memory into smaller equal units, called ways.

– The cache lines with the same set index are said to be in the same set.

• The set of cache lines pointed to by the set index are set associative.

– The cache-tag field is larger, and set index is smaller.

ARM 2007 liangalei@sjtu.edu.cn

12.2.4.1 Increasing Set Associativity

• As the associativity of a cache controller goes up, the probability of thrashing goes down.

– The ideal goal would be to maximize the set associativity of a cache by designing it so any main memory location maps to any cache line, which is known as a fully associative cache.

– However, as the associativity increases, so does the complexity of the hardware that support it.

– One method used by hardware designers to increase the set associativity of a cache includes a content addressing memory (CAM).

ARM 2007 liangalei@sjtu.edu.cn

CAM

• A CAM works in the opposite way a RAM works

– Where a RAM produces data when given an address value, a CAM produces an address if a given data value exist in the memory.

• Using a CAM allow many more cache-tags to be compared simultaneously.

– A CAM uses a set of comparators to compare the input tag address with a cache-tag stored in each valid cache line.

ARM 2007 liangalei@sjtu.edu.cn

CAM in ARM920T/940T

• Using a CAM to locate cache-tags is the design choice ARM made in their ARM920T and ARM940T processor cores.

– The caches in the ARM920T and ARM940T are 64-way set associative.– The tag portion of a requested address is used as an input to the four CAMs that sim

ultaneously compare the input tag with all cache-tags stored in the 64-way.

ARM 2007 liangalei@sjtu.edu.cn

12.2.5 Write Buffers

• Write buffer– A small, fast FIFO holding data that processor would normally

writes to main memory. It reduce the processor time taken to write small blocks of sequential data to main memory.

– The efficiency of the write buffer depends on the ratio of main memory writes to the number of instructions executed.

» Over the given time interval, if the number of writes to main memory is low or sufficiently spaced between other processing instructions, the write buffer will rarely fill.

– The write buffer also improves cache performance during cache line evictions.

• When data is in write-buffer, it’s not allowed to be read.

– This is one of reasons that FIFO depth is usually quiet small.

• Write Merging (or coalescing) (ARM10)– If new value and old fit the same address– If new data and old data fit into same memory block

ARM 2007 liangalei@sjtu.edu.cn

12.3 Cache Policy

ARM 2007 liangalei@sjtu.edu.cn

Three Cache Policies

• There are three policies that determine the operation of a cache

– Write Policy, Replacement Policy, and Allocation Policy

ARM 2007 liangalei@sjtu.edu.cn

12.3.1 Writeback vs. Writethrough

• Writethrough– Cache controller writes to both cache and main

memory when there is a cache hot on write, ensuring that the cache and main memory stay coherent at all times, but slower than writeback.

• Writeback– Cache controller writes to valid cache data

memory and not to main memory. Consequently, valid cache lines and main memory may contain different data.

– The line data will be written back to main memory when evicted.

– Must use one or more of the dirty bits.

ARM 2007 liangalei@sjtu.edu.cn

12.3.2 Cache Line Replacement policy

• Replacement policy – The strategy implemented in a cache controller to select

the next victim.

• ARM cached core support two replacement policies

– round-robin: sequential increment.– pseudorandom

» Use a non-sequential incrementing victim counter. ( When counter reaches a maximum value, it is reset to a defined base value).

• Most ARM cores support both policies– The round-robin replacement policy has great

predictability, which is desirable in an embedded system.– However, a round-robin replacement policy is subject to

large changes in performance given small changes in memory access.

» To show this change in performance, see example 12.1.

ARM 2007 liangalei@sjtu.edu.cn

• L1 Cache– 4KB total size

– 64 ways

– 16 Bytes per line

case: ARM940T’s Cache

0 00………

16 01………

32 10………

48 11………

Way: 00 01 02 63………

TAG idx BS

bit 31 6 5 4 3 0

cmp & sel (64:1)

16:1 SEL

MVA = (PID + VA)

ARM 2007 liangalei@sjtu.edu.cn

Example 12.1

ARM 2007 liangalei@sjtu.edu.cn

Example 12.1

• int readSet( unsigned int times, unsigned int numset)• {• int setcount, value; // registers ?• volatile int *newstart;• volatile int *start = (int *)0x20000; // why it’s 0x20000 ?• __asm• {• timesloop:• MOV newstart, start• MOV setcount, numset // test: numset = 64 or 65

• setloop:• LDR value,[newstart,#0];• ADD newstart,newstart,#0x40; //0x40: keep idx unchange• SUBS setcount, setcount, #1;• BNE setloop;

• SUBS times, times, #1;• BNE timesloop;• }• return value;• }

0/10/2

1/11/2

2/12/2

63/163/2

………

………

………

………

Way: 00 01 02 63………Way: 00

numset=64/times

0/164/163/2

1/10/2

64/2

2/11/20/3

63/162/261/3

………

………

………

………

Way: 00 01 02 63………Way: 00

numset=65/times in RR

ARM 2007 liangalei@sjtu.edu.cn

Test Result

• Given (in ADS1.2)– times = 0x10000(2^16), 50MHz, 100ns(no-seq), 50ns(seq)

• So, results– Round Robin test size = 64– Round Robin enabled = 0.51 seconds– Random enabled = 0.51 seconds– Round Robin test size = 65– Round Robin enabled = 2.56 seconds– Random enabled = 0.58 seconds

• Analysis– numset=64: Ta = 2^16*Texe + 64*Tm = 510,000,000ns– numset=65: Tb = 2^16*(Texe + 65*Tm) = 2,560,000,000ns

• (2^16*65-64)*Tm = 2050,000,000 = Tb – Ta • so, Tm = 481ns per line, Tm/4 word per access = 120ns

• This is an extreme example, – but it does shows a difference between using a round-robin policy and a

random replacement policy.

ARM 2007 liangalei@sjtu.edu.cn

12.4 CP15 & Cache

• Cache is controlled via CP15’s registers

• Primary CP15 registers– c7, c9: Control the setup and operation of cache

• Secondary CP15 registers– CP15:c7 registers

» Write-Only, clean (dirty written back) and flush (just invalidate it).– CP15:c9 registers

» define the victim pointer base address.

ARM 2007 liangalei@sjtu.edu.cn

Coprocessor Instructions

• Instruction Format– MRC|MCR cp, opcode1, Rd, Cn, Cm, opcode2

» opcode: executed by CP» Cn: major register» Cm: minor resgister

• Example– MRC p15, 0, r1, c1, c0, 0

ARM 2007 liangalei@sjtu.edu.cn

12.5 CP15:c7 – Clean/Flush Cache

• CP15:c7 is a Write-only register– Sometime used for Prefetch buffers and BTB;– Instruction format

» MCR p15, 0, <Rd>, c7, <CRm>, <op2>

– CRm» 5=Flush I-Cache, 6=Flush D-Cache, 7=Flush Both» 10=Clean D-Cache, 11=Clean Unified» 14=Clean&Invalidate D-Cache, 15=C/I Unified

– op2 (index method)» 0 = SBZ (whole)» 1 = MVA» 2 = Set/Index» 3 = Test-Clean (only for ARM926/1026EJ-S)

ARM 2007 liangalei@sjtu.edu.cn

Cache Operations• Clean/Write-back/Copy-back

– applied to “Write-Back D-Cache”;

• Flush/Invalidate– just invalidate line(s), not include cleaning;

• Prefetch– load memory line(s) into cache;

• Drain Write Buffer– Stop ARM from further executing until write buffer empty;

• Wait for Interrupt– Put ARM into Lower Power State until an interruption occurs;

• Prefetch buffer– IMPLEMENTATION DEFINED;

• Branch Target Cache– IMPLEMENTATION DEFINED;

• Data– Value in <Rd>

ARM 2007 liangalei@sjtu.edu.cn

Self-Modifying Code (SMC)

• The cache may also need cleaning or flushing before the execution of self-modifying code in a split cache.

• The need to clean or flush arises from two possible conditions

– First, the self-modifying code may be held in the D-cache and therefore be unavailable to load from main memory as an instruction.

– Second, existing instructions in the I-cache may mask new instructions that have already been written to main memory.

• So, after self-modifying code being written– D-cache should be “clean” to be present in main memory

– I-cache should be “flush” or invalidated to prevent hitting it in cache.

ARM 2007 liangalei@sjtu.edu.cn

12.5.1 Flushing ARM Cached Cores

• For example, flushing D-Cache– MCR p15, 0, Rd, c7, c6, 0

• Note– Rd should be zero.

ARM 2007 liangalei@sjtu.edu.cn

12.5.2 Cleaning ARM Cached Cores

• To clean a cache is to issue commands that force the cache controller to write all dirty D-cache lines out to main memory.

ARM 2007 liangalei@sjtu.edu.cn

12.5.3 Cleaning the D-Cache

• There are three methods used to clean the D-Cache

– Clean a certain line via c7f {Way & Set};

– TEST-CLEAN Instruction

– Clean a dedicate block/line via MVA

ARM 2007 liangalei@sjtu.edu.cn

Notes: Cache Parameters

• Cache parameters– CSIZE: size of cache = 2^CSIZE– CLINE: size of a line = 2^CLINE– NWAY: Number of way

• Command fields (c7f, c9f)– I7SET: ‘SET’ offset in CP15:c7– I7WAY: ‘WAY’ offset in CP15:c7– I9WAY: ‘WAY’ offset in CP15:c9

• And two others can be calculated out– SWAY: Bytes per way– NSET: lines per way

ARM 2007 liangalei@sjtu.edu.cn

12.5.4 Index line via {way, set}

ARM 2007 liangalei@sjtu.edu.cn

List of c7 format (c7f) in {Way, Set}

ARM 2007 liangalei@sjtu.edu.cn

– c7f RN 0 ; cp15:c7 register format

– MACRO– CACHECLEANBYWAY $op– MOV c7f, #0 ; create c7 format– 5– IF "$op" = "Dclean"– MCR p15, 0, c7f, c7, c10, 2 ; clean D-cline– ENDIF– IF "$op" = "Dcleanflush"– MCR p15, 0, c7f, c7, c14, 2 ; cleanflush D-cline– ENDIF– ADD c7f, c7f, #1<<I7SET ; +1 set index– TST c7f, #1<<(NSET+I7SET) ; test index overflow– BEQ %BT5 – BIC c7f, c7f, #1<<(NSET+I7SET) ; clear index overflow– ADDS c7f, c7f, #1<<I7WAY ; +1 victim pointer– BCC %BT5 ; test way overflow– MEND– cleanDCache– CACHECLEANBYWAY Dclean– MOV pc, lr– cleanFlushDCache– CACHECLEANBYWAY Dcleanflush– MOV pc, lr– cleanFlushCache– CACHECLEANBYWAY Dcleanflush– MCR p15,0,r0,c7,c5,0 ; flush I-cache– MOV pc, lr

ARM 2007 liangalei@sjtu.edu.cn

12.5.5 Cleaning the D-Cache using Test-Clean command

• Test-Clean search the first “dirty” cache line, and cleans it by transferring its contents to main memory.

– /* ARM926EJ-S, ARM1026EJ-S */– cleanDCache– MCR p15, 0, r15, c7, c10, 3– BNE cleanDCache /* test Z flag */– MOV pc, lr– Note:

» It’s R15(pc) to be written to MCR

ARM 2007 liangalei@sjtu.edu.cn

12.5.6 Cleaning the D-Cache in Intel XScale and StrongARM

• The Intel XScale and StrongARM processors use a third method to clean their D-Cache.

– Using a command to allocate a line in the D-cache without doing a line fill: sets the valid bit and fill the directory entry with cache-tag provide in the <Rd> register.

– No data is transferred from main memory. Thus, the data is not initialized until it is written to by the processor.

– .

ARM 2007 liangalei@sjtu.edu.cn

12.5.7 Invalid & Clean line via MVA

• Flush-Clean (addr, size)– addr RN 0

» BIC addr, addr, #(1<<CLINE) – 1» MOV nl, size, lsr #CLINE ; CLINE=line_size

– 10» MCR p15, 0, addr, c7, c5, 1 ; clean IC-line@addr

» ADD addr, addr, #1<<CLINE» SUBS nl, nl, #1» BNE %BT10

MVA(31:5) SBZ(4:0)

ARM 2007 liangalei@sjtu.edu.cn

Commands to Flush & Cleana single line via MVA or PA

ARM 2007 liangalei@sjtu.edu.cn

c7f: clean & flush a line

ARM 2007 liangalei@sjtu.edu.cn

12.6 Cache Lockdown

ARM 2007 liangalei@sjtu.edu.cn

Cache Lockdown

• Cache lockdown is a feature that enables a program to load time-critical code and data into cache, and mark it as exempt from eviction.

– Lock unit: WAY (rather than LINE or others)

– Code that candidate for locking are» IVT, ISR, Critical Algorithm

– Data to be locked» Global variables frequently used

• Q: How-to ?

ARM 2007 liangalei@sjtu.edu.cn

Methods of Cache Lockdown

ARM 2007 liangalei@sjtu.edu.cn

12.6.1 Procedures for Lockdown

• Example– int globalData[16];– unsigned int *vectortable = (unsigned int *)0x0;– int vectorCodeSize = 212; // IVT + IRQ handler

– state = disable_interrupt();– enableCache();– flushCache();– wayIndex = lockDcache(globalData, sizeof(globalData));– wayIndex = lockIcache(vectortable, vectorCodeSize);– enable_interrupt(state);

ARM 2007 liangalei@sjtu.edu.cn

12.6.2 Lockdown base

• By “victim counter”– The victim counter is reset to “victim reset value”

when it increments beyond the number of ways in the core.

– In RR method, the entry (or way) to be evicted is pointed by the “victim counter”.

– Either Code or Data Cache can be controlled by the victim pointer, and prefetched into the cache.

ARM 2007 liangalei@sjtu.edu.cn

Lock-down Commands• Commands that lock data in cache by

referencing its way.

ARM 2007 liangalei@sjtu.edu.cn

How to lock down

• Principles for cache lock down– 1. Ensure that no processor exceptions can occur during the

execution of this procedure (by disabling interrupts). If for some reason this is not possible, all code and data used by any exception handlers that can get called must be treated as code and data used by this procedure for the purpose of steps 2 and 3.

– 2. If an instruction cache or a unified cache is being locked down, ensure that all the code executed by this procedure is in an uncachable area of memory.

– 3. If a data cache or a unified cache is being locked down, ensure that all data used by the following code is in an uncachable area of memory, apart from the data which is to be locked down.

– 4. Ensure that the data/instruction that are to be locked down are in a cachable area of memory.

– 5. Ensure that the data/instruction that are to be locked down are not already in the cache, using cache clean and/or invalidate instructions as appropriate.

• Ref: ARM Manual DDI0100E.pdf pp B5-20

ARM 2007 liangalei@sjtu.edu.cn

How to Lockdown (1)

• First, ensuring the code to be locked is not already in the cache.

– e.g., Invalidate D or I Cache» MCR p15, 0, Rd, c7, c5,0 ;Invalidate ICache» MCR p15, 0, Rd, c7, c5,1 ;Invalidate ICache via

MVA» MCR p15, 0, Rd, c7, c6,0 ;Invalidate DCache» MCR p15, 0, Rd, c7, c6,1 ;Invalidate DCache via

MVA– or Clean them (for writeback DCache)

» MCR p15, 0, Rd, c7, c10,1 ;Clean DCache via MVA» MCR p15, 0, Rd, c7, c10,2 ;Clean DCache via Index

ARM 2007 liangalei@sjtu.edu.cn

How to lockdown (2)

• Then, set victim counter– Writing CP15:c9 to force the victim pointer to a

specific line.

– Using either C9F_a (without L-bit) or C9F_b (with L-bit).

• At last, load them into cache by a software routine.

» NOTE: It’s important that the code and data to be locked in cache does not exist elsewhere in cache. And, enable MMU to ensure that any TLB misses while loading instructions or data cause a page table walk.

– For Data, use LDR;

– For Instruction, use instruction prefetching (MCR C7:c13)

ARM 2007 liangalei@sjtu.edu.cn

12.7 Cache & Software Performance

• Here are s few simple rules to help write code that take advantage of cache architecture.

– Use Cache & Write buffer, improve the AMAT.– Be careful, NOT to cache or write buffer the

memory-mapping I/O;– Spatial locality: Organize the common data in-

order and in one cache line size;– Make the code as small as possible;– Search a “linked list” will degrade the

performance of cache.– Cache is not the only who effect the

performance. (see chapter 5 and 6).

ARM 2007 liangalei@sjtu.edu.cn

Summary of cache

• Cache is the layer between core and MM.

• Write-Buffer is a FIFO between core and MM.

• Rule of Locality

• Line: operation unit

• Virtual vs. Physical Cache

• Cache’s Clean, Flush, Lockdown