Beam Cooling at HESR in the FAIR Project

Post on 08-Jan-2016

71 views 0 download

Tags:

description

Beam Cooling at HESR in the FAIR Project. 12 th September 2011 Dieter Prasuhn. HESR Consortium. ICPE-CA, Bukarest, Rumania. Rumania. Outline. Design requirements for the HESR Requirements for Cooling p-bar injection and accumulation Summary. Modes of Operation with PANDA. - PowerPoint PPT Presentation

transcript

Mit

glie

d d

er

Helm

holt

z-G

em

ein

sch

aft

Beam Cooling at HESR in the FAIR Project

12th September 2011 Dieter Prasuhn

Dieter Prasuhn12. September 2011 2

HESR Consortium

ICPE-CA, Bukarest, Rumania

Rumania

Dieter Prasuhn12. September 2011 3

Outline

Design requirements for the HESR

Requirements for Cooling

p-bar injection and accumulation

Summary

Dieter Prasuhn12. September 2011 4

Modes of Operation with PANDA

Experiment Mode High Resolution

Mode

High Luminosity

Mode

Target Hydrogen Pellet target

with 4*1015 cm-2

rms-emittance 1 mm mrad

Momentum range 1.5 – 8.9 GeV/c 1.5 – 15.0 GeV/c

Intensity 1*1010 1*1011

Luminosity 2*1031 cm-2 s-1 2*1032 cm-2 s-1

rms-momentum resolution

5*10-5 1*10-4

Dieter Prasuhn12. September 2011 5

Basic Data of HESR Circumference 574 m Momentum (energy) range

1.5 to 15 GeV/c (0.8-14.1 GeV) Injection of (anti-)protons from

CR / RESR at 3.8 GeV/c Maximum dipole field: 1.7 T Dipole field at injection: 0.4 T Dipole field ramp: 0.025 T/s Acceleration rate 0.2 (GeV/c)/s

PANDAElectron cooler

Stochastic cooling

p_bar injection

long.vert.

hor.Kicker PU

Dieter Prasuhn12. September 2011 6

Cooling requirements for HESR

Internal target (d=4*1015 cm-2):• Emittance growth

• Mean energy loss

• Small momentum spread (10-5)

Accumulation of p-bars in the HESR

Dieter Prasuhn12. September 2011 7

Dieter Prasuhn12. September 2011 8

• acceleration in p-linac to 70 MeV

• multiturn injection into SIS18,acceleration to 4 GeV

• transfer of 4 SIS pulses to SIS100

• acceleration to 29 GeV and extraction of single bunch

• antiproton target and separator for 3 GeV antiprotons

• collection and pre-cooling of 108 p-bars in the Collector Ring CR

• transfer of 108 p-bars at 3 GeV to HESR

• accumulation and storage of antiprotons in the HESR

p-linacSIS18 SIS100

UNILAC

pbartarget/

separator

HESR

Antiproton Chain(Modularised Start Version)

CR

Mit

glie

d d

er

Helm

holt

z-G

em

ein

sch

aft

p-bar injection and accumulation in the HESR

Dieter Prasuhn12. September 2011 10

The p-bar accumulation without RESR

• 108 p-bars collected in the CR• 10 s cooling time in CR• Transfer of 108 p-bars to HESR• In parallel:

Cooling of 108 p-bars in CR Cooling of 108 p-bars in HESR

• Transfer of 2nd CR-stack into HESR• 100 times repetition of that procedure⇒ Accumulation of 1010 p-bars in HESR in 1000 s• Acceleration, cooling, experiment

Dieter Prasuhn12. September 2011 11

The accumulation process in HESR

Simulations by H. Stockhorst and T. Katayama

Mit

glie

d d

er

Helm

holt

z-G

em

ein

sch

aft

Proof of principle experiment in the ESR

Dieter Prasuhn12. September 2011 13

Properties of the ESR

circumference 108 m

transition 2.37

beam ARGON

mass number 40

charge state 18

kinetic energy 400 MeV/u

0.71

1.43

revolution period 507 ns

p/p injected 1.5*10-3

emittances hor./vert.

1 mm mrad

Dieter Prasuhn12. September 2011 14

Experimental study of accumulationin ESR with barrier bucket and stoch. cooling

Collaboration:FZJ, GSI, Tokyo, JINR, CERN

Dieter Prasuhn12. September 2011 15

Measured intensity increase byaccumulation in the ESR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-200 -100 0 100 200 300 400

ES

R C

urr

en

t [m

A]

Accumulation Time [s]

Fixed Barrier

• Injection every 13 s• Accumulation over 500 s• Saturation with 6*107 Ar ions

Dieter Prasuhn12. September 2011 16

Results

• The idea of injection into the barrier bucket works

• Stochastic cooling is necessary to cool injected ions into the stable area

• Electron supports the efficiency by cooling oscillations by kicker ringing

• Simulation results agree with the experimental data

Dieter Prasuhn12. September 2011 17

Question of the experimentalists:

Accumulation in HESR to more than 1010 p_bars ?

Dieter Prasuhn12. September 2011 18

Cooling time for different intensities

0

10

20

30

40

50

60

0 5 10 15 20

(p

/p)

rms

x 10

5

Time [s]

N = 108, 130 dB

N = 1010, 128 dB

N = 5 x 1010, 114 dB

N = 1011, 108 dB

• The beam from CR with p/p = 5*10-4 has to be cooled to 2.5*10-4

• Due to longer cooling times than 10 s the efficiency decreases

• 5*1010 p_bars seem to be possible within 5000 s accumulation time

Mit

glie

d d

er

Helm

holt

z-G

em

ein

sch

aft

Study of internal Target effects

Dieter Prasuhn12. September 2011 20

Operation of COSY

• Circumference: 184 m• Maximum momentum: 3.7 GeV/c

(B=12 Tm)• (un-)pol. Protons and Deuterons• Electron and stochastic cooling

Design and Construction of HESR

• Circumference: 574 m• Maximum momentum: 15 GeV/c

(B=50 Tm)• (un-)pol. Anti-protons• stochastic (and electron) cooling

HESRCOSY

Dieter Prasuhn12. September 2011 21

HESR Prototyping and Tests with COSY

WASA

Barrier Bucket Cavity

Stochastic Cooling

Pellet Target

Dieter Prasuhn12. September 2011 22

Example: Beam Cooling with WASA Pellet Target

a) Injected beamb) Beam heated by targetc) + stochastic coolingd) + barrier bucket

0

1 10-7

2 10-7

3 10-7

4 10-7

5 10-7

6 10-7

1.5368 1.5369 1.537 1.5371 1.5372 1.5373

Pa

rtic

le D

en

sity

(a

rb.

units

)

f [GHz]

a) b)

d)

c)

Dieter Prasuhn12. September 2011 23

Momentum range (antiprotons): 1.5 - 15 GeV/c

Band width: 2 - 4 GHz, high sensitivity

Longitudinal cooling: Notch-Filter, ToF

Aperture of couplers: 89 mm

Parameters for the HESR stochastic cooler:

Octagonal Slot-Coupler

Octagonal Printed-Loop Coupler

Dieter Prasuhn12. September 2011 24

Stochastic cooling pickup (prototype) installed in COSY

Same sensitivity as movable /4 structures

Dieter Prasuhn12. September 2011 25

HESR Prototyping and Tests with COSY

WASA

Barrier Bucket Cavity

Stochastic Cooling

Pellet Target

Poster by Rolf Stassen

Mit

glie

d d

er

Helm

holt

z-G

em

ein

sch

aft

Next step in COSY:Electron cooling up to maximum momentum

Dieter Prasuhn12. September 2011 27

Electron Cooling: Development Steps

COSY: from 0.1 MeV

to 2 MeV

HESR: 4.5 MeV

Upgradeable to 8 MeV

Technological challenge

Talk by J. Dietrich

Dieter Prasuhn12. September 2011 28

Summary

• Strong cooling is essential for HESR• Stochastic cooling is designed, prototype

structures for 2-4 GHz tested• Electron cooling in HESR will improve the

experimental conditions and the accumulation efficiency

• Tests will be performed at COSY with simultaneous electron and stochastic cooling in interaction with a thick internal target

Dieter Prasuhn12. September 2011 29

Thank you for your attention