Blocking PirB Up-regulates Spines and Functional Synapses to Unlock Visual Cortical Plasticity and...

Post on 29-Sep-2015

20 views 1 download

description

During critical periods of development, the brain easily changesin response to environmental stimuli, but this neural plasticitydeclines by adulthood.

transcript

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 1/12

    Home>ScienceJournals>ScienceTranslationalMedicineHome>15October2014>Bochneretal.,6:(258):258ra140

    +

    +

    INTRODUCTIONRESULTS

    GeneticdeletionofPirBenhancesODplasticityPostnataldeletionofPirBfromexcitatoryneuronsenhancesadultODplasticityBlockadeofPirBligandbindingrapidlyenhancesODplasticitysPirBincreasesspinedensityandfunctionalsynapsesonL5pyramidalneuronssPirBtreatmentafterLTMDenablesrecoveryofspinedensitysPirBinducesrecoveryofvisualacuityafterLTMD

    DISCUSSIONsPirBasanacuteregulatorofspineandsynapsedensitysPirBasapotentialtherapyforrecoveryfromamblyopiaPirB:Anendogenoustargetformanipulationsofsynapseandsystemslevelplasticity

    MATERIALSANDMETHODSStudydesignMousestrainssPirBproteinproductionOsmoticminipumpimplantationsandsPirBinfusionArcmRNAinductionandinsituhybridizationVEPrecordingsStatisticalanalyses

    SUPPLEMENTARYMATERIALSREFERENCESANDNOTES

    ScienceTranslationalMedicinestm.sciencemag.org.ezproxy.lib.usf.eduSciTranslMed15October2014:Vol.6,Issue258,p.258ra140Sci.Transl.Med.DOI:10.1126/scitranslmed.3010157

    RESEARCHARTICLE

    NEUROSCIENCE

    BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopiaDavidN.Bochner1,*,RichardW.Sapp1,*,JaimieD.Adelson1,SiyuZhang2,HanmiLee1,MajaDjurisic1,JoshSyken3,YangDan2

    andCarlaJ.Shatz1,

    AuthorAffiliations

    AuthorNotes

    Correspondingauthor.Email:cshatz@stanford.edu

    Duringcriticalperiodsofdevelopment,thebraineasilychangesinresponsetoenvironmentalstimuli,butthisneuralplasticitydeclinesbyadulthood.ByacutelydisruptingpairedimmunoglobulinlikereceptorB(PirB)functionatspecificages,weshowthatPirBactivelyrepressesneuralplasticitythroughoutlife.WedisruptedPirBfunctioneitherbygeneticallyintroducingaconditionalPirBalleleintomiceorbyminipumpinfusionofasolublePirBectodomain(sPirB)intomousevisualcortex.Wefoundthatneuralplasticity,asmeasuredbydeprivingmiceofvisioninoneeyeandtestingoculardominance,wasenhancedbythistreatmentbothduringthecriticalperiodandwhenPirBfunctionwasdisruptedinadulthood.AcuteblockadeofPirBtriggeredtheformationofnewfunctionalsynapses,asindicatedbyincreasesinminiatureexcitatorypostsynapticcurrent(mEPSC)frequencyandspinedensityondendritesoflayer5pyramidalneurons.Inaddition,recoveryfromamblyopiathedeclineinvisualacuityandspinedensityresultingfromlongtermmonoculardeprivationwaspossibleaftera1weekinfusionofsPirBafterthedeprivationperiod.Thus,neuralplasticityinadultvisualcortexisactivelyrepressedandcanbeenhancedbyblockingPirBfunction.

    INTRODUCTION

    Duringpostnataldevelopment,thecapacityofthebraintoundergoexperiencedependentchangesinsynapticstrengthandcircuitconnectivityisdynamicallyregulated,withplasticitypeakingduringdevelopmentalcriticalperiodsandthendecreasingwithmaturation(13).Criticalperiodsarekeytimeswhensensoryexperienceisnecessaryfornormalcircuitdevelopmentandwhenabnormalexperiencecangenerateenduringanomaliesinbrainstructureandfunction(2,4).Oculardominance(OD)plasticityisagraphicexampleofexperiencedrivensynapticandcircuitplasticity.Childrenbornwithcongenitalcataractinoneeyewillsufferamblyopiaalossofvisualacuityifnotcorrectedearlyinlife(5,6).Monocularvisualdeprivation(MD)hasbeenusedinanimalmodelsofamblyopiatounderstandunderlying

    Prev|TableofContents|Next

    BacktoTop

    AAAS.ORG FEEDBACK HELP LIBRARIANS ScienceTranslationalMedicine ADVANCED

    SciTMHome CurrentIssue RapidPublication IssueArchive Multimedia SciTMCollections MySciTM AboutSciTM

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 2/12

    View larger version:In this page In a new window

    Download PowerPoint Slide for Teaching

    mechanisms.AfterabriefperiodofMDorenucleation(ME)duringjuvenilelife,visuallydrivenresponsesofneuronsinthebinocularzoneofmammalianprimaryvisualcortex(V1)shifttowardtheopeneye,andcorticalterritorycontainingneuronsrespondingtoopeneyestimulationexpands,whereasclosedeyeresponsesweakenandterritoryshrinks(3,7,8).Theseeffectsaremaximalaroundpostnatalday28(P28)inmiceanddecreasethereafterbyadulthood,littleODplasticityresultingfromeyeclosurecanbedetected,particularlywithshorterperiodsofdeprivation(711).Furthermore,alongtermperiodofMD(LTMD)spanningtheentirecriticalperiod(forexample,P19toP47)generatesanenduringlossofacuityandcorticalfunctioninthedeprivedeyeevenifbinocularvisionisrestoredinadulthood(4,12,13).Thisnormaldecreaseinplasticitybyadulthood,althoughimportantforstabilizingneuralcircuits,actsasabarriertorecoveryafterinjurybecauseitlimitscorticalreorganization,canlockineffectsofdysfunctionaldevelopment,andevenopposesacquisitionofnewlearning.Ifadultneuralcircuitscouldbereturnedtoanimmaturestate,criticalperiodsmightbeeffectivelyreopened,facilitatingrecoveryafternervoussystemdamage,leadingtonewtreatmentsforneurodegenerativeordevelopmentaldisorders,orevenenhancinglearninginhealthyindividuals.

    Alimitednumberofcandidatemoleculesthatappeartoactasendogenousnegativeregulatorsofcorticalplasticityhavebeenidentified(1418).Onesuchmolecule,pairedimmunoglobulinlikereceptorB(PirB),isexpressedincorticalandhippocampalneuronsaswellasinsomeimmunecells(14).Inthenervoussystem,PirBbindsseveralligands,includingmajorhistocompatibilitycomplex(MHC)classIproteins,NogoA,andmyelincomponents(19,20).Bothinimmunecellsandneurons,ligandbindingrecruitsSHP1andSHP2phosphatases(14,21).SHPrecruitmentrequiresPirBphosphorylationonitsITIM(immunoreceptortyrosinebasedinhibitorymotif)domains(21,22).Inneurons,cofilinisalsorecruitedtoPirB,leadingtochangesintheactincytoskeleton(20).

    GermlinePirB/micehaveenhancedODplasticitynotonlyduringthecriticalperiodbutalsobeyond,andtheyrecovermorerapidlyinastrokemodel(14,23,24).PirBanditshumanortholog,leukocyteimmunoglobulinlikereceptor,subfamilyB,member2(LilrB2),bindsolubleamyloidoligomers,andgermlinePirBdeletionrescuesODplasticityandhippocampaldeficitsinamousemodelofAlzheimersdisease(AD)(20).However,itremainsunknownwhethertheenhancedODplasticityandstrokerecoveryingermlinePirB/miceareduetoearlydevelopmentalchanges,orwhetherPirBactsatallagestolimitplasticity,whichwouldmakeitanattractivetherapeutictargetfordrugdevelopment.BecausePirBisareceptor,signalingcanbemodulatedbyconditionalgeneticknockoutorbyinterferingwithligandbinding(19).IfPirBfunctionsthroughoutlife,disruptingPirBshouldenhanceplasticityorfacilitaterecoveryatanyage.

    RESULTS

    GeneticdeletionofPirBenhancesODplasticity

    TodisruptPirBfunctionwithtemporalcontrol,aconditionalalleleofPirBwasgeneratedbyinsertingloxPsitessurroundingexons10to13,whichcontainthetransmembranedomainandfirstITIMdomainofPirB(14)(Fig.1A).Toobtainrobustwidespreaddeletion,thisPirBfloxmouselinewascrossedwithatransgenicmouselineexpressingtamoxifeninducibleCreERT2onaubiquitinCpromoter(25).TheresultingUbcCreERT2PirBflox/floxmicewerebredwithPirBflox/floxmice,producingexperimentalUbcCreERT2PirBflox/floxanimals(henceforthcalledCre+)aswellasPirBflox/flox(Cre)littermatecontrols.TamoxifeninjectionsgiveneitherneonatallyoraftercriticalperiodclosureinducedrobustdeletionofthefloxedallelefromgenomicDNAwithin1week(Fig.1B).PirBproteinlosswasmoregradualforexample,dailytamoxifentreatmentfromP3toP7diminishedPirBproteinintheforebrainby~90%byP27(Fig.1,CandD).AsimilargraduallossofproteinwasseenatP70aftertamoxifentreatmentfromP45toP49(Fig.1,CandE).Thus,tamoxifenadministrationsubstantiallyreducedPirBproteinlevelsbythepeakoftheODcriticalperiodatP28(7),aswellasinadulthoodbyP70.

    Fig.1.ATamoxifeninducibleCredependentstrategyfordeletionofPirBwithtemporalcontrol.

    (A)SchematicofPirBproteinstructure(top)andfloxedPirBallele(bottom)beforeandafterCremediatedexcision.(B)Dailytamoxifengivenviainjectionofnursingmother(P3toP7)inducesdeletionofthefloxedregionatP21asdetectedbypolymerasechainreaction(PCR).(C)WesternblotsforPirBproteininforebrainatages(left)oftamoxifen(TAM)administrationandWesternblotting.(D)QuantificationofPirBproteininforebrainaftertamoxifenadministration(P3toP7),normalizedtoaverageCre

    levelsacrossallagesassayed:CreP21:n=4miceversusCre+P21:n=5,P=0.02,Utest.CreP27:n=5versusCre+P27:n=4,P=0.02,Utest.(E)QuantificationofPirBproteininforebrainatP70(adult)aftertamoxifeninjectionfromP45toP49.CreP70:n=4versusCre+P70:n=4,P=0.03,Utest.*P

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 3/12

    View larger version:In this page In a new window

    Download PowerPoint Slide for Teaching

    inducedwithinminutesofvisualstimulation,andtheupregulatedmRNAcanbedetectedincorticalneuronsfunctionallydrivenbythestimulatedeye(26).WemeasuredthehorizontalextentoftheArcmRNAinsituhybridizationsignalalongL4ofvisualcortexipsilateraltothespared,stimulatedeye(Fig.2,AtoC,andfig.S1).ThisexpansioninwidthofArcmRNAsignalisareliablemeasureofopeneyestrengtheningaftervisualdeprivationandcorrelateswellwithothermethodsusedtoassessODplasticityincludingsingleunitelectrophysiology(7,8,27,28),visualevokedpotentials(VEPs)(8,11,29),orintrinsicsignalimaging(8,24,3033).ThewidthofArcmRNAinductiondoesnotexpandintransgenicmiceknowntolackODplasticityasmeasuredbyothermethods(20,28,33),whereasthereisanincreaseinwidthofArcmRNAsignalinmiceknowntohaveincreasedODplasticity(14,15,24).

    Fig.2.TimedgeneticdeletionofPirBenhancesODplasticity.

    (A)Schematicofmousevisualsystem.Eachretina(right:red,left:blue)projectsprimarilycontralaterallytothelateralgeniculatenucleus(LGN),whichprojectstovisualcortex(V1).Asmallbinocularzone(BZ,purple)inV1receivesinputfrombotheyesinresponsetodeprivationofoneeye(forexample,left),therepresentationoftheopen(rightipsilateral)eyeexpands(arrows).(B)TimelineofinducibleknockoutofPirBandassessmentofODplasticityviaArcmRNAinduction.(C)ExamplemicrographsofinsituhybridizationsforArcmRNAinducedinBZofvisualcortexafteropeneyestimulation.Eachblackdotisacell.MEfromP28toP32resultsinexpansionoftheipsilateral(open)eyerepresentation(betweenredasterisks),ascomparedwithnormalrearing(NR).Cre=PirBflox/flox.Cre+=UbCCreERT2PirB

    flox/flox.WidthofArcsignalinL4wasmeasured(seefig.S1).Corticallayersindicatedatleftscalebar,500m.CP,criticalperiod.(D)CumulativehistogramsofwidthofArcmRNAsignalbyindividualsection.NRCre:n=41sectionsNRCre+:n=44MECre:n=39MECre+:n=52.(E)Graphofdatain(D),withmeanandSEMbyanimal:deletionofPirBduringthecriticalperiodenhancesODplasticity.NRCre:n=7miceversusNRCre+:n=7,P=0.65MECre:n=7versusMECre+:n=7,****indicatesP

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 4/12

    View larger version:In this page In a new window

    Download PowerPoint Slide for Teaching

    View larger version:In this page In a new window

    Download PowerPoint Slide for Teaching

    inallcells.Next,weinvestigatedwhetherlossofPirBspecificallyinforebrainexcitatoryneuronswassufficienttoenhanceODplasticity.PirBflox/floxmicewerecrossedwithaCamKIIaCreline,whichexpressesCreexclusivelyinforebrainexcitatoryneurons(34,35),generatingCamKIIaCrePirBflox/floxconditionalknockouts,andCamKIIaCrePirB+/+littermatecontrols.PCRgenotypingofbrainandearconfirmsbrainspecificdeletionofthefloxedregionofPirB(Fig.3A).ToconfirmthespatialpatternofCredeletion,CamKIIaCremicewerealsocrossedtotheAi14TdTomatoreporterline(36).ResultsshowfaithfulCreactivityatP30inpyramidalneuronsofhippocampusandcortex(Fig.3B).PreviousstudieshaveshownthatexcisionoffloxedregionsofDNAinthisCrelineisgradual,withcompletedeletionoccurringaround3monthsofage(35),permittingustoexamineeffectsofPirBdeletioninadulthood.

    Fig.3.CremediateddeletionofPirBfromforebrainexcitatoryneuronsenhancesadultODplasticity.

    (A)GenotypingofsamplesfromearandcerebralcortexfromP100CamKIIaCrePirBflox/flox(cKO)orCamKIIaCrePirBWT(wildtype),showingdeletionoffloxedPirBincortexbutnotear.(B)CamKIIaCrePirBflox/+breederswerecrossedwiththeAi14TdTomatoreporterline,generatingredfluorescenceinthepresenceofCre.Sagittalsectionthroughvisualcortex(layersindicatedatright)andhippocampusofaP30mouseshowsCrepresentinpyramidalneurons.(C)GraphsofwidthofL4regionactivatedbystimulationofipsilateral(open)eyeinvisualcortex,assessedusingArcmRNAinduction.DeletionofPirBfromforebrainexcitatoryneuronsincreasesopeneyeexpansioninadultmiceafterMEfromP100toP110.NRWT:n=5miceversusNRcKO:n=4,P=0.91.MEWT:n=8miceversusMEcKO:n=5,P=

    0.006.NRversusMEWT:P=0.39,NRversusMEcKO:P=0.0002,bytwowayANOVAwithTukeyposthoctest.**P

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 5/12

    infusion(1mg/ml).Scalebar,1mm.(EandF)MinipumpinfusionsofsPirBduringcriticalperiod(CP).Timelineasshown.(E)ExampleArcmRNAinsituhybridizationmicrographsofvisualcortexafterBSA(top)orsPirB(bottom)treatment.Scalebar,500m.RedasterisksindicatebordersofArcmRNAsignalinducedbystimulatingtheipsilateral(open)eyeinlayer4.(F)GraphscomparingwidthofArcmRNAsignalinL4afteropeneyestimulation.WidthofterritoryactivatedbyopeneyestimulationafterMEisgreateraftersPirBinfusionthanwithBSA.NRBSA:n=4mice,NRsPirB:n=4,MEBSA:n=5versusMEsPirB:n=6,P

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 6/12

    View larger version:

    In this page In a new windowDownload PowerPoint Slide for Teaching

    germlinePirBknockoutmicerearedwithnormalvision.IthasbeenproposedthattheseextraspinesrepresentapreexistingstructuralsubstratethatisthenrecruitedforthemorerapidandrobustODplasticityobservedinthesemice(24).Indeed,previoussensoryexperienceinvisualorauditorysystemsincreasesplasticity,andisaccompaniedbyincreasedstructuralconnectivity(4144).WetestedwhetherPirBmightcontributetothesestructuralchanges.

    sPirBinfusionmighttriggeranincreaseinspinedensityevenwithoutvisualdeprivation.Totestthishypothesis,visualcortexofnormallyrearedwildtypeThy1YFPHtransgenicmice(45),inwhichcorticalL5pyramidalneuronsareyellowfluorescentprotein(YFP)labeled,receivedminipumpinfusionsofeithersPirBorBSAfromP63toP74(Fig.5,AandB).SpinesonapicaldendritesofL5pyramidalneuronswereexaminedinthebinocularzoneatadistanceposteriortotheinfusionsitecomparabletothatstudiedaboveforassessmentofODplasticity.InthisregionaftersPirBinfusion,pyramidalneuronsomata,dendrites,andspinesappearedintactandhealthy,withoutfragmentationorblebbing(Fig.5A).SpinedensityonL5apicaldendritictuftsofanimalsrearedwithnormalvisionwas38%greaterinthepresenceofsPirBthanofBSA(Fig.5B).SpinedensityonL5neuronsintheuninfusedhemispherewasnotaltered,andatwowayANOVAconfirmsasignificantinteractioneffectbetweenhemisphereandtreatment(P=0.03).TheobserveddensityincreasecouldariseifsPirBactsonasubclassofdendriticspines.However,afteran11dayinfusionofeithersPirBorBSA,therewasnosignificantdifferenceintheproportionofspinesclassifiedasmushroom,thin,orstubby(46)(fig.S4B).Together,resultsshowthatinadultvisualcortex,itispossibletogeneratealocalincreaseinspinedensityonL5neuronsbyinfusingsPirB,evenintheabsenceofavisualmanipulationordeprivation.

    Fig.5.sPirBincreasesspinedensityandfunctionalsynapsesonL5pyramidalneuronsofnormallyrearedmice.

    (A)Timelineofminipumpinfusions[BSA(1mg/ml)orsPirBfromP63toP74]andexampledendritesofYFPlabeledL5pyramidalneuronsinbinocularzoneofvisualcortexinWTThy1YFPHanimalsrearedwithnormalvisualexperience.Scalebar,10m.(B)HistogramsofspinedensityonapicaltuftsofL5neuronsinsPirBinfusedversusintheuninfused(unif.)contralateralhemisphere,orinBSAcontrols:BSAinfused:n=5miceversussPirBinfused:n=5,P=0.01,onetotwocellsperanimal.BSAuninf.:n=5versussPirBuninf.:n=5,P=0.96,BSAinf.versusuninf.:P=0.99,sPirBinf.versusuninf.:P=0.016,bytwowayANOVAandTukeyposthoc

    test.(C)ExampletracesofmEPSCresponsesrecordedfromvisualcorticalslices(P70toP77)fromL5pyramidalneuronsafterBSAorsPirBinfusion,asin(A).(D)IncreasedmEPSCfrequencywithsPirBinfusion:BSA:n=12neuronsversussPirBn=13,P=0.046,byMannWhitneyUtest.(E)NochangeinmEPSCamplitude:BSA:n=12neuronsversussPirBn=13,P=0.70,byMannWhitneyUtest.

    Toexaminewhethertheincreaseinspinedensityrepresentsnewfunctionalsynapses,miniatureexcitatorypostsynapticcurrents(mEPSCs)wererecordedfromL5pyramidalneuronsinslicesofvisualcortex(P70toP77),after7to11daysofsPirBminipumpinfusioninvivo,inmicerearedwithnormalbinocularvision(Fig.5C).mEPSCfrequencywassignificantlygreateraftersPirBtreatmentthaninBSAlittermates(Fig.5D),withnochangeinmEPSCamplitude(Fig.5E).ThisfindingisconsistentwiththeideathatsPirBinfusioncausesanincreaseinsynapticconnectivity,suggestingthatnewlyformedspinesrepresentsitesoffunctionalsynapses.

    sPirBtreatmentafterLTMDenablesrecoveryofspinedensity

    LTMDisawellstudiedanimalmodelofamblyopiabecauseitinvolvesanexperiencedependentdevelopmentallossoffunctioninthedeprivedeye(47,48).Inrodents,LTMDprofoundlydecreasesvisualacuity,aswellasthenumberofcorticalneuronsvisuallydrivenbythedeprivedeye.Thereislittle,ifany,recovery,evenafterrestorationofbinocularvision(4,12,13,17,49).Ithasbeenproposedthatadecreaseindendriticspinedensityunderliesthesefunctionaldeficits(4,49).Forexample,LTMDgeneratesasignificantdeclineinspinedensityonbasolateraldendritesofL5pyramidalneuronscontralateraltothedeprivedeye(49).

    GiventherapidandgenerativeeffectofsPirBonspinedensityandmEPSCfrequencydescribedaboveinnormalvisualcortex,wewonderedwhethersPirBtreatmentmightgenerateaspinedensityincreasethatcouldfacilitaterecoveryfromLTMD.Thy1YFPwildtypemicewereeithernormallyrearedorreceivedLTMDspanningtheentirecriticalperiodforODplasticity(P19toP47).AtP47,thedeprivedeyewasreopenedtorestorebinocularvisionfor1week.ThenatP54,minipumpscontainingeithersPirBorBSAwereimplantedinthevisualcortexcontralateraltothedeprivedeyeuntilP61(Fig.6A),atwhichtime,spinedensityonL5basolateraldendriteswasmeasured.

    Fig.6.sPirBallowsstructuralandfunctionalrecoveryfromamblyopiaafterLTMD.

    (A)Experimentaltimeline:LTMDfromP19toP47,eyereopeningatP47,andminipumpinfusionfromP54toP61.(B)RepresentativeYFPlabeledL5cellsomaandbasolateral(arrow)dendritesinvisualcortexofWTThy1YFPHmice.Scalebar,50m.(C)Bargraphsshowingchangesin

    basolateraldendriticspinedensity:LTMDcausesa

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 7/12

    View larger version:In this page In a new window

    Download PowerPoint Slide for Teaching

    significantdeclineinspinedensity(BSALTMD)thatcanbefullyreversedwithsPirBinfusion(sPirBLTMD)(BSANR:n=5miceversusBSALTMD:n=4,P=0.02.sPirBLTMD:n=5,sPirBversusBSALTMD,P=0.001,sPirBNR:n=5animals,onetotwocellsperanimal,sPirBversusBSANR:P=0.003).*P

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 8/12

    showntoproducerapidincreasesinspinedensity,sPirBtreatmentproducesalargermagnitudechangeanddoessointheabsenceofnovelstimuliortraining.Together,ourobservationsimplythattargetinganddisruptingPirBfunctionincreasesynapticconnectivityandplasticity,evenafterthecriticalperiod.BecausePirBisexpressedbypyramidalneuronsthroughouttheneocortex(14),ourresultsmayalsoapplytocorticalareasotherthanthevisualsystem.

    sPirBasanacuteregulatorofspineandsynapsedensity

    InfusionofsPirBdecreasesPirBdownstreamsignaling(Fig.4C),consistentwithitspreviouslydemonstratedsequestrationofendogenousPirBligands(14,19,20,23).Inadulthood,acuteblockadewithsPirBresultsinenhancedODplasticityandproducesarapidincreaseinspinedensityandmEPSCfrequency,evenintheabsenceofalteredvision.ManyinterventionsthataffectsynapticconnectivityandspinedynamicsalsoenhanceODplasticity,includingtransplantationofinhibitoryneuronprogenitors(53)ordisruptionofNgR1NogoAfunction(16,54,55).Spinedensityincreasesalsocorrelatewithenhancedsubsequentplasticity(41,44):newspinesgeneratedduringaninitialMDcanbecooptedformorerobustODplasticityduringasubsequentMD(24,41,44).Furthermore,ingermlinePirB/mice,enhancedODplasticityisassociatedwithalargeincreaseinspinedensityonL5neuronsandanincreaseinthemagnitudeofL4toL2/3longtermpotentiation(LTP)invisualcortex(24).Collectively,theseexperimentsconnectanincreaseinspinedensityandfunctionalconnectivitytoenhancedsynapticplasticity.Thus,sPirBmaygenerategreaterODplasticitybycreatingamorehighlyinterconnectedstructuralsubstratethatcanbeaccessedformorerapidandrobustsynapticchange.

    sPirBasapotentialtherapyforrecoveryfromamblyopia

    LTMDthroughoutthecriticalperiod,usedhereasananimalmodelofamblyopia,leadstoaprofoundlossofvisualacuity,aswellastolossofvisualresponsivenessofcorticalneuronstostimulationofthedeprivedeyebotharehighlyresistanttorecoveryevenwhenbinocularvisionissubsequentlyrestored(4,12,13,17,49).DecreasesinspinedensityonbothL2/3pyramidalcells(4)andpyramidalneuronsthroughoutcortexhavealsobeenreportedafterLTMDorchronicMD(49).Althoughreversalofthisspinelossoncorticalpyramidalneuronshasbeenseen,reversalrequiredthattheformerlyopeneyebesuturedclosedincombinationwithfairlydisruptivetreatmentssuchaschondroitinaseABCtodigestextracellularmatrix(4),or10daysofdarkexposurefollowedbyvisualstimulation(49,56).RecoveryofspinesinbothofthesecaseswasaccompaniedbyrobustrecoveryofVEPacuity.Inourstudy,wefoundthatsPirBinfusion,combinedwithbinocularvision,wassufficientbyitselftobringspinedensityvaluesandVEPacuityestimatesclosetonormal.VisualacuityasmeasuredbyVEPspredictsphysiologicallyrelevantrecoveryofvisualfunctioninthedeprivedeye,indicatingthatvisionthroughthedeprivedeyeinsPirBtreatedmicehasgreatlyimproved(4,43,44).Togetherwiththedataonspinerecovery,theseresultssuggestthatsPirBcanenablesignificantstructuralandfunctionalrecoveryfromamblyopiaafterLTMDwithinjust7daysoftreatment.

    TheseobservationsimplythatsPirBasolublereceptorectodomainisapotentialtherapeuticagent,andtheyprovideproofofconceptforgeneratingotherPirBblockingreagents.Thestandardtreatmentforhumanamblyopicpatientsmandatesearlyinterventionduringadevelopmentalcriticalperiodandinvolvesalternatingpatchingbetweenthetwoeyestostrengthentheamblyopiceye,butthistreatmentinterfereswithdevelopmentofbinoculardepthperception(6).ThereareseveralPirBhomologsinhumans(LilrBs),andLilrB2proteinisexpressedinthehumanbrain(25).TargetingLilrB2orothermembersoftheLilrBreceptorfamilymightpermitrecoveryfromamblyopiawithoutrequiringeyepatching,asimpliedbytheresultsoftheLTMDexperimentsinmice.

    Thereareanumberoflimitationsandissuestoconsiderintranslatingourfindings.First,itwouldbeimportanttodeterminewhethertheincreaseinspinedensityandfunctionalrecoveryfromamblyopiapersistsstablybeyondtheperiodofsPirBinfusion.Second,itispossiblethatalongerinfusionorhigherconcentrationofsPirBwouldproduceamorerobustrecoveryforallanimals.Inaddition,ratherthanminipumpinfusions,itwouldbepreferabletodevelopasmallmoleculedrugthatcancrossthebloodbrainbarrier.Finally,asmentionedabove,LilrB2ispresentinhumanbrain,butbecausethereareotherfamilymembers,itwillbeimportanttocharacterizetheirexpressionandfunctioninhumancentralnervoussystem.

    PirB:Anendogenoustargetformanipulationsofsynapseandsystemslevelplasticity

    Ourobservationsaddtoagrowingbodyofresearchthathasunmaskedactiverolesformoleculesinthebrainactingasnegativeregulatorsoffunctionalandstructuralplasticitybothindevelopmentandinadulthood(17,50,54).InthecaseofPirB,thisnegativeregulationmayalsobehijacked,asinAD,whereamyloidoligomersbindtoPirB/LilrB2withnanomolaraffinity,resultinginlossofODplasticityanddeficitsincorticalandhippocampalsynapticplasticity(20).Thus,sPirBandhumansolublereceptorhomologsmightevenbeviabletherapeuticsforAD.BygeneratingarecombinantsPirBprotein,wehavedemonstratedauseforselectivelyblockingPirBreceptorinteractionwithendogenousligands.TheseresultsfurthersupportthevalueofcreatingPirB/LilrBantagoniststhatcrossthebloodbrainbarrier,enhancingplasticityandincreasingsynapseandspinedensityincasesofdisease,dysfunction,injury,orevenforcognitiveenhancementinnormalindividuals.

    MATERIALSANDMETHODS

    Studydesign

    TheobjectiveofthisstudywastodevisemethodstodeletePirBfunctionacutely,thenmonitortheeffectsonmeasuresofsynapticandODplasticity,andrecoveryfromLTMD.Twomethodswereused:tamoxifeninducedPirBdeletionviaaPirBconditionalallele,orsPirBminipumpinfusion.BecauseODplasticityisinducedbychangesinvisualexperience,experimentsweredesignedtocaptureaninteractioneffectbetween

    BacktoTop

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 9/12

    genotype/treatmentandvisualmanipulationfourgroupsandatwowayANOVAdesignwereusedtotestforinteractions.Allexperimentswereperformedblindtogenotypeand/ortreatment.Littermateswereusedtocontrolforgeneticvariation,andmicewererandomlyassignedtodifferentvisualmanipulationsandtreatmentswithinalitter.Todetectgenotypeeffectssimilarorgreaterthanthosepreviouslyreported,samplesizeswerechosenonthebasisofastatisticalpowerof80%withanvalueof0.05(14,24).Thenumberofreplicatemeasurementsandanimalsisgivenineachfigurelegend.

    Mousestrains

    PirB/andPirBflox/floxmiceweregeneratedasdescribed(14).APirBWTlinewasmaintainedonthesamebackgroundandusedforallminipumpinfusionexperimentsperformedduringthecriticalperiod(P21toP32).Foradultminipumpexperiments(P63toP74),PirBWTandPirB/micewerecrossedwiththeThy1YFPHtransgenicline(JAX#003782),whichexpressesYFPinasubsetofL5pyramidalneurons(45).Forinducibleknockoutexperiments,UbCCreERT2mice(JAX#007001)(25)werebredwithPirBfloxmicetogenerateUbCCreERT2PirBflox/floxmiceandPirBflox/floxlittermates.Forconditionalknockoutexperiments,CamKIIaCrePirBflox/+mice(57)werebredwithPirBflox/+micetogenerateCamKIIaCrePirBflox/floxmiceandCamKIIaCrePirB+/+littermates.CamKIIaCremicewerealsobredwithAi14TdTomatoreportermice(36).AllexperimentswereperformedinaccordancewithprotocolsapprovedbyStanfordUniversityAnimalCareandUseCommitteeinkeepingwiththeNationalInstitutesofHealthsGuidefortheCareandUseofLaboratoryAnimals.

    sPirBproteinproduction

    TocreateasPirBmimic,thePirBectodomainwasclonedintoaplasmidcontainingaHistagforpurificationandaMyctagforantibodydetectionwithasequenceidenticaltopreviouspublications(14,19,20,40).Forminipumpinfusions,InvitrogenCustomServicesproducedsPirBinlargerquantitiesinFreeStyleHEK293cellsandpurifieditonanickelcolumn(NiHis,Invitrogen).

    OsmoticminipumpimplantationsandsPirBinfusion

    Craniotomieswereperformed,andminipumps(ALZETmodel10020.25l/hour,100lcapacity)containingeithersPirB(1mg/ml)orBSA(1mg/ml)(VWREM2930)in0.1Mphosphatebufferedsalinewereimplantedsubcutaneously,connectedtoacannula.Thecannulawasinsertedjustanteriortoprimaryvisualcortex(2.5mmlateraland3mmposteriortobregma).

    ArcmRNAinductionandinsituhybridization

    ArcmRNAwasinducedbyplacingmiceovernightintotaldarkness(16to18hours),followedbybrightilluminationfor30mintopermitvisionthroughtheopeneyebeforeeuthanasiaviaisofluraneanesthesiaanddecapitation(8).AdigoxigeninlabeledArcantisensemRNAprobewasusedforcolorimetricinsituhybridizationsperformedonbrainsections(8,33).ImageswereacquiredviabrightfieldmicroscopyandanalyzedusingtheLineScanfunctionofNeuroLenssoftwaretomeasurethewidthoftheArcmRNAhybridizationsignalipsilateraltotheopen(nondeprived)eyealongL4ofthevisualcortex,atthe3to4border(fig.S1).Multiplesectionswerescannedandaveragedperanimal(forexample,Fig.2).

    VEPrecordings

    Animalswereanesthetizedwithurethane(0.6to1.2g/kgSigma)andchlorprothixene(5mg/kgSigma),andatincisionswithlidocaine(2%,SparhawkLaboratories),andthenthescalpwasexposedandtheminipumpwascannularemoved.AfteracraniotomycenteredoverV1,aglasspipettefilledwithACSF(artificialcerebrospinalfluid)wasinsertedtorecordlocalfieldpotentialsatadepthof450to600m.Responsestosinusoidalgratingstimuliwereaveragedoverstimulusblocks,andapeakresponseamplitudewithina500mswindowafterstimulusonsetwasdetermined.Visualacuitywasestimatedbyfindingthexinterceptofasemilogarithmicregressionofresponseamplitudesacrossdifferentspatialfrequencies(11,29).

    Statisticalanalyses

    AllstatisticalanalyseswereperformedwithPrismsoftware(Graphpad).Whenonlytwogroupswereinvolved,twosamplettestswereused,withWelchscorrectionforunequalvariancesappliedwhereappropriate.DataforwhichanormaldistributioncouldnotbeassumedwereanalyzedwithMannWhitneyUtests.Incaseswherebothtreatment/genotypeandvisualmanipulationorhemispherewerevaried,atwowayANOVAwasconducted,withTukeyposthoctestsforindividualpairsofcolumns.

    SUPPLEMENTARYMATERIALS

    www.sciencetranslationalmedicine.org/cgi/content/full/6/258/258ra140/DC1

    MaterialsandMethods

    Fig.S1.ExamplelinescanmeasurementsofArcmRNAinsituhybridizationsignalinvisualcortexinducedbystimulationoftheipsilateraleye.

    Fig.S2.PlasticityindicesforgeneticorpharmacologicaldisruptionofPirBfunction.

    Fig.S3.CharacterizationofsPirBminipumpinfusionareaandeffectonODplasticity.

    BacktoTop

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 10/12

    Fig.S4.EffectofminipumpinfusionsofsPirBorBSAondendriticspinesbycellsandbyspinetype.

    REFERENCESANDNOTES

    1. D.H. Hubel,T.N. Wiesel,Theperiodofsusceptibilitytothephysiologicaleffectsofunilateraleyeclosureinkittens.J.Physiol. 206,419436(1970). Abstract/FREEFullText

    2. E.I. Knudsen,Sensitiveperiodsinthedevelopmentofthebrainandbehavior.J.Cogn.Neurosci. 16,14121425(2004). CrossRef Medline WebofScience GoogleScholar

    3. C.N. Levelt,M. Hbener,Criticalperiodplasticityinthevisualcortex.Annu.Rev.Neurosci. 35,309330(2012). CrossRef Medline WebofScience GoogleScholar

    4. T. Pizzorusso,P. Medini,S. Landi,S. Baldini,N. Berardi,L. Maffei,Structuralandfunctionalrecoveryfromearlymonoculardeprivationinadultrats.Proc.Natl.Acad.Sci.U.S.A. 103,85178522(2006).

    Abstract/FREEFullText

    5. D.M. Levi,Visualprocessinginamblyopia:Humanstudies.Strabismus14,1119(2006). CrossRefMedline GoogleScholar

    6. E. Kanonidou,Amblyopia:Aminireviewoftheliterature.Int.Ophthalmol. 31,249256(2011). CrossRefMedline GoogleScholar

    7. J.A. Gordon,M.P. Stryker,Experiencedependentplasticityofbinocularresponsesintheprimaryvisualcortexofthemouse.J.Neurosci. 16,32743286(1996). Abstract/FREEFullText

    8. Y. Tagawa,P.O. Kanold,M. Majdan,C.J. Shatz,Multipleperiodsoffunctionaloculardominanceplasticityinmousevisualcortex.Nat.Neurosci. 8,380388(2005). CrossRef Medline WebofScience

    GoogleScholar

    9. M. Sato,M.P. Stryker,Distinctivefeaturesofadultoculardominanceplasticity.J.Neurosci. 28,1027810286(2008). Abstract/FREEFullText

    10. K. Lehmann,S. Lwel,Agedependentoculardominanceplasticityinadultmice.PLOSOne 3,e3120(2008). CrossRef Medline GoogleScholar

    11. N.B. Sawtell,M.Y. Frenkel,B.D. Philpot,K. Nakazawa,S. Tonegawa,M.F. Bear,NMDAreceptordependentoculardominanceplasticityinadultvisualcortex.Neuron 38,977985(2003). CrossRef

    Medline WebofScience GoogleScholar

    12. H.Y. He,B. Ray,K. Dennis,E.M. Quinlan,Experiencedependentrecoveryofvisionfollowingchronicdeprivationamblyopia.Nat.Neurosci. 10,11341136(2007). CrossRef Medline WebofScience

    GoogleScholar

    13. E. Kang,S. Durand,J.J. LeBlanc,T.K. Hensch,C. Chen,M. Fagiolini,Visualacuitydevelopmentandplasticityintheabsenceofsensoryexperience.J.Neurosci. 33,1778917796(2013).

    Abstract/FREEFullText

    14. J. Syken,T. Grandpre,P.O. Kanold,C.J. Shatz,PirBrestrictsoculardominanceplasticityinvisualcortex.Science 313,17951800(2006). Abstract/FREEFullText

    15. A. Datwani,M.J. McConnell,P.O. Kanold,K.D. Micheva,B. Busse,M. Shamloo,S.J. Smith,C.J. Shatz,ClassicalMHCImoleculesregulateretinogeniculaterefinementandlimitoculardominanceplasticity.Neuron 64,463470(2009). CrossRef Medline WebofScience GoogleScholar

    16. A.W. McGee,Y. Yang,Q.S. Fischer,N.W. Daw,S.M. Strittmatter,ExperiencedrivenplasticityofvisualcortexlimitedbymyelinandNogoreceptor.Science 309,22222226(2005). Abstract/FREEFullText

    17. H. Morishita,J.M. Miwa,N. Heintz,T.K. Hensch,Lynx1,acholinergicbrake,limitsplasticityinadultvisualcortex.Science 330,12381240(2010). Abstract/FREEFullText

    18. S.A. Marik,O. Olsen,M. TessierLavigne,C.D. Gilbert,Deathreceptor6regulatesadultexperiencedependentcorticalplasticity.J.Neurosci. 33,1499815003(2013). Abstract/FREEFullText

    19. J.K. Atwal,J. PinkstonGosse,J. Syken,S. Stawicki,Y. Wu,C. Shatz,M. TessierLavigne,PirBisafunctionalreceptorformyelininhibitorsofaxonalregeneration.Science 322,967970(2008).

    Abstract/FREEFullText

    20. T. Kim,G.S. Vidal,M. Djurisic,C.M. William,M.E. Birnbaum,K.C. Garcia,B.T. Hyman,C.J. Shatz,HumanLilrB2isaamyloidreceptoranditsmurinehomologPirBregulatessynapticplasticityinanAlzheimersmodel.Science 341,13991404(2013). Abstract/FREEFullText

    21. A. Maeda,M. Kurosaki,M. Ono,T. Takai,T. Kurosaki,RequirementofSH2containingproteintyrosinephosphatasesSHP1andSHP2forpairedimmunoglobulinlikereceptorB(PIRB)mediatedinhibitorysignal.J.Exp.Med. 187,13551360(1998). Abstract/FREEFullText

    22. A. Nakamura,E. Kobayashi,T. Takai,ExacerbatedgraftversushostdiseaseinPirb/mice.Nat.Immunol. 5,623629(2004). CrossRef Medline WebofScience GoogleScholar

    23. J.D. Adelson,G.E. Barreto,L. Xu,T. Kim,B.K. Brott,Y.B. Ouyang,T. Naserke,M. Djurisic,X. Xiong,C.J. Shatz,R.G. Giffard,NeuroprotectionfromstrokeintheabsenceofMHCIorPirB.Neuron73,11001107(2012). CrossRef Medline WebofScience GoogleScholar

    24. M. Djurisic,G.S. Vidal,M. Mann,A. Aharon,T. Kim,A. FerraoSantos,Y. Zuo,M. Hbener,C.J. Shatz,PirBregulatesastructuralsubstrateforcorticalplasticity.Proc.Natl.Acad.Sci.U.S.A. 110,2077120776(2013). Abstract/FREEFullText

    25. Y. Ruzankina,C. PinzonGuzman,A. Asare,T. Ong,L. Pontano,G. Cotsarelis,V.P. Zediak,M. Velez,A. Bhandoola,E.J. Brown,DeletionofthedevelopmentallyessentialgeneATRinadultmiceleadstoagerelatedphenotypesandstemcellloss.CellStemCell 1,113126(2007). CrossRef Medline

    WebofScience GoogleScholar

    26. S. Chowdhury,J.D. Shepherd,H. Okuno,G. Lyford,R.S. Petralia,N. Plath,D. Kuhl,R.L. Huganir,P.F. Worley,Arc/Arg3.1interactswiththeendocyticmachinerytoregulateAMPAreceptortrafficking.

    BacktoTop

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 11/12

    Neuron 52,445459(2006). CrossRef Medline WebofScience GoogleScholar

    27. T.K. Hensch,M. Fagiolini,N. Mataga,M.P. Stryker,S. Baekkeskov,S.F. Kash,LocalGABAcircuitcontrolofexperiencedependentplasticityindevelopingvisualcortex.Science 282,15041508(1998).

    Abstract/FREEFullText

    28. P.O. Kanold,Y.A. Kim,T. GrandPre,C.J. Shatz,CoregulationofoculardominanceplasticityandNMDAreceptorsubunitexpressioninglutamicaciddecarboxylase65knockoutmice.J.Physiol. 587,28572867(2009). Abstract/FREEFullText

    29. V. Porciatti,T. Pizzorusso,L. Maffei,ThevisualphysiologyofthewildtypemousedeterminedwithpatternVEPs.VisionRes. 39,30713081(1999). CrossRef Medline WebofScience GoogleScholar

    30. S. Schuett,T. Bonhoeffer,M. Hbener,Mappingretinotopicstructureinmousevisualcortexwithopticalimaging.J.Neurosci. 22,65496559(2002). Abstract/FREEFullText

    31. M. Tohmi,H. Kitaura,S. Komagata,M. Kudoh,K. Shibuki,Enduringcriticalperiodplasticityvisualizedbytranscranialflavoproteinimaginginmouseprimaryvisualcortex.J.Neurosci. 26,1177511785(2006).

    Abstract/FREEFullText

    32. M. Tohmi,K. Takahashi,Y. Kubota,R. Hishida,K. Shibuki,Transcranialflavoproteinfluorescenceimagingofmousecorticalactivityandplasticity.J.Neurochem. 109(Suppl.1),39(2009). CrossRef

    Medline WebofScience GoogleScholar

    33. C.M. William,M.L. Andermann,G.J. Goldey,D.K. Roumis,R.C. Reid,C.J. Shatz,M.W. Albers,M.P. Frosch,B.T. Hyman,SynapticplasticitydefectfollowingvisualdeprivationinAlzheimersdiseasemodeltransgenicmice.J.Neurosci. 32,80048011(2012). Abstract/FREEFullText

    34. J.Z. Tsien,D.F. Chen,D. Gerber,C. Tom,E.H. Mercer,D.J. Anderson,M. Mayford,E.R. Kandel,S. Tonegawa,Subregionandcelltyperestrictedgeneknockoutinmousebrain.Cell 87,13171326(1996). CrossRef Medline WebofScience GoogleScholar

    35. N. Ramanan,Y. Shen,S. Sarsfield,T. Lemberger,G. Schtz,D.J. Linden,D.D. Ginty,SRFmediatesactivityinducedgeneexpressionandsynapticplasticitybutnotneuronalviability.Nat.Neurosci. 8,759767(2005). CrossRef Medline WebofScience GoogleScholar

    36. L. Madisen,T.A. Zwingman,S.M. Sunkin,S.W. Oh,H.A. Zariwala,H. Gu,L.L. Ng,R.D. Palmiter,M.J. Hawrylycz,A.R. Jones,E.S. Lein,H. Zeng,ArobustandhighthroughputCrereportingandcharacterizationsystemforthewholemousebrain.Nat.Neurosci. 13,133140(2010). CrossRef Medline

    WebofScience GoogleScholar

    37. S. Davis,N.W. Gale,T.H. Aldrich,P.C. Maisonpierre,V. Lhotak,T. Pawson,M. Goldfarb,G.D. Yancopoulos,LigandsforEPHrelatedreceptortyrosinekinasesthatrequiremembraneattachmentorclusteringforactivity.Science 266,816819(1994). Abstract/FREEFullText

    38. R.J. Cabelli,D.L. Shelton,R.A. Segal,C.J. Shatz,BlockadeofendogenousligandsoftrkBinhibitsformationofoculardominancecolumns.Neuron 19,6376(1997). CrossRef Medline WebofScience

    GoogleScholar

    39. J. Holash,S. Davis,N. Papadopoulos,S.D. Croll,L. Ho,M. Russell,P. Boland,R. Leidich,D. Hylton,E. Burova,E. Ioffe,T. Huang,C. Radziejewski,K. Bailey,J.P. Fandl,T. Daly,S.J. Wiegand,G.D. Yancopoulos,J.S. Rudge,VEGFTrap:AVEGFblockerwithpotentantitumoreffects.Proc.Natl.Acad.Sci.U.S.A. 99,1139311398(2002). Abstract/FREEFullText

    40. H. Matsushita,S. Endo,E. Kobayashi,Y. Sakamoto,K. Kobayashi,K. Kitaguchi,K. Kuroki,A. Sderhll,K. Maenaka,A. Nakamura,S.M. Strittmatter,T. Takai,DifferentialbutcompetitivebindingofNogoproteinandclassImajorhistocompatibilitycomplex(MHCI)tothePIRBectodomainprovidesaninhibitionofcells.J.Biol.Chem. 286,2573925747(2011). Abstract/FREEFullText

    41. S.B. Hofer,T.D. MrsicFlogel,T. Bonhoeffer,M. Hbener,Priorexperienceenhancesplasticityinadultvisualcortex.Nat.Neurosci. 9,127132(2006). CrossRef Medline WebofScience GoogleScholar

    42. E.I. Knudsen,W. Zheng,W.M. DeBello,Tracesoflearningintheauditorylocalizationpathway.Proc.Natl.Acad.Sci.U.S.A. 97,1181511820(2000). Abstract/FREEFullText

    43. B.A. Linkenhoker,C.G. vonderOhe,E.I. Knudsen,Anatomicaltracesofjuvenilelearningintheauditorysystemofadultbarnowls.Nat.Neurosci. 8,9398(2005). CrossRef Medline WebofScience

    GoogleScholar

    44. S.B. Hofer,T.D. MrsicFlogel,T. Bonhoeffer,M. Hbener,Experienceleavesalastingstructuraltraceincorticalcircuits.Nature 457,313317(2009). CrossRef Medline WebofScience GoogleScholar

    45. G. Feng,R.H. Mellor,M. Bernstein,C. KellerPeck,Q.T. Nguyen,M. Wallace,J.M. Nerbonne,J.W. Lichtman,J.R. Sanes,ImagingneuronalsubsetsintransgenicmiceexpressingmultiplespectralvariantsofGFP.Neuron 28,4151(2000). CrossRef Medline WebofScience GoogleScholar

    46. K.M. Harris,F.E. Jensen,B. Tsao,Threedimensionalstructureofdendriticspinesandsynapsesinrathippocampus(CA1)atpostnatalday15andadultages:Implicationsforthematurationofsynapticphysiologyandlongtermpotentiation.J.Neurosci. 12,26852705(1992). Abstract

    47. D.E. Mitchell,K.R. Duffy,Thecasefromanimalstudiesforbalancedbinoculartreatmentstrategiesforhumanamblyopia.OphthalmicPhysiol.Opt. 34,129145(2014). CrossRef Medline GoogleScholar

    48. F. Sengpiel,Experimentalmodelsofamblyopia:Insightsforpreventionandtreatment.Strabismus19,8790(2011). CrossRef Medline GoogleScholar

    49. K.L. Montey,E.M. Quinlan,Recoveryfromchronicmonoculardeprivationfollowingreactivationofthalamocorticalplasticitybydarkexposure.Nat.Commun. 2,317(2011). CrossRef Medline

    GoogleScholar

    50. M. Beurdeley,J. Spatazza,H.H. Lee,S. Sugiyama,C. Bernard,A.A. DiNardo,T.K. Hensch,A. Prochiantz,Otx2bindingtoperineuronalnetspersistentlyregulatesplasticityinthematurevisualcortex.J.Neurosci. 32,94299437(2012). Abstract/FREEFullText

  • 1/31/2015 BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia

    http://stm.sciencemag.org.ezproxy.lib.usf.edu/content/6/258/258ra140.long 12/12

    51. T. Xu,X. Yu,A.J. Perlik,W.F. Tobin,J.A. Zweig,K. Tennant,T. Jones,Y. Zuo,Rapidformationandselectivestabilizationofsynapsesforenduringmotormemories.Nature 462,915919(2009). CrossRef

    Medline WebofScience GoogleScholar

    52. G. Yang,F. Pan,W.B. Gan,Stablymaintaineddendriticspinesareassociatedwithlifelongmemories.Nature 462,920924(2009). CrossRef Medline WebofScience GoogleScholar

    53. D.G. Southwell,R.C. Froemke,A. AlvarezBuylla,M.P. Stryker,S.P. Gandhi,Corticalplasticityinducedbyinhibitoryneurontransplantation.Science 327,11451148(2010). Abstract/FREEFullText

    54. F.V. Akbik,S.M. Bhagat,P.R. Patel,W.B. Cafferty,S.M. Strittmatter,AnatomicalplasticityofadultbrainistitratedbyNogoReceptor1.Neuron 77,859866(2013). CrossRef Medline WebofScience

    GoogleScholar

    55. A. Zemmar,O. Weinmann,Y. Kellner,X. Yu,R. Vicente,M. Gullo,H. Kasper,K. Lussi,Z. Ristic,A.R. Luft,M. RioultPedotti,Y. Zuo,M. Zagrebelsky,M.E. Schwab,NeutralizationofNogoAenhancessynapticplasticityintherodentmotorcortexandimprovesmotorlearninginvivo.J.Neurosci. 34,86858698(2014). Abstract/FREEFullText

    56. K.L. Montey,N.C. Eaton,E.M. Quinlan,Repetitivevisualstimulationenhancesrecoveryfromsevereamblyopia.Learn.Mem. 20,311317(2013). Abstract/FREEFullText

    57. J.Z. Tsien,Behavioralgenetics:Subregionandcelltyperestrictedgeneknockoutinmousebrain.Pathol.Biol.(Paris)46,699700(1998). Medline GoogleScholar

    58. Acknowledgments:WethankN.SoteloKury,P.Kemper,andC.Chechelskiforlogisticsandmousebreeding,andG.Vidalformicroscopyadviceandtraining.WethankB.Q.ZhuangandL.HsiehWilsonattheCaliforniaInstituteofTechnologyforthesPirBplasmid,andJ.Schafferforillustrating(Fig.2A.WealsothankL.Luo,E.Knudsen,andT.Clandininforhelpfulfeedback.Funding:ThisprojectwassupportedbyNIHgrantsEY02858andMH07166,theMathersCharitableFoundation,andtheRosenbergFamilyFoundationtoC.J.S.NIHgrantEY018861toY.D.NationalScienceFoundationGraduateResearchFellowshipstoD.N.B.andJ.D.A.andNationalDefenseScienceandEngineeringFellowshiptoJ.D.A.R.W.S.receivedaBioXSummerUndergraduateResearchFellowship.Authorcontributions:D.N.B.andC.J.S.proposedandoutlinedtheexperimentalplan.D.N.B.performedallexperimentsinvolvingtamoxifeninduceddeletionD.N.B.andR.W.S.performedminipumpimplantationsurgeriesandsubsequentanalysisJ.D.A.,R.W.S.,andM.D.performedandanalyzedthestudiesofCamKIIaCrePirBflox/floxvisualcortex.S.Z.performedtheVEPrecordingsandanalysis,andY.D.supervisedthatcollaboration.H.L.performedwholecellrecordingsofmEPSCsinL5neurons.M.D.characterizedanewbatchofthePirBantibodyusedhereandmadesubstantialintellectualcontributionstotheproject.J.S.createdthefloxedPirBandPirB/mouseintheShatzlaboratory.D.N.B.andC.J.S.wrotethemanuscriptandreviewedalldatacollectionandanalysis.Competinginterests:C.J.S.andJ.S.areinventorsonU.S.Patentapplication12/087799assignedtothePresidentandFellowsofHarvardCollegeonCompositionsandmethodsforenhancingneuronalplasticityandregeneration.Theotherauthorsdeclarethattheyhavenocompetinginterests.

    Receivedforpublication24July2014.Acceptedforpublication17September2014.Copyright2014,AmericanAssociationfortheAdvancementofScience

    Citation:D.N.Bochner,R.W.Sapp,J.D.Adelson,S.Zhang,H.Lee,M.Djurisic,J.Syken,Y.Dan,C.J.Shatz,BlockingPirBupregulatesspinesandfunctionalsynapsestounlockvisualcorticalplasticityandfacilitaterecoveryfromamblyopia.Sci.Transl.Med.6,258ra140(2014).