Brainmap Seminar October 13 2010 - Center for Biomedical...

Post on 22-Jul-2020

2 views 0 download

transcript

Eva‐Maria Ratai

Department of Radiology / Neuroradiology

Athinoula

A. Martinos

Center for Biomedical Imaging

MGH / Harvard Medical School

Brainmap

Seminar ‐

October 13th

2010

HIV infection/AIDS

Worldwide around 33 million people were living with HIV at the end of 2008

In the US ~1 Million people have been infected with HIV375,000 people have died from the diseaseHIV infection/AIDS is a leading cause of death for young adults in the US

Estimated HIV/AIDS prevalence among  young adults

http://en.wikipedia.org/wiki/File:HIV_Epidem.png

Estimated number of People living  with HIV/AIDS

http://en.wikipedia.org/wiki/File:People_living_with_HIV_AIDS_world_map.PNG

HIV Time Course

http://en.wikipedia.org/wiki/File:Hiv‐timecourse.png

NeuroAIDS  or AIDS Dementia Complex (ADC)

or HIV‐associated Dementia (HAD)

First defined as a clinical complication of AIDS in 1986

The clinical manifestations cognitive impairment

loss of motor function

behavior deficits

and physical symptoms

20% ‐30% of HIV‐infected patients developed mild neurocognitive disorder and 10‐20% developed frank dementia

Navia

et al, Ann Neurol 1996

Pathology

Within days, the virus can be detected in the brain

Pathological findings Monocytes are infected by the virus 

infiltration of monocyte‐derived macrophages into the brain

inflammation: HIV encephalitis (HIVE)

microgliosis

reactive astrocytosis

neuronal atrophy and loss 

NeuroAIDS in the ART era

ART has reduced the incidence of HADLess severe manifestations of the disease persist Its prevalence is again increasing as patients have a longer life expectancy As the virus gains resistance to ART, the incidence of severe neurodegeneration will increase The problem is exacerbated by the limited penetration of antiretroviral agents into the CNS Development of effective therapies for HIV related CNS disease is hindered by incomplete understanding of the pathogenesis

Nath

et al. Int

Rev Psychiatry 2008; McArthur et al. J Neuroimmunol

2004;Sacktor

et al. J Neurovirol

2002

Neuropathogenesis – Trojan Horse Mechanism

Adapted from Kaul

et al. Nature 2001 

HIV Entry into the Brain and the Role  of the Periphery

ART has reduced the incidence of CNS diseaseControlling HIV replication in the periphery limits the development of HIV dementia 

HIV dementia typically does not present before onset of AIDS

→ A threshold level of virus is required to develop disease

Factors in the periphery are important triggers leading to dementia

CD14+CD16+ monocytes are predictive of HADPulliam et al. Lancet 1007

Potential Routes of Treatment

Based on this mechanism there are three approaches by  which AIDS in the brain can be prevented: 

1) reduce the virus in the plasma using antiretroviral therapy (ART)

2) prevent HIV from entering the brain, and/or 

3) use adjunct therapies that act in the brain to provide neuroprotection

How do we monitor neuronal  injury or neuroprotection?

Neuroimaging techniques MRI and opportunistic infections

Toxoplasmosis

Progressive multifocalleukoencephalopathy

(PML) Primary CNS Lymphoma

MRI and neuroAIDS

Morphological alterations Hyperintensities in  white  matter (and  basal  ganglia)  on  T2 weighted images

Cortical atrophy at  later stages of the disease

Functional imaging (MRS, DTI and pMRI)  can  reveal  abnormalities before structural atrophy or focal CNS lesions are visible

HIVencephalitis

Normal

MR SpectroscopyBiochemical information

Representative MR spectrum of a normal human brain @ 3T NAA

Glu/Gln

ChoCr

MI Lipids & Macromolecules

Detectable metabolitesN‐Acetyl Aspartate (NAA) at 2 ppm: produced in neurons, majority found in neurons in the adult brain 

Marker of neuronal density and viability

Osmolyte,  Precursor of NAAG, Source of acetate for myelin lipid synthesis, facilitates energy metabolism in neuronal mitochondria

↓ NAA (NAA/Cr) in patients with advanced neurocognitive symptoms 

Choline‐containing compounds (Cho) at 3.2 ppm: related to cell/lipid membrane metabolism

↑ Cho/Cr in HIV‐infected patients is possibly associated with an immune response that includes cerebral inflammation or gliosis

Myo‐inositol (MI) at ~3.6 ppm: osmolyte located primarily in glia, ↑ in MI/Cr ‐ a marker of gliosis or inflammation

Tracey, et al.

Neurology 1996

*

*

Cho

Before NAA

Chang & ErnstChang at al. 1999 Neurology

Frontal white matter

Healthy control subject

HIV+ minor

motor cognitive disorder

HIV+ mild dementia

HIV+ moderate 

dementia

Animal ModelsGreater flexibility to explore the questions concerning HIV neuropathogenesis in a controlled manner and to monitor treatment response 

FIV infection of cats

Transgenic HIV mice models and SCID mice models [injection of HIV‐1 infected macrophages into the brains of severe combined immunodeficient mice]

SIV macaque models

SIV Macaque Model of NeuroAIDS

Closest relative to HIV

Infects CD4+ macrophages, lymphocytes & microglia

AIDS similar to humans

Same neuropathology SIVE = HIVEAccumulation of viral-laden perivascular macrophages and multinucleated giant cells, astrogliosis, microgliosis, and neuronal injury1H MRS changes are very similar to those found in humans with HIV-associated neurocognitive disorders

To study the acute phase of infection15 animals were inoculated with SIVmac251 

MRI and 1H‐MRS were performed on a clinical 1.5 T GE Scanner and monitored for the first month of infection

MR spectra were obtained from the frontal cortex, white matter semiovale and basal ganglia with a voxel size of 3.4 cm3 using a PRESS sequence (TE/TR = 35/3000) 

Spectra were processed off‐line using a SAGE‐GE

SIV Macaque in vivo

MRS: Acute Changes 

Greco et al. MRM 2004; Ratai et al. BMC Neuroscience 2009

NAA/Cr at 13 dpi↑

Cho/Cr at 11 dpiand ↓

at 27 dpi↑

MI/Cr at 11,13 and 25 dpi

0 5 10 15 20 25 30101

102

103

104

105

106

107

Pla

sma

Vira

l Loa

d (E

q./m

L)

Days Post Infection

MRS changes in frontal cortex (FC)Plasma Viral Loads

0 5 10 15 20 25 30

-0.2

-0.1

0.0

0.1

0.2

0.3 *

*

**

% c

hang

es M

etab

olite

/Cr

Days Post Infection (dpi)

NAA/Cr Cho/Cr MI/Cr

*

Peak viremia

at 11 dpi

Synaptophysin(presynaptic

integrity)

Altered synaptic transmission

Cresyl Violet(stains neurons)

Control SIV 14 days pibar represents 25 microns

IHC: Acute Infection – neuronal  dysfunction  

160 180 200 220 240 260 280 300 320 3400.5

0.6

0.7

0.8

0.9

1.0

1.1

NA

A/C

r Mea

sure

d Ex

-viv

o

Acute Infection: Correlation between  NAA/Cr and SYN

rs = 0.72 p = 0.013

Lentz et al, Radiology 2005

IHC: Acute Infection –

astroglial activation  

↑ Glial fibrillary acidic protein (GFAP) are  indicative of astrogliosisPeaks of all three measures were attained at 11–12 days, coincident with peak viremia. 

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

120

140

160

180

200

220

240

260

280

-5 0 5 10 15 20 25 30

MI/Cr In vivoCho/Cr In vivo GFAP

Met

abol

ites

Mea

sure

d by

In v

ivo

1H M

RSG

FAP

Days Post Infection (DPI)

Changes in GFAP and in vivo Cho/Cr and MI/Cr

after SIV infection

Kim et al, AJNR 2005

Conclusions: Acute Changes –

traditional  Model 

↑ Cho and MI may reflect inflammation microglial/astroglial activation 

↓ NAA, evidence of neuronal injury Following immunological control of viremia, decline in Cho to levels below baseline 

Monitored animals longitudinally (2 years) ‐ variable metabolic response over time course of infection due low incidence of SIVE

The accelerated SIV Model of  neuroAIDS

Traditional SIV macaque model:~ 25% develop SIVE

progression to terminal AIDS may take several years

To accelerate AIDS progression, CD8+ T lymphocytes were depleted

permits the virus to replicate

85% of persistently CD8-depleted animals develop SIVE

AIDS and SIVE with months

MethodsFour rhesus macaques were inoculated with SIVmac251

CD8 lymphocytes were depleted by IV administration of cM‐T807 at days 6, 8 and 12 pi

MRI/MRS before infection and ~every 2 weeks thereafter until the endpoint of the study (~ 10 wpi).  

Blood samples were drawn for plasma and CSF viral load analyses and for flow cytometry and FACsorting

Post mortem pathology and IHC

Results ‐

CD8 depletion viral loads,   and clinical findings

All animals were persistently CD8 lymphocytes depleted (> 28days) 

-7 0 7 14 21 28 35 42 49 56 63 70101

102

103

104

105

106

107

108

Pla

sma

Vira

l Loa

d (E

q./m

L)

Days Post Infection

Plasma VL 

Within 10 weeks of infection –AIDS

Histopathological examination revealed severe SIVE

δ

/ ppm

SIV infection + CD8 depletion results in  rapid neuronal injury (NAA/Cr)

0 20 40 60 801.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

**N

AA

/Cr

FC

Days Post Infection

NAA/Cr in FC

Before infection 10 week post infection

ANOVA: p = 0.02

NAA/CrFrontal Cortex

In vivo MRS pre & 10 wks pisingle macaque

Williams et al, Journal of Clinical investigation 2005

Neuronal injury  confirmed post mortem

4 controls vs.4 SIV+/CD8-

(~10 wks pi)

C and D: Cresyl

violetsevere neuronal cortical damage

E and F: MAP-2 (marker for post synaptic integrity)decreased MAP-2 expression

Controls SIV+ CD8-

Expansion and Infection of  CD14+CD16+ monocyte

subsets

Normally, majority of monocytes are CD14+CD16‐ and 10% CD16+

Following viral infection and inflammation # of activated monocytes(CD14+CD16+ ) increases

These CD14+CD16+ and CD14loCD16+ monocyte subset traffic the virus across the BBB

CD14loCD16+

0 10 20 30 40 50 600

10

20

30

40

50

60

70

80

***

****

**

% o

f Mon

ocyt

es

Days Post Infection

CD14+ CD16+ CD14lo CD16+**

CD68+

CD16+

SIVnef

Immunohistochemistry

Perivascular macrophages are activated and CD16+

SIV+/CD8- Uninfected control

Potential Routes of Treatment

Based on this mechanism there are three approaches by  which AIDS in the brain can be prevented: 

1) reduce the virus in the plasma using antiretroviral therapy (ART)

2) prevent HIV from entering the brain, and/or 

3) use adjunct therapies that act in the brain to provide neuroprotection

Combination ART in Accelerated AIDS  Model

4 animals underwent combination ART at 4 weeks pi

cART

consisted of PMPA and RCV that do NOT

penetrate CNS

PMPA: (R)‐9‐(2‐phosphonylmethoxypropyl) adenine 

RCV: racemic

β‐2′,3′‐dideoxy‐5‐fluoro‐3′‐thiacytidine

SIV+, CD8‐

Macaque Viral Load  Without and With CART

Plasma viral load dropped 1‐2 log units following cART therapy on day 28 post infection

-10 0 10 20 30 40 50 60 70101

102

103

104

105

106

107

108

Vira

l Loa

d (C

opy

eq./m

L)

Days Post Infection

Untreated cART tretaed

cART

0 10 20 30 40 50 600

5

10

15

20

25

30

35

cART

CD

14+C

D16

+Days Post Infection

Untreated cART treated

Reduction in CD14+CD16+ monocytes with CART

Plasma Viral Load Activated Monocytes

Neuronal Recovery with cART

CART results in reversal of neuronal injury

0 10 20 30 40 50 601.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

CART

NA

A/C

r FC

Days Post Infection

NAA/Cr (FC) Untreated NAA/Cr (FC) Treated with CART

FC WM BG0.6

0.8

1.0

1.2

1.4

1.6

1.8

p = 0.015

p = 0.04

NAA

/Cr

Untreated Treated

NAA/Cr levels in the frontal cortex NAA/Cr in treated and untreated cohorts at last scans before sacrifice

CD68+

CD16+

SIVnef

Immunohistochemistry with cARTSIV+/CD8- Uninfected control

SIV+/CD8-cART

CART decreases virus burden in brain 

Frontal Cortex

Real time RT-PCR

Annamalai

et al, Am J Pathol. 2010

Putamen

Neuronal Recovery by CART is Accompanied by Reversal of Astrocytosis

IHC supports CART’s ability to reverse of neuronal injury and astrocytosis

Ratai et al., ISNV, Miami 2009

SYN MAP-2 GFAP0

50

100

150

200

250

300

350

**

**

*

Opt

ical

Den

sity

per

mm

2

Uninfected CD8- Controls SIV+/CD8- @ 4 wpi SIV+/CD8- @ 8 wpi CART

*

Conclusions

Activated CD14CD16 monocytes traffic virus into the CNSEven non-CNS penetrating drugs control viral infection and prevent activation of monocytes, thereby reducing neuronal injuryThis provides explanation why AZT (even inflectional therapies) reduced presence of dementia so quickly.

Potential Routes of Treatment

Based on this mechanism there are three approaches by  which AIDS in the brain can be prevented: 

1) reduce the virus in the plasma using antiretroviral therapy (ART), 

2) prevent HIV from entering the brain, and/or 

3) use adjunct therapies that act in the brain to provide neuroprotection 

Minocycline

Minocycline (MN), a well-tolerated, inexpensive, anti-inflammatory, tetracycline-type antibiotic crossed BBB

Advantageous effects against inflammation, microglial activation, apoptotic cell death, and viral production in an accelerated macaque model of neuroAIDS

Zink et al, JAMA 2005

ObjectiveMinocycline’s ability to prevent neuroAIDS

1. Neuroprotective effect: in vivo MRS NAA/Cr and post mortem IHC Synaptophysin and Microtubule-associated protein 2 (MAP2)

2. Glial activation: IBA1 (calcium binding adaptor molecule 1) and Glial fibrillary acidic protein (GFAP), markers for microglial and astroglial activation

3. Anti-viral effects in blood, CSF and brain by PCR

4. CD14CD16 monocyctes (responsible for viral trafficking into CNS)

Minocycline’s Neuroprotective  effect

Inhibiting the activation of microglia, inhibits inflammation

11 rhesus macaque studied until 8 weeks post infection (wpi) 7 animals minocycline (4 mg /kg orally) starting 4 wpi

MRS, 3 Tesla PRESS (TE/TR=30/2500) in 4 brain regions PC, FC, BG and WM (LC Model)Flow Cytometry

4 wpi 8 wpi

SIV+/ CD8-Untreated

SIV+/ CD8-MN treated 4 wks MN

MRS MRS MRS MRS MRS MRSSacrifice

Sacrifice

4

7SIV+CD8-

Study Design 

CD8 T lymphocyte Depletion and  Cohort Designation

-10 0 10 20 30 40 50 60

0.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

CD

8 ly

mph

ocyt

e co

unt

DPI

M5207 M5407 M7207 M1308 M7307 M1508 M1608 M3408 M7407 M7507 M1408

SIV+CD8-

Untreated

MN long-term CD8

MN short-term CD8

Anti CD8

Viral burden

Ratai et al. PLoS

ONE 2010

Minocycline treated animals reveal  higher NAA/Cr at their last scans

Neuroprotection Confirmed by  quantitative Neuropathology

* *

Minocycline normalizes astrogliosis

and  ameliorates microgliosis

GFAP: marker of astrogliosis IBA-1: marker for microglial activation

*P = 0.07

Minocycline reduces  activation of monocytes

Activated CD14+CD16+ monocyte traffic virus into the CNS

Campbell et al. Journal of Infectious disease 2010 submitted

0 10 20 30 40 50 60 70

0

100

200

300

400

500

600

700CD14+CD16- Monocytes

Abs

. CD

14+C

D16

- Mon

ocyt

es /

uL

Days Post Infection

MN

Minocycline reduces  activation of monocytes

Activated CD14+CD16+ monocyte traffic virus into the CNS

Campbell et al. Journal of Infectious disease 2010 submitted

0 10 20 30 40 50 60 70

0

50

100

150

200

250

300

350Activated CD14+CD16+ Monocytes

Abs

. CD

14+C

D16

+ M

onoc

ytes

/ uL

Days Post Infection

MN0 10 20 30 40 50 60 70

0

20

40

60

80

100Activated CD14loCD16+ Monocytes

Abs

. CD

14lo

CD

16+

Mon

ocyt

es /

uL

Days Post Infection

MN

Activated monocytes

correlate inversely  with neuronal marker NAA/Cr

R = -0.72p = 0.001

For the other one

R = -0.71p = 0.0006

Viral burden in the CNS

4

5

6P=0.0057

P=0.050

VL Brain (FC)

Untreated MN(short-term)

MN(persist.)

Log

VL

Bra

in[c

opie

s / g

]

4.0 4.5 5.0 5.5 6.070

75

80

85

90

95

100

105

110

115

Untreat 8wk Untreat 6wk MN pers depl MN short-term depl

Log VL Brain (FC) (copies/g)

P=0.0008R

ρ=-0.77

NA

A/C

r FC

(%)

Correlation between NAA/Cr (FC) and Brain VL (FC)

Conclusions

Minocycline was found to be neuroprotectivePossible mechanisms towards MN’s neuroprotection:

1) reduction of inflammatory response by downregulationof glial cell activation in the brain2) reductions of plasma, CSF and brain viral burden3) a reduction in a subset of monocytes considered to be responsible for viral infection of the CNS by cell trafficking mechanisms

Conclusions

Better profile for all neuro-inflammation markers in the short-term depleted animals that had also lower plasma viral load

Best strategy to treat neuroAIDS is by the use of antiretroviral therapy in combination with minocycline.

Future Studies

How does MN reduce  monocyte activation?Mechanistic Studies 

Prevent HIV from entering the brainNext experiment: use anti‐VLA‐4 antibody to block monocyte/T cell traffic into CNS

Move to high‐resolution MRSI and (higher field strength)

Increased Signal to Noise Ratio at  higher Magnetic Field Strengths

fieldmagneticBratioicgyromagnet

SpinsofNumberN

BNSignal

V

V

::

:

0

02

γ

γ ⋅⋅∝

Linear increase in signal with field strengthif T1 and T2 relaxation times,coil and system losses and RF penetration effects, do not change significantly

1.5T

3T

7T

High Resolution MRSI at 7T

VOI = 4 cm

VOI =3.5 cm

VO

I=4

cm

1.5 cmFOV = 6 cm, ×16 CSI

FOV = 6 cm, ×16 CSI

FOV

=6

cm, ×

16 C

SI

×4 H

SI

a b

Gonen at al, MRM 2008

3D MRSI pulse sequences with 2D (CSI) 16 x 16 phase encoding1D Hadamard spectroscopic imaging (HSI) resulting in 4 slabs in zisotropic spatial resolution at (0.375 cm)3=0.05 cm3 in 25 min.

High Resolution MRSI

1.52.02.53.03.5 ppm

NAACho Cr NAA

Cho

Cr6 cm

2.6 cm

3.4

cm0.05 cm3

Resulting in these spectra that still show good SNR at resolution of 0.05

cm3 or 50 μL

axial metabolic maps

O 3

Higher spectral resolution

STEAM: TE/TR=15/3000; NA: 256

MRS@7.0T

Acknowledgements

Jeffrey P. BombardierRobert FellRobert FullerJane GrecoReza HakimelahiElkan

HalpernJulian HeChan‐Gyu

JooJohn KimVallent

LeeMargaret R. LentzKatharine TurkR. Gilberto González

Lakshman

Annamalai

Angela Carville

Elizabeth Curran 

Ronald Desrosier

Mike O’Connell

Shawn O’Neil 

Susan V. Westmoreland

Patrick Autissier

Tricia Burdo

Jennifer Campbell

Kenneth C. Williams

Eliezer

Masliah

NIH grants R21NS059331 (EMR), R01NS050041 

(RGG), R01NS040237 (KW), R01NS37654 (KW), 

R01MH62962 (EM), MH59754 (EM), MH62512 (EM), 

and RR00168 (NEPRC), and P41RR14075 

Jeffrey LifsonMike Piatak

Keith ReimanR24 RR016001, N01 

AI040101

Shannon LuboyeskiElisabeth Moeller Joanne Morris

Oded

GonenSongtao

Liu