Citizen science and web-based modelling tools for managing ...€¦ · Citizen science based...

Post on 10-Oct-2020

0 views 0 download

transcript

Citizen science and web-based modelling tools for managing freshwater

Introduction

Mountainsareoftenreferredtoas‘watertowers’astheyprovidefreshwatertopeopleinuplandanddownstreamareas1,2.RiversoriginatingfromtheHimalayascarryavastwealthofwater-relatedbenefits(alsodescribedasecosystemservices)thatdirectlyunderpinlocallivelihoodsandthewellbeingofsocietiesintheregion.

FreshwaterisaveryscarceresourceintheHimalayanuplands.Agriculturalpracticesdependontimelyrainandsnowfallintheuppermountains.Theresultingwateravailabilityinlocalstreamsiscrucialtomaintaininglocallivelihoods.Theregion’swatersupplyisalsohighlyvulnerabletonaturaldisastersandclimatechange3.

Inthefaceofthesewatersecuritychallenges,itisimportanttoensurewaterissuppliedtohouseholdsinsufficientquantityandquality,aswellasmaintainingagriculturalproductionand

safeguradinghabitatsandtheenvironment4.TheseprioritiesarebecomingevenmoreimportanttotheHimalayanregioninthecontextofunprecedentedlanduseandclimatechangeimpacts.

However,asignificantshortageofusefuldataandinformationaboutthesewatersystemshasseriouslyunderminedtheirsustainableuseinthelocalarea.Asaresult,changinghydrologicalcycleandclimaticpatternsmaybepoorlyreflectedinwaterandlandresourcesmanagementpractices.InahighlyuncertainandvulnerableenvironmentsuchastheHimalayas,involvingcitizensinmonitoringwaterresources,landusechangesandresourcemanagementpracticescancreatenewknowledgethatdirectlysupportslocaldecisionmaking.Theuseofmappingandmodellingtoolsatappropriatespatialandtemporalscales5isvitaltounderstandingthecurrentstateofwaterandlandresourcesaswellasthefuturethreatstheyface.Inaddition,vulnerabilityassessmentscanhelptargetactivitiestoimproveresilience.

GranthamInstituteBriefingnoteNo4March2017

DR BHOPAL PANDEYA AND DR WOUTER BUYTAERT

The headlines

• Involvinglocalcommunitiesinmonitoringwaterandlandresources–so-calledcitizenscience–cancreatenewdataandknowledge,improveconventionaldecisionmakingandoptimisewaterresourcebenefits.

• Theuseoflow-costhydrologicalsensorsinNepalallowedlocalstakeholderstogenerateusefuldataonfreshwaterresourcesinpartnershipwithscientists,andtoapplythisdatamoreeffectivelyinparticipatorydecisionmaking.

• Itisimportanttousetherightmappingandmodellingmethodsforecosystemservices(thebenefitspeopleobtainfromecosystems)sothatinformationonserviceproduction,distributionandconsumptionisexpressedataspatialscalethatisrelevanttodecisionmaking.Thesemethodsareevenmoreimportantinregionswherelimiteddataisavailable.

• Theintegrationofappropriatecitizensciencepracticesaswellasmappingandmodellingtoolsintowaterandlandresources-baseddecisionmakingcouldfacilitatesustainabledevelopmentactivities,particularlyintheHimalayanregion.

Citizen science and web-based mapping and modelling tools in decision making

Publicparticipationinenvironmentaldatacollectionhasalonghistory.However,recentadvancesinaffordabletechnologiessuchaslow-costmonitoringequipment6,theavailabilityofopen-sourcedatabasesandmodellingtools7,participatorymappingofresources8andgoodcommunicationnetworkshaveexpandedthepotentialtoengagecitizensintheseactivities9,10.Thereisalsountappedpotentialtobuildtransformativeresearchonthelinksbetweenhumanactivityandnaturalsystems11.Citizensciencecouldthereforebridgethecurrentscience-policyimpasseandensurewaterresourcesaremanagedmoreeffectively.

Inwaterresourcesmanagementpolicy,anumberofkeyquestionsareconstantlyraised,suchasdefiningfreshwaterresourcesservicesatappropriatespatialandtemporalscalesandtheinfluenceofeco-hydrologicalprocessesinwaterservicesproduction.Thesequestionsleadtoinquiriesaboutthetrendsandflowsofservicesproductionovertimeandspaceandhowhumaninterventionshaveaffectedthem.Toanswerthesequestions,adetailedvaluationofecosystemservicesincludingmappingandmodellingofservicesisessential.Thisincludestheapplicationofrelevanttechnologies,forexample,theuseoflow-costhydrologicalmonitoringsensorsincoordinationwithlocalstakeholdersandordinarycitizens.Thegoalofvaluationexercisesistoprovideinformationneededtosupportpolicyanddecisionmaking.Howeverthereisaprofoundgapofdataandknowledge,especiallyatalocalscaleandindata-scarcemountainousregions.Aninnovativeapproachofcitizen-centricdatagatheringactivitiesandknowledgeco-generationcanbeplacedattheheartofthewaterresourcesmanagementinthoseareas12(seefigure1).

Sincewaterresourcesbasedservicesarespatiallydistributed,theircurrentflowsandtrendscanbebetterdescribedbyusingappropriatemappingandmodellingtoolssuchastheWaterWorld7,13,andtheInVEST14models.Thesetoolsincludetimedimensionstointegratearangeofnaturalprocessesintotheirmodelsandcanbeusedatarangeofscales–fromlocaltobasinscales.Themajorityofmappingandmodellingtoolsinusenowareweb-basedandsomeincludefreedatasets(forexample,theSimterradatabaseisembeddedwithintheWaterWorldmodelandconsistsofarangeofhydro-climaticandsocio-ecologicaldata).Thesefeaturesmakeiteasierformappingandmodellingofwaterrelatedservicesrelevanttopolicyanddecisionmaking.

Mapsareusefulforprioritisationandproblemidentification,especiallyinrelationtosynergiesandtrade-offsamongdifferentecosystemservices,andbetweenecosystemservicesandbiodiversityprotection.Ingeneral,mappingandmodellingvisualisationsarethemostusefulwaytoillustratethevalueofwaterresourcesbasedservices,andtherebysupportdecisionandpolicymaking.

Remotely-senseddata,availablefromglobalandregionaldatarepositories,canbeusedtogetherwithcitizen-basedapproachestoimproveourunderstandingoftheecosystemservicesavailable.Remote-sensingdatacanalsosupporttheanalysisofuncertaintiesinrelationtolanduseandclimatechangescenarios.

Web-basedmappingandmodellingtoolsarebeginningtohaveagreaterimpactinwaterresourcesmanagement.Althoughsomeofthesetoolsareprovidedwithagreatdealofspatio-temporaldataforwaterandlandresourcesassessment,suchdatadoesnotalwaysaccuratelyreflecttherealresourcessituationontheground,especiallyforremoteandmountainousenvironments.Citizensciencebasedmonitoringofwaterresourcesmonitoringcan,however,createlocallyrelevantdata,andsupportmappingandmodellingoflocalecosystemservices.

Figure 1: Citizensciencecancontributetowardsansweringpolicymakers’questionsandsupportingwaterresourcesmanagement

Water resources based ecosystem servicesHow can water and land resources based services be defined and measured?What are the spatial and temporal scales of services production? How are these services produced and at what magnitude? How do major ecological and hydro-climatic processes influence their production?

Valuation of ecosystem servicesBiophysical valuation: Which approaches are suitable (including mapping and modelling tools) to value biophysical production of services? Socio-ecological valuation: How do social and ecological systems interact with hydrologic services to produce benefits to people? Monetary vs non-monetary valuation: What role can economic valuation play? Technological innovation: How can technology (including ICT applications) improve data and knowledge generation?

Policy and decision makingWho will benefit from the valuation process? Which ecosystem services are important to local communities? What is the institutional mechanism for adopting valuation results? What policy mechanisms are available to protect and promote resources benefits?

Trends and flows What is the trend of services production (spatial vs temporal relation), from sources to beneficiaries?How do human activities affect them? How does production of one service interact with production of others?

CitizenScience- based

data and knowledge

GranthamInstitute ImperialCollegeLondon

2Briefingnote No4 March2017

Policy relevanceAlackofapplicabledataandknowledgehasseriouslyhinderedwaterresourcemanagementintheHimalayanregion.Policyanddecisionmakersrelyonsparseandpotentiallyinaccuratedataand‘ruleofthumb’baseddecisionmakingtotrytosupportthesustainableuseofwaterresources.Theintegrationofcitizenscienceandweb-basedmappingandmodellingtoolsdescribedabovecanbeenormouslyvaluableforpolicymakers.

Mountainregionsexperienceaparticularlyhigherdegreeofuncertaintyinrelationtotheirwaterresources.Thisuncertaintyisaresultofthecombinationofchanginghydrologicalcycleandclimaticpattern,naturalhazards,andhumandrivenlanduseandclimaticchanges.Web-basedmappingandmodellingtoolscanalsohelpwiththisuncertaintydimension.Byusingplausiblefuturescenarios,thesemodellingtoolscanexplainthepotentialchangeinwateravailabilityatalocalscale.

The Upper Kaligandaki Basin – a case study site in Nepal

Wehavetestedcitizensciencepracticesandweb-basedmappingandmodellingtoolsinatrans-HimalayanriverbasinsystemincentralNepal(seefigure2).LocatedinarainshadowoftheHimalayas,theKaligandakiBasinreceivesverylowprecipitation(lessthan250mmperyear),mainlyfromsnowfall.Theincreasinglyunpredictablewatersupplyinlocalstreamsismakingfarmingevenmorechallenging.Localpeopleareconcernedaboutthechangingsnowfallinuppermountainareasanditsimpactonwateravailabilityindownstreamareas.Suddenandunpredictedglacialmeltingcanalsocreatewater-inducedhazardssuchaslandslides,floodingandsedimentationintheseareas.

“�Our�farmlands�are�highly�productive�(...)�but�there�are�some�big�problems.�The�water�supply�is�becoming�more�disrupted,�soil�loss�is�extensive.�(...)�We�need�to�address�these�problems�immediately�so�we�can�improve��agricultural�production�and�increase�our�household�incomes.”�–�Local�community�member

Inadditiontonaturalcausesofwaterresourceuncertainty,landusechangehasasignificantimpactonecosystemservices.Thedevelopmentofroadnetworks,hydroelectricprojectsandtheexpansionofhumansettlementshavebeenthemaindriversoflandusechangeinrecentdecades.Socio-economicfactorssuchaschangesinlifestyleanddietpatternshavealsobeencritical.

Theregionhasseenchangesinlocaldemographics,includingrapidmigration,andanincreaseineco-tourismbusinesses.Allofthesechangesmayhavedetrimentalimpactsonwaterquality,landproductivityandnaturalbeauty.Therefore,adetailedunderstandingofwaterandlandresourcesisparamountinsustainingandimprovinglocallivelihoods.

Figure 3:Localparticipationinhydro-meteorologicalmonitoring

Ourexperimentsintestsitesintheregionhaveshownthatthecombinationofcitizen-basedwaterresourcesmonitoringandreal-timepubliclyavailabledataismakingarealimpactonwaterresourcesmanagement(seefigure3).Integratingthisnewapproachintolocaldecisionmakingcouldcontributetobettermanagementofwaterresourcesandhelpadaptagriculturalpracticestochangingwateravailabilityinthelongterm.

Usingappropriateweb-basedmappingandmodellingtools(WaterWorld),waterserviceshavebeenassessedatbasinandsub-basinscales(seefigure5).Theresultsshowavariationinhydrologicalcharacteristicswithinthebasin.Thespatialdetailsofrainfall,waterbalance,evapo-transpirationandfoginput(cloudwater)canprovideusefulinformationtolocalauthorities.Thereisahigherrateofevapo-transpirationintheuppercatchmentandsimilarlyahigherleveloffoginput(upto25%oftotalprecipitation)inlowerpartsofthebasin.Notably,thereismorewateravailableforhumanandcropusealongthesouthernpartsofthebasin.

Themodellingresultscouldalsoprovideusefulinformationonwaterresourcedistributionwithinasmallsub-catchment.Experimentsalsoshowedthattheseapproachescanbeequallyrobustfordatascarceregions,althoughitdependsonthespatialandtemporalresolutionoftheavailabledata.Certainly,locallygenerateddatacansignificantlyimprovethehydrologicaldatabaseformappingandmodellingofwaterresources.Figure 2: AltitudemapandlocationoftheUpperKaligandaki

BasininNepal13

8,000 m

7,000 m

6,000 m

5,000 m

4,000 m

2,000 m

1,000 m

23 m

0 km 100 km 200 km 300 km

A:Waterlevelsensor B:AnAutomaticWeatherStation

Citizenscienceandweb-basedmodellingtoolsformanagingfreshwater 3Briefingnote No4 March2017

Lessons learned and opportunities for capacity building

Thereisanurgentneedforevidence-basedandlocallyrelevantwaterresourcemanagement,especiallyindatascarcemountainregions.

Withtherecentdevelopmentofuserfriendlyandaffordabletechnologiessuchaslow-costhydrologicalsensors,citizensciencepracticescannowbeusedinremoteanddata-scarceHimalayanmountainregions.Ourexperienceshowsthatthegreateravailabilityofdataandsimplifiedtoolswouldeventuallycascadedowntothelocalscale,ashasbeenthecasewithothertechnologies.Localstakeholderswouldbeabletousesuchtoolsindependentlyandintegratenewdataandknowledgeintotheirdecisionmakingpractices.

Acceleratingtheuseofcitizenscience,andmappingandmodellingtoolsrequiresenhancedcapabilitiesamongpolicymakersandpractitionerstoincorporatethesepractices.WeforeseepotentialopportunitiesincollaborationwiththeGovernmentofNepal’sDepartmentofHydrologyandMeteorology(DHM),andtheregionalofficesofWWFandPracticalActionthatcanhelpensurethesemethodsareappliedmorewidely,andinalastingmanner,atlocallevel.

A:Annualrainfall

D:Annualpercentageofrunoffgeneratedbysnowmelt

B:Annualactualevapotranspiration

E:Annualpercentageofrunoffgeneratedbyfoginput

C:Annualwaterbalance

F:Humanfootprintonwaterquality(percentagecontamination)

Figure 5: HydrologicalservicesgeneratedbytheUpperKaligandakiBasin13

Figure 4: WaterandcroplandmanagementpracticesintheUpperKaligandakiBasin–a)agriculturallandb)irrigationpondc)applefarmingd)communitydiscussion.

A

C

B

D

480

360

240

120

0

mm/yr320

240

160

80

10

mm/yr650

520

390

260

125

mm/yr

60

45

30

15

0

19

15

10

5

0

14

10

7

4

0

% % %

GranthamInstitute ImperialCollegeLondon

4Citizenscienceandweb-basedmodellingtoolsformanagingfreshwater Briefingnote No4 March2017

References

1. ViviroliD.,DürrH.H.,MesserliB.,MeybeckM.andWeingartnerR.(2007)‘Mountainsoftheworld,watertowersforhumanity:Typology,mapping,andglobalsignificance’,WaterResourcesResearch,43(7),W07447

2. MesserliB.,ViviroliD.andWeingartnerR.(2004)‘Mountainsoftheworld:vulnerablewatertowersforthe21stCentury’,Ambio,29-34

3. Xu,J.,Grumbine,R.E.,Shrestha,A.,Eriksson,M.,Yang,X.,Wang,Y.U.N.andWilkes,A.(2009)‘ThemeltingHimalayas:cascadingeffectsofclimatechangeonwater,biodiversity,andlivelihoods’,ConservationBiology,23(3),520-530

4. Grey,D.andSadoff,C.W.(2007)Sinkorswim?Watersecurityforgrowthanddevelopment,WaterPolicy,9(6),545-571

5. Crossman,N.D.,Burkhard,B.,Nedkov,S.,Willemen,L.,Petz,K.,Palomo,I.,Drakou,E.G.,Martín-Lopez,B.,McPhearson,T.,Boyanova,K.,Alkemade,R.,Egoh,B.,Dunbar,M.B.andMaes,J.(2013)‘Ablueprintformappingandmodellingecosystemservices’,EcosystemServices,4:4-14

6. Buytaert,W.,Baez,S.,Bustamante,M.andDewulf,A.,(2012)Web-basedenvironmentalsimulation:bridgingthegapbetweenscientificmodelinganddecision-making,Environmentalscience&technology,46(4),pp.1971-1976.

7. Mulligan,M.(2013)‘WaterWorld:aself-parameterising,physically-basedmodelforapplicationindata-poorbutproblem-richenvironmentsglobally’,HydrologyResearch,44(5),748-769,doi:10.2166/nh.2012.217

8. Jankowski,P.,(2009)Towardsparticipatorygeographicinformationsystemsforcommunity-basedenvironmentaldecisionmaking,JournalofEnvt.Management,90(6),1966-1971

9. BuytaertW.,ZulkafliZ.,GraingerS.,AcostaL.,BastiaensenJ.,BhusalJ.,ChanieT.,Clark,J.,DeBièvreB.,DewulfA.,Hannah,D.M.,HergartenC.,IsaevaA.,KarpouzoglouT.,PandeyaB.,PaudelD.,SharmaK.,SteenhuisT.,TilahunS.,VanHeckenG.,ZhumanovaM.(2014)‘Citizenscienceforhydrologyandwaterresources:opportunitiesforknowledgegenerationandsustainableecosystemservicemanagement’FrontiersinEarthScience,SectionHydrosphere,pp.1-21

10. Dickinson,J.L.,Shirk,J.,Bonter,D.,Bonney,R.,Crain,R.L.,Martin,J.,Phillips,T.andPurcell,K.,(2012)Thecurrentstateofcitizenscienceasatoolforecologicalresearchandpublicengagement.FrontiersinEcologyandtheEnvironment,10(6),pp.291-297.

11. Crain,R.,Cooper,C.andDickenson,J.L.(2014)Citizenscience:atoolforintegratingstudiesofhumanandnaturalsystems,Annu.Rev.Environ.Resour.,39:641-65

12. PandeyaB.,BuytaertW.,ZulkafliZ.,KarpouzoglouT.,MaoF.andHannahD.M.(2016)‘Acomparativeanalysisofecosystemservicesvaluationapproachesforapplicationatthelocalscaleandindatascarceregions’EcosystemServices,(doi.org/10.1016/j.ecoser.2016.10.015)

13. WaterWorldv2,2016,WaterWorldVersion2Modules,King’sCollegeLondon,UK

14. Sharp,R.,Tallis,H.T.,Ricketts,T.,Guerry,A.D.etal.,2016,InVESTversion3.3.1,User’sGuide,TheNaturalCapitalProject,StanfordUniversity,UniversityofMinnesota,TheNatureConservancy,andWorldWildlifeFund

Acknowledgements

ThisstudyisfundedbytheUKEconomicandSocialResearchCouncil–ImpactAccelerationAccount(grantnumber:ES/M500562.1),ESPA’sFellowshipGrant(FELL-2014-105)andMountain-EVOProject(NE-K010239-1).WealsothankUNESCO-IHP,SocietyofHydrologistsandMeteorologists(SOHAM)andDepartmentofHydrologyandMeteorology(DHM)fortheirvaluableinputsinthepaper.WearealsogratefultoDrMarkMulliganofKing’sCollegeLondonforprovidingaccesstotheWaterWorldhydrologicalmodelandSimTerradatabase.

About the authors

Dr Bhopal Pandeya

BhopalPandeyaisaPostdoctoralResearchFellowattheGranthamInstitute–ClimateChangeandtheEnvironment.Hehasmorethantenyearsofresearchexperienceatthescience-policyinterfaceandhasexpertiseinnaturalcapitalandecosystemservices(especiallyfreshwaterandlandresourcesmanagement),citizenscience,policysupportsystems,climatechangeandsustainabledevelopmentagenda.HegraduatedwithanMPhildegreeinEnvironment,SocietyandDevelopmentfromCambridgeUniversityandcompletedhisPhDinunderstandingthehydrologicalecosystemservicesproducedbytheIndo-GangeticBasinsandselectedmountaincatchmentsintheHimalayasatKing’sCollegeLondon.HisresearchactivitiesarefundedbytheUKResearchCouncilsandDFID,andmainlyfocusedintheHimalayasandtheSouthAsianregion.Email:b.pandeya@imperial.ac.uk

Dr Wouter Buytaert

DrBuytaertisaSeniorLecturerinwaterresourcesandenvironmentalchangeintheDepartmentofCivilandEnvironmentalEngineeringatImperialCollegeLondon.Hehasmorethan15yearsofexperienceinhydrologyandwaterresourcesmanagementindifferentpartsoftheworldincludingtheTropicalAndes,theHimalayas,EastAfricaandCentralAsia.Heisanexpertontheimpactoflandusechangesandclimatechangeonhydrologicalprocessesandwatersupply,butalsoworksonthedevelopmentofenvironmentalmodels,prediction,decisionsupportandsustainabledevelopment.Email:w.buytaert@imperial.ac.uk

GranthamInstitute ImperialCollegeLondon

Briefingnote No4 March2017Citizenscienceandweb-basedmodellingtoolsformanagingfreshwater

Citizenscienceandweb-basedmodellingtoolsformanagingfreshwater

About Imperial College London

Consistentlyratedamongsttheworld’sbestuniversities,ImperialCollegeLondonisascience-basedinstitutionwithareputationforexcellenceinteachingandresearchthatattracts13,000studentsand6,000staffofthehighestinternationalquality.

InnovativeresearchattheCollegeexplorestheinterfacebetweenscience,medicine,engineeringandbusiness,deliveringpracticalsolutionsthatimprovequalityoflifeandtheenvironment—underpinnedbyadynamicenterpriseculture.Sinceitsfoundationin1907,Imperial’scontributionstosocietyhaveincludedthediscoveryofpenicillin,thedevelopmentofholographyandthefoundationsoffibreoptics.

Thiscommitmenttotheapplicationofresearchforthebenefitofallcontinuestoday,withcurrentfocusesincludinginterdisciplinarycollaborationstoimprovehealthintheUKandglobally,tackleclimatechangeanddevelopcleanandsustainablesourcesofenergy.

www.imperial.ac.uk

About the Grantham Institute

TheGranthamInstituteiscommittedtodrivingresearchonclimatechangeandtheenvironment,andtranslatingitintorealworldimpact.EstablishedinFebruary2007witha£12.8milliondonationovertenyearsfromtheGranthamFoundationfortheProtectionoftheEnvironment,theInstitute’sresearchersaredevelopingboththefundamentalscientificunderstandingofclimateandenvironmentalchange,andthemitigationandadaptationresponsestoit.Theresearch,policyandoutreachworkthattheInstitutecarriesoutisbasedon,andbackedupby,theworld-leadingresearchbyacademicstaffatImperial.

www.imperial.ac.uk/grantham

Contact us

Formoreinformationaboutthissubject,todiscusshowtheissuescoveredaffectyouandyourwork,ortocontacttheauthors,pleaseemailusat:grantham@imperial.ac.uk