Department of Physics, UC San DiegoΒ Β· Orbital-active honeycomb (𝒑 𝒑 𝒓 βˆ’ , βˆ’ Large gap...

Post on 06-Jun-2020

2 views 0 download

transcript

Orbital-active honeycomb materials

Congjun Wu

Department of Physics, UC San Diego

Berkeley, 04/30/2019

K K’

πšͺ

Yi Li (UCSD Princeton Johns Hopkins)

Gufeng Zhang (UCSD experiment)

Shenglong Xu (UCSD Univ. Maryland)

S. Das Sarma (University of Maryland)

L. Balents (UCSB)

Chuanwei Zhang (Washington state UT Dallas)

Gang Li (Shanghai Tech.)

Werner Hanke (Wuerzburg Univ.)

2

Collaborators

Orbital-active

honeycomb(π’‘π’™π’‘π’š), (𝒅𝒙𝒛, π’…π’šπ’›)

(π’…π’“πŸβˆ’π’›πŸ,

π’…π’™πŸβˆ’π’šπŸ)

Large gap topo-insulator

Frustrated orbital exchange -120∘ model

f-wave supercond.

Flat band: Wigner crystal, ferromagnetism

Bismuthene, Stanene

Polariton lattice

Twisted bilayer graphene

transition metal oxides

K K’

πšͺ

The dual version (px, py) to graphene (pz)

Orbital-inactiveOrbital-active: degeneracy

E: (px, py)

A2 (𝑝𝑧) graphene

Recent foci:

bilayer twisted graphene(Paballo),

trilayer graphene: gate tunable Mott states (Feng Wang)

How to find orbital-active honeycomb system?

1/r-like potential

β€’ Need to passivate the 𝑠 and 𝑝𝑧-orbitals. 5

2s

2px 2py

1s

+ +

β€’ Graphene is not orbital-acitive

𝑠𝑝2-hybridization 2𝑠 , 2𝑝π‘₯, 2𝑝𝑦, strong 𝜎 -bonds.

𝜎 -bands away from Fermi surface.

Flat band ferromagnetism,

Wigner crystal

Flat band and Dirac cones (orbital-enriched)

C. Wu, D. Bergman, L. Balents, and S. Das Sarma, PRL 99, 70401 (2007).C. Wu, PRL 101, 186107 (2008).

Dirac cones: orbital structure large gap topo-insulator

6

KK’

πšͺ

W. C. Lee, C. Wu, S. Das Sarma, PRA 2010; G.F. Zhang, Y. Li, C. Wu, PRB 90 (2014).

S. Z. Zhang, H. h. Hung, C. Wu, PRA 82, 053818 (2010).

Topology and frustration

QAHI(I)

QAHI(II)

Mott Insulator

120∘ model

Doping (?)

semi-metal

f-wave SCπ‘ˆ/𝑑

πœ†/𝑑

CW, PRL.100, 200406 (2008). Lee, CW, Das Sarma, PRA (2010).

arxiv1807.02528, Cava, Broholm et al.

NaNi2BiO6

Orbital-active

honeycomb(π’‘π’™π’‘π’š), (𝒅𝒙𝒛, π’…π’šπ’›)

(π’…π’“πŸβˆ’π’›πŸ,

π’…π’™πŸβˆ’π’šπŸ)

Large gap topo-insulator

Frustrated orbital exchange -120∘ model

f-wave supercond.

Flat band: Wigner crystal, ferromagnetism

Bismuthene, Stanene

Polariton lattice

Twisted bilayer graphene

transition metal oxides

K K’

πšͺ

Minimal Hamiltonian (𝜎 -bonding)

yx ppp2

1

2

3

1 yx ppp2

1

2

3

2 y

pp 3

1e

2e

3e

].)Λ†()([

].)Λ†()([

.].)Λ†()([

333

222

111//

cherprp

cherprp

cherprptHAr

t

β€’ p-bonding neglected – good approx. in transition metal oxide. Not good in semiconductor.

p-bondtC. Wu, D. Bergman, L. Balents, and S. Das Sarma, PRL 99, 70401 (2007)

10

Flat bands -- localized eigenstates

β€’ If 𝑑βŠ₯ is included, flat bands narrow bands .

C. Wu, D. Bergman, L. Balents, and S. Das Sarma, PRL 99, 70401 (2007).

11

Observed! (polariton in the 𝑝π‘₯-𝑝𝑦 bands of the

honeycomb lattice)

β€œDirect Observation of Dirac Cones and a flatband in a honeycomb lattice for Polaritons”,

T. Jacqmin, I. Carusotto, et al. PRL 112, 116402 (2014)

xpyp

s

+-

+-

β€’ Wigner crystal (spinlessfermions or bosons).

Strong correlations in the flat-band

C. Wu, D. Bergman, L. Balents, and S.

Das Sarma, PRL 99, 70401 (2007).

S

β€’ Flat-band FM for spinfulfermions.

β€’ Large entropy good for cold

atom expt.

β€’ Skyrmion texture.

S. Z. Zhang, H. h. Hung, C. Wu, PRA 82, 053818 (2010).

33

13

Orbital ordering with strong repulsions

10/ // tU2

1n

β€’ Various orbital ordering insulating states at commensurate fillings.

Kekule pattern

14

How to make 𝑝π‘₯ /𝑝𝑦 -orbital active?

G. Grynberg et al., Phys. Rev. Lett. 70, 2249 (1993).

also recent works from K. Sengstock, Esslinger, Bloch’s groups.

β€’ px /py-orbital bands well separated from s.

β€’ Strong confinement along z-direction pz pushed to high energy

s

pharmonic-like potential

optical lattices

Transition metal oxide bilayer (111) LaNiO3

15D. Xiao, et,al., Nat.Comm. (2011); Ying Ran, et al, PRB, (2011).

π‘‘π‘Ÿ2βˆ’3𝑧2, 𝑑π‘₯2βˆ’π‘¦2

𝑒𝑔 : 2d rep

Flat-band in β€œKagome graphene”

+βˆ’

𝟎

βˆ’πŸŽ

+

𝟎+

βˆ’

Y. P. Chen, S. L. Xu, Y. Xie, C. Zhong, CW,

S. B. Zhang, PRB 98,035135 (2018).

Ferromagnetism and spontaneous quantum anomalous Hall state

LDA: dope holes:half-filled flat-band

Mean-field: Spontaneous generation of orbital moment βŸ¨πΏπ‘§βŸ© = 0.004ℏ

Sun, Yao, Fradkin, Kivelson, PRL 2009

Y. P. Chen, S. L. Xu, Y. Xie, C. Zhong,

CW, S. B. Zhang, PRB 98,035135

(2018).

Wannier orbitals in twisted bilayer graphene

Liang Fu et al, PRX 8,

031087 (2018).

𝝎 = π’†π’ŠπŸπ…πŸ‘

𝟏 𝝎

𝝎𝟐

11i

i

Orbital-active

honeycomb(π’‘π’™π’‘π’š), (𝒅𝒙𝒛, π’…π’šπ’›)

(π’…π’“πŸβˆ’π’›πŸ,

π’…π’™πŸβˆ’π’šπŸ)

FM , Wigner crystal in flat band

Frustrated orbital exchange -120∘ model

f-wave supercond.

large topo-gap at the atomic SO energy scale

Bismuthene, Stanene

Polariton lattice

Twisted bilayer graphene

transition metal oxides

𝑠𝑝 -band inversion -- small gap

)(

)()(

kp

ksk

iyx

)(

)()(

kp

ksk

iyx

β€’ InAs/GaSb type II quantum well

s and p spatially separated, inversion controlled by gate potential.

C. X. Liu et al, PRL 100, 2336601 (2008),

R. R. Du’s group, PRL 115 136804 (2015) .

s

p

p

ss

p

β€’ HgTe/HgCdTe: s-p hybridization. Bernevig, Hughs, Zhang Science 314, 1757 (2006); Molenkamp’s group, Science. 318 766–770 (2007)

Δ𝑖𝑛𝑣 Ξ”π‘‘π‘œπ‘π‘œ/Ξ”π‘–π‘›π‘£βˆ π›Ώπ‘˜π‘Ž0

π›Ώπ‘˜

Orbital-active honeycomb systems

Real materials Bismuthene on SiC

Gap at the atomic SO coupling (1eV)

Topo-gap boosting mechanism

C. Wu, PRL 101, 186807 (2008)

M. Zhang, H. Hung, C. W. Zhang, C. Wu, PRA 83, 023615 (2011)

G. F. Zhang, Y. Li, C. Wu, PRB 90, 075114 (2014).

F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R.

Thomale, J. Schafer, and R. Claessen, Science (2017).

G. Li, W. Hanke, E. M. Hankiewicz, F. Reis, J. Schaefer, R.

Claessen, C. Wu, R. Thomale, PRB 98, 165146 (2018).

K K’

πšͺStanene (Theory Xu, S. C. Zhang, Exp: Xue, Jia, He):

Topo-gap: solids v.s. AMO

))()(( rLrLH zr

zSO

β€’ Solids: ionic core soft pseudo-potential

zzyyxx LLLL

G. F. Zhang, Y. Li C. Wu, PRB 90 (2014).

(6s 6p no longer degenerate)

s

p

SO coupling: quantum spin Hall

β€’ AMO: Rotate each site around its own center.

)(rLHr

zzmn

C. Wu, PRL 101, 186107 (2008);

M. Zhang, Hung, C. Zhang, C. Wu, PRA (2011).

β€’ A/B sublattices decouple due to destructive interference:non-bonding states at K (K’)

B

1

2

B

B

K K’Δ𝐸 = 2πœ†

πœ” = 𝑒𝑖23πœ‹ A

1

2

A

A

𝑝π‘₯ Β± 𝑖𝑝𝑦

Topological gap = Atomic level spacing

𝐻𝑆𝑂 = πœ†πΏπ‘§πœŽπ‘§ β†’ Δ𝐸 = 2πœ†

G. F. Zhang, Y. Li, CW,

PRB 90 (2014).

Bismuthene on the SiC substrate

G. F. Zhang, Y. Li, C. Wu, PRB 90, 075114 (2014).

F. Reis, et al, Science 2017.

Gang Li, W. Hanke, Ewelina, M. Hankiewicz, J. Schafer, R. Claessen, C. Wu, and R. Thomale, PRB (2018).

𝑝π‘₯, 𝑝𝑦 orbital-active

honeycomb materials

weak s-p hybridization

𝑝𝑧-orbital passivated

by the SiC

large topo-gap 2D materials

Strong SO coupling

β€’ Monolayer – no buckling

β€’ Large topo-gap ~0.67eV (STM)

Double group: Rashba splitting

Spectra of Bismuthene on SiC

+ + ↓

1 + 1 βˆ’1

2=3

2≑ βˆ’

3

2(π‘šπ‘œπ‘‘ 3)

≑↑+ +

𝑗𝑧 = Β±5

2≑ βˆ“

1

2

1. F. Reis, G. Li, et al Science (2017).

2. Gang Li, W. Hanke, Ewelina, M.

Hankiewicz, J. Schafer, R.

Claessen, C. Wu, and R. Thomale,

PRB (2018).

)(, rLHr

zSO

AB

AB

Unification: Stanene - Ξ“ -point

G. F. Zhang, Y. Li, C. Wu, PRB 90 (2014).

πšͺ

Y. Xu, et, al., PRL (2013) S. Chen, et, al., PRB (2014)

Δ𝐸 = 2πœ†

Experiments: Menghan Liao, et al,

arxiv1712.03695,

Yunyi Zang, et al, arXiv1711.07035

Fengfeng Zhang et al, Mature

Materials 14, 1020 (2015).

Orbital-active

honeycomb(π’‘π’™π’‘π’š), (𝒅𝒙𝒛, π’…π’šπ’›)

(π’…π’“πŸβˆ’π’›πŸ,

π’…π’™πŸβˆ’π’šπŸ)

FM , Wigner crystal in flat band

Frustrated orbital exchange -120∘ model

f-wave supercond.

large topo-gap at the atomic SO energy scale

Bismuthene, Stanene

Polariton lattice

Twisted bilayer graphene

transition metal oxides

band topology, orbital frustration

QAHI(I)

QAHI(II)

Mott Insulator

120∘ model

Doping (?)

semi-metal

f-wave SCπ‘ˆ/𝑑

πœ†/𝑑

CW, PRL.100, 200406 (2008). Lee, CW, Das Sarma, PRA (2010).

arxiv1807.02528, Cava, Broholm et al.

NaNi2BiO6

Mott insulator of SPINLESS fermions: orbital exchange

U

29

β€’ Pseudo-spin representation.

)(2

11 yyxx pppp )(

2

12 xyyx pppp )(

23 xyyxi pppp

β€’ Orbital exchange: no orbital flipping process.

0J

UtJ /2 2

UtJ /2 2

)Λ†()( 11 xrrJH ex

β€’ Ising quantization axis depends on bond orientation.

xp

: eigen-states of yxe 2sin2cosˆ2

2e

)Λ†)Λ†()(Λ†)(( 22 eererJH ex

Hexagon lattice: quantum model120

)Λ†)(()Λ†)((,

ijjiji

rr

ex ererJH

β€’ Transformation: the Ising quantization axes bond orientations.

A B

B

B

11 ))(( 22

3

12

1

22

3

12

1

))(( 22

3

12

1

22

3

12

1

ypyx pp ,

30

C. Wu et al, arxiv0701711v1; C. Wu, PRL

100, 200406 (2008). E. Zhao, and W. V.

Liu, Phys. Rev. Lett. 100, 160403 (2008)

From the Kitaev model to 120 degree model

A B

B

B

xxyy

zz

β€’ cf. Kitaev model: Ising quantization axes form an orthogonal triad.

))()(

)()()()((

3

21

err

errerrJH

zz

yyxx

Ar

kitaev

Kitaev

cos02

1

120

31

120

32

Large S picture: heavy-frustration of classic ground states

β€’ Ground states: the two -vectors have the same projection along the bond orientation.

or

rzrr

rrex rJerrJH )(}Λ†)]()({[( 22

,

β€’ Ferro-orbital configurations. β€’ Loop config: -vectors along the tangential directions.

Heavy-degeneracy of the classic ground states

β€’ General loop configurations

33

34

Global rotation degree of freedom

β€’ Each loop config remains in the ground state manifold by a suitable arrangement of clockwise/anticlockwise rotation patterns.

35

β€œOrder from disorder”: 1/S orbital-wave correction

36

Zero energy orbital wave fluctuations

4

22

)(

)cos1(6

JSE

β€’ Each loop has a local zero energy mode.

β€’ The closest packed config. contains the maximal number of zero modes selected by quantum fluctuations.

f-wave structure from conventional interaction

β€’ Bisector lines are nodal lines: no interaction between TR pairs.

β€’ The TR pair at K and K’ has the largest pairing.

nodal lines

)()()()(int rnrnUrnrnUHyxyxyx ipp

rippp

rp

K K

yxipp

yxipp

yxipp

yxipp

k

k

A

B

A

B

A

B

A

B

38

Orbital-assisted f-wave superconductivity

inkout

k

Zero energy Majorana boundary modes

W. C. Lee, CW, S. Das Sarma, PRA 2010;

39

A unified framework for bismuthen, stanene, and more …

β€’ 𝑝π‘₯ and 𝑝𝑦 orbital-active honeycomb lattice

β€’ Large topo gap to the scale of atomic spin-orbit coupling (1eV)

β€’ Novel many-body physics: flat-band ferromagnetism, orbital frustration, f-wave superconductivity etc.

Back up!

Orbital configuration (Dirac band)

β€’ Complex eigen-orbitals at K (K’) large topo-gap with SO

coupling.

C. Wu PRL 101, 2008; W. C. Lee, C. Wu, S. Das Sarma, PRA 2010; G. F. Zhang, Y. Li C. Wu, PRB 90 (2014).

M

K K

k

k

M

β€’ Real eigen-orbitals along the M-Ξ“ -M- line f-wave pairing.

𝐡 site

A

1

2

A

A

B

1

2B

B

+

-

+

-

+

-

+

-

+

-

+

-

𝑝π‘₯ Β± 𝑖𝑝𝑦

Add interactions (spinless fermions)

)()(int rnrnUHyx p

rp

U

)(0 rLHHr

zt

///t

///tU

QAHI(I)

QAHI(II)

semi-metal

Mott Insulator

120 model

(Quantum) anomalous Hall state

β€’ Van Vleck (inter-band) response.

B

1

2B

B

E

K K’

A

1

2

A

A

β€’ k-space Berry curvature.

β€’ Anomalous velocity. Luttinger, PR, 112 793 (1958), Xiao, Chang, Niu, RMP 82, 1959 (2010).

𝐴 π‘˜ = πœ“πΏ,π‘˜ 𝑖 πœ•π‘˜ πœ“πΏ,π‘˜ , Ω𝑧 π‘˜ = πœ•π‘˜π‘₯π΄π‘˜π‘¦ βˆ’ πœ•π‘˜π‘¦π΄π‘˜π‘₯

𝜎π‘₯𝑦 =𝑒2

β„Ž

𝑑2π‘˜

2πœ‹Ξ©π‘§

=𝑒2

β„Ž

𝑑2π‘˜

2πœ‹π›» Γ— 𝐴 π‘˜ = Β±

𝑒2

β„Ž

𝛀𝒛 𝑲 = 𝛀𝐳(πŠβ€²) π‘˜ = π‘žπΈ + π‘ž π‘Ÿ Γ— 𝐡 ( π‘Ÿ)

π‘Ÿ = π›»π‘˜πœ– π‘˜ βˆ’ π‘˜ Γ— Ξ©(π‘˜)

Thouless, Kohmoto, Nightingale, den Nijis, PRL 49, 405 (1982)

Creation of chiral phonon and large momentum exciton

1. Right-handed light exciton at

K-valley

eV15.0

eV65.1

Kv

2. Another right-handed light

hole scattered to K’-valley by absorbing phonon and emitting a chiral phonon (K-K’=2K=K’ )

3. Electron and hole are in different valleys large

momentum exciton.

Edge spectra and Berry curvature (spin )

//3.0 t

1C

)1(10 C

1

0

0

1C

45

C. Wu, Phys. Rev. Lett. 101, 186807 (2008).

K K’

G

Quantum anomalous Hall (QAH): a triangle relation

β€’ The 3rd gap mechanism: Neel exchange.

))()(( , r

BzAzN rSrSnH

β€’ Superpose charge and spin sub-lattice asymmetry.

FM

FM

m

nnm || nm

topo trivial topo non-trivial

spin-up spin-down

β€’ QAH -- Three players: none should be too large, too small either.

G. F. Zhang, Y. Li, C. Wu, PRB 90

(2014). Q.F. Liang, L.H. Wu, X. Hu, NJP 2013.

β€’ Gaps around K (K’) valley Hall.

Gaps due to sub-lattice asymmetry m > l (cf. MoS2)

)( mE

B

1

2

B

B

B

1

2

B

B

)( mE

ixyyxd

222 22 3zrd

MoS2: upper bands are replaced by

47

))()(( r

BAM rnrnmH

Honeycomb lattice system (graphene)

B

A

)(

)()(

kc

kck

B

A

β€’ 2-level in a planar pseudo-B field.

K K’

1e2e

3e

A

B B

Bβ€’ Symmetry and topology protection:

gapless Dirac cones β„Ž 𝐾 = β„Ž 𝐾′ = 0 .

𝐻 π‘˜ = β„Ž π‘˜ β‹… 𝜏

β„Žπ‘₯ π‘˜ + π‘–β„Žπ‘¦ π‘˜ =

𝑖=1

3

π‘’π‘–π‘˜β‹… 𝑒𝑖 , β„Žπ‘§ π‘˜ = 0

Selected References

1. G. Li, W. Hanke, E. M. Hankiewicz, F. Reis, J. Schaefer, R. Claessen, C. Wu ,

R. Thomale, PRB 98, 165146 (2018).

2. G. F. Zhang, Yi Li, C. Wu, PRB 90, 075114 (2014).

3. M. Zhang, H. Hung, C.W. Zhang, C. Wu, PRA 83, 023615 (2011).

4. C. Wu, PRL 101, 186807 (2008).

5. C. Wu, PRL 100, 200406 (2008).

6. C. Wu, D. Bergman, L. Balents, and S. Das Sarma, PRL. 99, 70401 (2007).

49

Early work: on-line video

http://online.kitp.ucsb.edu/online/lowdim_c09/wu/

My research webpage

https://wucj.physics.ucsd.edu/research/topo/pQSH.html

https://wucj.physics.ucsd.edu/research/coldatom/pband.html

Large topo-gaps ~ atomic SO coupling strength

KK’

πšͺ

)(rLHr

zso

Little group: Ξ©=0 Ξ©>0 degeneracyΞ“ D6 C6 21+1

K(K’) D3 C3 21+1

2

2

1C

0

0

1

50

)(rLHr

z

K K’

πšͺ