Design for Sustainability through a Life Cycle Assessment ...

Post on 21-Oct-2021

2 views 0 download

transcript

University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

April 2018

Design for Sustainability through a Life Cycle Assessment Design for Sustainability through a Life Cycle Assessment

Conceptual Framework Integrated within Product Lifecycle Conceptual Framework Integrated within Product Lifecycle

Management Management

Renpeng Zou University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation Zou, Renpeng, "Design for Sustainability through a Life Cycle Assessment Conceptual Framework Integrated within Product Lifecycle Management" (2018). Masters Theses. 623. https://doi.org/10.7275/11177891 https://scholarworks.umass.edu/masters_theses_2/623

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

DesignforSustainabilitythroughaLifeCycleAssessmentConceptualFrameworkIntegratedwithinProductLifecycleManagement

AThesisPresentedby

RenpengZou

SubmittedtotheGraduateSchooloftheUniversityofMassachusettsAmherstinpartialfulfillment

oftherequirementsforthedegreeof

MASTEROFSCIENCEINMECHANICALENGINEERING

FEBRUARY2018

MECHANICALANDINDUSTRIALENGINEERING

©CopyrightbyRenepngZou2018

AllRightsReserved

DesignforSustainabilitythroughaLifeCycleAssessmentConceptualFrameworkIntegratedwithinProductLifecycleManagement

AThesisPresentedby

RenpengZou

Approvedastostyleandcontentby:____________________________________________________SundarKrishnamurty,Chair____________________________________________________IanR.Grosse,Member____________________________________________________DouglasC.Eddy,Member

_______________________________________________SundarKrishnamurty,DepartmentHeadofMechanicalandIndustrialEngineering

DEDICATION

Iwouldliketodedicatethisthesistomyparents,WeikangZouandXiaoqing

Wang.Asaninternationalstudent,studyingabroadislargeexpensetomyfamily.

Buttheyhaveconstantlysupportedmethroughoutthepastthreeyears.Without

theirencouragement,Iwouldnothavebeenabletofinishthiswork.Iwouldalso

dedicatethistomyfriendsthathavehelpedme.

v

ACKNOWLEDGMENTS

Firstly,Iwouldliketothankmyprimaryadvisor,ProfessorSundar

Krishnamurty,forhisguidance,encouragementandsupportinthepasttwoyears.I

amdeeplythankfulfortheopportunitytoworkinthee-Designresearchgroupand

assistantshipinmyhardesttime.Duringthelasttwoyears,heconstantlymotivated

mefromanormalgraduatestudentintoanindependentresearcher.Hetaughtme

theattitudesandhowtobehaveasaresearchersupposedtobe.

IwouldalsoliketoexpressmygratitudetoDr.DouglasEddy.Hehas

providedmewithknowledgeandideasonthisresearchandwasalwayswillingto

helpme.Hispatientcommentsandsuggestionsonthisworkgreatlymotivatedme.

Underhishelp,Ihavebecomeacapableresearchwhogetsmoreinterestedin

sustainabledesign.

Finally,IwouldliketothankmycommitteememberProfessorIanR.Grosse.

Healsoadvisedmethroughtheweeklygroupmeetingfromthestartofthisthesis.

Hisinvaluableguidanceandinsightonthisresearchenlightenedmethroughthe

hardinitialstage.Healsohelpedincreasemypresentingskills,whichissoprecious

fortherestofmylife.

vi

ABSTRACT

DesignforSustainabilitythroughaLifeCycleAssessmentConceptualFrameworkIntegratedwithinProductLifecycleManagement

FUBRUARY2018

RenpengZou,B.S.,DALIANJIAOTONGUNIVERSITY

M.S.M.E.,UNIVERSITYOFMASSACHUSETTSAMHERST

Directedby:ProfessorSundarKrishnamurty

Theneedtoincludesustainabledesignprinciplesduringproductrealization

posesseveralchallengesinneedofresearch.Thedemandforgreenerproductshas

increasedwhilecompetitionhasshortenedproductrealizationprocesses.Product

LifecycleManagement(PLM)providessolutionsinacceleratingthedevelopment

processandtimetomarketbymanagingtheinformationthroughafulllifecycleofa

productline.LifeCycleAssessment(LCA)providesawaytopredictthe

environmentalimpactsthatshouldbeexpectedoverthecompletelifecycleofa

givenproduct,butLCAmethodsarenotwellsuitedtoefficientcomparisonof

productalternativesduringearlydesignstages.Customersandotherstakeholders

demandproductsthatnotonlycomplywithregulationsandminimize

environmentalimpacts,butalsominimizecostsandmaximizecertainperformance

objectivesofaproduct.Thus,anapproachisneededtounifyvalidationofnew

productscompliancewithholisticconsiderationofenvironmentalimpactsalong

withotherobjectivesoveracompletelifecyclefortheselectionoftheoptimal

designconceptinanefficientmanner.

vii

Thisresearchaddressesthesemattersbyproposingtheapproachof

integratingLCAsoftwarewithaPLMsystem.AconceptualLCAframework-

LCAatPLM(LifeCycleAssessmentofassemblytreeinPLM)isproposedthatallows

environmentalassessmentofassemblytreedirectlyextractedfromPLM.Firstly,

relevantexistingsolutionsarereviewedandseveralchallengesareidentifiedthat

preventintegration.BydecomposingthestructureofbothPLMandLCA,acommon

foundationisidentifiedfortheintegration.Then,adesignmethodologyisdeveloped

toshowtheuseofLCAatPLMwithinPLMenvironment.Acharcoalgrilldesigncase

studyisdetailedtoshowhowevaluationscanbemadebasedonachievementof

strategicgoals,alongwithverificationofcomplianceandthevisibilityofLCAand

otherresults.OurfindingsshowthatdesignexecutionsthroughLCAintegratedwith

PLMrevealenvironmentalcriterionatearlystages.Itcanbeconsideredwithother

designcriteriatoidentifyandselectoptimalalternatives.Thisresearchtransforms

LCAasanevaluationtoolusedafteradesignisalreadycompletedtoonethatcan

guidedesignsearlierwithinthePLMenvironment.

viii

TABLEOFCONTENTS

PageACKNOWLEDGMENTS..............................................................................................................................vABSTRACT...................................................................................................................................................viLISTOFTABLES........................................................................................................................................xiLISTOFFIGURES.....................................................................................................................................xiiCHAPTER1.INTRODUCTION.....................................................................................................................................1

1.1ResearchMotivation..........................................................................................................11.2ResearchScopeandPurpose..........................................................................................41.3ThesisOutline........................................................................................................................6

2.BACKGROUND........................................................................................................................................8

2.1PreviousWork......................................................................................................................82.2ProductLifecycleManagement(PLM).....................................................................102.3ProductStructureinPLM...............................................................................................132.4LifeCycleAssessment(LCA).........................................................................................142.5OverviewofSustainabilityandSustainableDesignMethodologies............172.6Multi-criteriaDecisionMaking(MCDM).................................................................202.7DecisionSupportforSustainabilityinPLM...........................................................24

3.STATEOFTHEART............................................................................................................................27

3.1OverviewofLCAintegratedwithPLM/CAD..........................................................27

3.1.1Interfaceapproach..........................................................................................273.1.2Integrationapproach.....................................................................................293.1.3SeveralConceptsofLCAIntegratedwithCAD/PDM/PLM...........30

3.2OtherWaysofIntegratingEnvironmentalAssessmentinPLM....................314.CHALLENGES........................................................................................................................................33

4.1DesignParadoxofConsideringEnvironment.......................................................334.2DifferentRepresentationofProductinLCAandPLM.......................................344.3PropermappingsfromPLMtoLCA...........................................................................364.4LackofcomprehensiveLCIdatabaseandStaticNatureofLCA....................364.5DesignersLackingKnowledgeofEco-design........................................................37

ix

5.PROPOSEDSYSTEM...........................................................................................................................395.1OpeningProductModelfromPLMtoLCA..............................................................395.2CompletetheLifeCycleInformationExtractedThroughProper

Mappings...............................................................................................................................415.3ProposedLCAatPLM.........................................................................................................43

5.3.1RawMaterialExtractionPhase.................................................................435.3.2ProductionPhase............................................................................................445.3.3TransportationPhase....................................................................................455.3.4UsePhase............................................................................................................465.3.5End-of-LifePhase............................................................................................475.3.6OverallLCAFramework...............................................................................49

5.4ProposedSubstanceComplianceModuleusedinPLM.....................................515.5ProposedSystemArchitecture....................................................................................53

6.DESIGNMETHODOLOGY.................................................................................................................56

6.1BeforeDesignStage..........................................................................................................57

6.1.1Step1.1:PlanningandManagement.......................................................576.1.2Step1.2:UseofSustainabilityModuleforanInitial

Investigation..........................................................................................................596.1.3Step1.3:FeedbackstoPLM........................................................................61

6.2DesignPhase........................................................................................................................626.2.1Step2.1:SetDesignGoals............................................................................636.2.2Step2.2:IdentifyDesignAlternatives....................................................636.2.3Step2.3:UseSustainabilityModuletoGenerate

EnvironmentalReports....................................................................................646.2.4Step2.4:CollectFeedbacks.........................................................................676.2.5Step2.5:ExecuteHEIMandSelecttheOptimalAlternative.........68

6.3AfterDesignPhase............................................................................................................696.3.1Step3.1:PrepareforNewDesignInitiatives......................................69

7.CASESTUDY:CHARCOALGRILLREDESIGN...........................................................................71

7.1SimulationoftheProposedSystemConcept.........................................................717.2CaseStudy:BeforeDesignStage.................................................................................74

7.2.1Step1.1:PlanningandManagement.......................................................747.2.1Step1.2:UseofSustainabilityModuleforanInitial

Investigation..........................................................................................................767.2.3Step1.3:FeedbackstoPLM........................................................................80

7.3CaseStudy:DesignStage................................................................................................817.3.1Step2.1:SetDesignGoals............................................................................817.3.2Step2.2:IdentifyDesignAlternatives....................................................827.3.3Step2.3:UseSustainabilityModuletoGenerate

EnvironmentalReports....................................................................................847.3.4Step2.4:CollectFeedbacks.........................................................................86

x

7.3.5Step2.5:ExecuteHEIMandSelecttheOptimalAlternative.........877.4CaseStudy:AfterDesignStage....................................................................................96

7.4.1Step3.1:PrepareforNewDesignInitiatives......................................968.DISCUSSION...........................................................................................................................................98

8.1Summary...............................................................................................................................988.2Limitations............................................................................................................................998.3Benefits...............................................................................................................................1008.4FutureWork......................................................................................................................102

REFERENCES..........................................................................................................................................104

xi

LISTOFTABLES

Table PageTable2.1Optimizingstrategiesonproductlifecycle...........................................................19

Table4.1Differencesbetweenprocessandproductmodel..............................................34

Table5.1Entity,Lifecycleandprocesstype............................................................................40

Table5.2Requiredinformationforlifecycleandextractionplaces.............................42

Table7.1Environmentalimpactsofbaseline..........................................................................79

Table7.2Strategiesofnewalternativesandgoals................................................................81

Table7.3Maincomponentsofnewalternatives....................................................................83

Table7.4Designattributesindecision-makingmodule.....................................................86

Table7.5Normalizedscoreforhypotheticalalternatives..................................................88

Table7.6Realvaluesofhypotheticalalternatives.................................................................89

Table7.7Normalizedalternativescores....................................................................................89

Table7.8Attributesweights............................................................................................................91

Table7.9Attributesweights............................................................................................................91

Table7.10Utilityscoreforeachalternatives...........................................................................91

Table7.11NewUnnormalizedhypotheticalalternatives..................................................93

Table7.12Finalattributesweights..............................................................................................94

Table7.13Utilityscorefordesignalternatives.......................................................................95

xii

LISTOFFIGURES

PageFigure1.1Theparadoxofeco-design............................................................................................3

Figure2.1PLMarchitecture.............................................................................................................11

Figure2.2Relevantsoftwareusedindifferentdesignaction...........................................12

Figure2.3ISO14040Lifecycleassessmentframework.....................................................15

Figure2.4Thedimensionsofsustainability.............................................................................17

Figure2.5Designattributesconsideredinnewproductdevelopment.......................21

Figure4.1DifferentpresentationofproductmodelbetweenPLMandLCA.............35

Figure5.1MappingconceptfromPLMtoLCA........................................................................42

Figure5.2Exampleofaproductinassemblytree.................................................................43

Figure5.3RMEinproposedLCAframework...........................................................................44

Figure5.4ProductioninproposedLCAframework.............................................................45

Figure5.5TransportationinproposedLCAframework.....................................................46

Figure5.6UsephaseinproposedLCAframework................................................................47

Figure5.7EOLinproposedLCAframework............................................................................49

Figure5.8OverallproposedLCAframework...........................................................................50

Figure5.9Proposedsystemarchitecture..................................................................................53

Figure6.1Proposeddesignmethodology.................................................................................56

Figure6.2InformationextractionfromPLMtoLCAatPLMtoLCA………………………65Figure7.1SimulationofLCAatPLM..............................................................................................72

Figure7.2InputsandOutputsinRME........................................................................................73

Figure7.3DesigninPLM...................................................................................................................74

xiii

Figure7.4ReferenceproductinPLM..........................................................................................75

Figure7.5ExampleofmappingsfromPLMtoLCAatPLM..................................................77

Figure7.6UseLCAtosimulateLCAatPLMwithanexample.............................................78

Figure7.7DetailedBOMofalternative#3inPLM.................................................................83

Figure7.8SimulationofLCAframeworkonalternative#2..............................................84

Figure7.9SimulationofLCAframeworkonalternative#3..............................................85

Figure7.10Strengthofpreferences.............................................................................................88

Figure7.11Feasibleweightsandwinningalternatives......................................................90

Figure7.12Feasibleweightsandonerobustoptimalalternative..................................94

Figure7.13Developedalternativesstoredforfuturedevelopment..............................97

1

CHAPTER1

INTRODUCTION

Withtheincreasingpressureofenvironmentalregulations,suchasRoHS,

REACH,WEEE,theselectionofdesignandmanufacturingprocesseswhichcomply

withtheseregulationsandalsohavemuchlowerenvironmentalimpactshas

becomeincreasinglycomplicated.Manycompaniesrealizethatinordertostay

competitiveintoday’smarket,itiscrucialtointroduceenvironmentalthinking

duringthedesignofaproduct.Nowadays,asmoreandmorepeoplecareaboutthe

environment,customerstendtoprefergreenerproducts.Moresustainableproducts

willnotonlybuildagoodreputationofacompany’sbrand,butalsoincreasetheir

marketshare.Includingenvironmentalthinkingandcomplyingwithregulations

seemsinevitableforeverycompanythatwantstosurviveintheirmarket.

1.1ResearchMotivation

Themotivationofthisresearchisbasedontheneedforcompaniesto

developgreenerproductsinshortertermandtopreventtheregulatoryviolations

andlatechange.Todaymanufacturersandretailersarefacingaregulatory

avalancheinthefieldofenvironmentallegislationonaworldwidescale.Theyare

exposedtoacontinuouslygrowingvarietyandthereforecomplexityoflegal

requirementsforplacingtheirproductsonmorethanjustthedomesticmarket[1].

Ononehand,companieshavetomeettheseevergrowingenvironmental

regulationssothattheycanatleastenterthemarket.Ontheotherhand,another

centralobjectiveforthemisfulfillcustomerneeds,whichareincreasinglydirected

towardthesocialandenvironmentalperformanceofaproduct[2].

2

TheresultsofindustrialsurveysidentifiedCADgeometricmodelsasdata

reference,Computer-AidedDesign(CAD),ProductLifecycleManagement(PLM)and

ProductDataManagement(PDM)systemsasthemostusedtoolsduringthedesign

phase[3].ProductLifecycleManagement(PLM)isanintegratedapproachthat

combinesmethods,modelsandITtoolsformanagingproductinformation,

engineeringprocessandapplicationsfortheentirelifecycleofaproduct.Many

authorsagreethatPLMisthekeyconceptfortheestablishmentofeco-design

processes[4][5][6][7].Theopportunitytoinfluenceaproduct’senvironmental

impactsisprevalentinthedesignphase.ConnectingPLMandsustainabilitymight

provideusefulinsightstoasustainablenewproductdevelopmentapproach[8].

Asfortheenvironmentalimpacts,LifeCycleAssessment(LCA)isthemost

commonlyassumedmethodforassessingtheenvironmentalimpactofaproductor

servicethroughallitslifecyclestages.However,Figure1.1demonstratesthe

paradoxofeco-design:betweenknowledgeoftheproduct,potentialenvironmental

improvementanddesignsolutions[9].Theimpactsofaproductuponthe

environmentisdeterminedatthedesignphase,andoftenintheveryearlydesign

phase.Astheknowledgeoftheproductincreasesfromconceptualstagetodetailed

designtomanufacturing,theopportunityforenvironmentalimprovementis

reduced.Also,thedesignspacesarerelativelylargeinthebeginningofproduct

developmentwhenideasandconceptualsolutionsarequiteopen.Supportersof

integratingenvironmentalaspectsintoproductdevelopmentasearlyaspossible,

nothandledindependentlygaveseveralliteratures[10][11].However,LCA

requiresdetailedproductdesigninformation,whichmakesitunsuitableforusein

3

theearlydesignstages[12][13][14].Asaresult,afullLCAwillbeunfeasibleforthe

studyofalternativesthatsubstantiallydifferfromtheoriginallyassessedproduct

[15].BythetimetheproductsarematureandenoughLCA-relevantdataare

availableforacomprehensiveenvironmentalevaluation,muchofthedesignspace

islocked-in.

Figure1.1Theparadoxofeco-design

Also,acomprehensiveLCAisverycostlyandtimeconsumingandsometimes

notaffordableforsmallbusiness[16].Anditrequiresspecifichigh-levelexpertise

forinterpretation[9].Asurveyofdesignersconductedindictsdesignersare

typicallyoverburdenedwithproductfunctionalityandcostreductionobjectives

[17].Lagerstedt[18],alsoclaimsthatdesignersdonotwanttoomuchinformation,

asprovidedbymostLCAanalysis.

4

Insummary,LCAisnotadesigntoolbutanevaluationtoolthatseemsnotto

beusedduringthedesignprocess.Thisresearchtriestomitigatetheselimitations

ofLCAduringdesignprocessthroughtheideathatusesPLMastheestablishmentof

eco-designprocesswhileusesLCAtoevaluatetheenvironmentalimpacts.Sincea

LCAstudycanbeperformedbasedonBillofMaterial(BOM)andBillofProcess

(BOP)providedbyPLM,thisleadstoapotentialityforintegration.Wehopethat,

whilePLMhelpsacceleratethedesignprocessbymanagingtheinformationofa

productoveritsentirelifecycle,LCAisperformedatearlydesignstagebasedonthe

sameinformationsothatenvironmentalimpactscanbeconsideredalongwithother

priorities.Intheend,sustainabledesignmethodologiesandframeworkswere

developedbyourresearchgroup[19][20][21][22],whichguideanddirectthis

thesiswork.

1.2ResearchScopeandPurpose

Thegoalofthisresearchistodesignofproductwithaholisticconsideration

ofenvironmentalimpactsalongwithotherobjectivesoveracompletelifecycle

throughtheintegrationofLCAintoPLM,andtrytomitigatethelimitationsofLCA

thatisnotsuitabletobeusedduringthedesignprocess.

ThisisdonebyfirstlyidentifyingseveralchallengesthatpreventLCAfrom

integratingwithinthedesignprocess.Also,currentsolutionsonintegrationofLCA

withPLM/CADisreviewed.Theconclusionshowsthatdifferentrepresentationsof

productmodelbetweenLCAandPLMareused.PLMusesproductstructureto

representtheproductmodel,whileLCAusesprocessmodeltoformthefullproduct

lifecycleanddoesnotcareproductstructure.Tothisend,LCAatPLM(LifeCycle

5

AssessmentofassemblytreeinPLM)isproposed.ItisaconceptualLCAframework

thatmaintainstherepresentationofproductstructureusuallyusedbydesigners

duringdesignintheformofanassemblytreeinPLM.Anenvironmentalassessment

thatisbasedonthesamestructuralitemscouldeasilytransformandreuseexisting

productpresentationdirectlyfromPLMsystem.Throughthis,anintegrationsystem

isformedwithPLMservesasthefoundationandLCAatPLMisintegratedintoPLM

likeotherdesignsupportingtools(Computer-AidedDesign(CAD),Computer-Aided

Manufacturing(CAM),etc.).

Secondly,adesignmethodologybasedontheintegrationsystemisproposed.

Itillustratesawayonhowtotakeenvironmentalimpactsintoconsiderationatearly

designstageusingtheintegration.Designersworkoutdifferentalternativesofthe

productandstorerelevantinformationinthePLMsystem.Then,basedonthat

information,environmentalevaluationsofthesepotentialalternativesareacquired

usingLCAatPLM.Differentcategoriesofenvironmentalimpactsaretransformed

intoadimensionlessnumberthroughnormalization,characterizationandweighting

withtheaimofsimplifyingtheresultstodesigners.Then,theseenvironmental

resultsarestoredalongwithotherdesignattributesinacommonplaceinPLM.A

finaldecisionmakingprocessisperformedbasedonthepreferencesofthedecision

makers.

Acasestudyofredesigningacharcoalgrillisperformedtoillustratethe

proposedconceptandmethodology.Firstly,welookatLCAinformationofan

existingbaselinedesignacquiredfromliterature,andusethatinformationto

methodicallyidentifytheidealnewdesignconceptoftheproduct.AstheBOMis

6

developedinPLM,weexaminepotentialparallelprocessingcapabilitiesof:

evaluationofthedesigninrelationtothegoalsanticipatedfortheselecteddesign

strategy,verificationofanycomplianceissues,comparisonofthedesignconceptto

othercandidates,andthevisibilityoftheLCAresultswiththoseofotherobjectives

toindicatethroughoutadesignprocessthedesignintentofwhyaselectedconcept

isthemostsustainabledesign.

Insum,theobjectiveofthisresearchistoprescribeawayhowLCAcanbe

bestintegratedwithPLMandproposeadesignmethodologythatshowshowto

introduceenvironmentalcriteriaintodesignprocessasearlyaspossible.Itis

importanttounderstandthatLCAatPLMstillcannotreachtheaccuracyofa

completeLCAmodelofaproduct.Itisespeciallyfordesignerstoreveal

environmentalresultsandunderstandtheenvironmentalimpactsofadesign

decisionatearliestdesignstage.IttransformsLCAfromanevaluationtoolused

afteradesignisalreadycompletedtoonethatcanguidedesignsearlierwithinthe

PLMenvironment.

1.3ThesisOutline

Theremainderofthisthesisisorganizedasfollows.Chapter2reviews

backgroundandpriorworkrelatedtosustainabledesign,PLM,LCAanddecision-

making.Then,anoverviewoftheexistingsolutionsontheintegrationofLCAwith

PLMispresentedinChapter3,StateoftheArt.Thisincludescurrentinterfaced

approachesandintegrationapproachesofconnectingLCAwithPLMorCAD.

BesidesintegratingLCAintoPLM,someconceptsofintegratingenvironmental

impactsintoPLMarepresented.InChapter4,severalmainchallengesof

7

integratingLCAintoPLMareidentifiedbasedontheliteraturereview.InChapter5,

anewLCAframeworkisproposedtoaddressthechallengesidentified.After

introducingtheLCAframework,adesignmethodologyusingtheproposedsystemis

introducedinChapter6.Acasestudyofredesigningacharcoalgrillisimplemented

tovalidatetheproposedsystemandmethodologyinChapter7.Chapter8concludes

withasummaryofbenefitsandlimitationsofthisworkandrecommendationsfor

futurework.

8

CHAPTER2

BACKGROUND

Thischapterfirstsummarizespreviousresearchinsustainabledesigndone

intheCenterfore-Design.PriorworksincludeNASDOP(Normativedecision

AnalysismethodfortheSustainability-basedDesignofProducts)andintegrationof

sematicframeworkwithPLM.Then,backgroundaboutPLM,LCAandotherrelevant

knowledgearepresented.

2.1PreviousWork

Withtheincreasingdemandofgreenerproductswhiledevelopingtimehas

decreased,LCAmethodsarenotwellsuitedtoefficientcomparisonofproduct

alternativesduringearlydesign.Productsthatnotonlycomplywithregulationsand

havelowerenvironmentalimpactsbutalsominimizecostsandmaximizeother

performanceobjectivesareexpectedbycustomersandstakeholders.Tothisend,

previouspublishedworksintheresearchgroupintroduceapproachestoaddress

theseissues.

AnapproachwasdevelopedtomethodicallyaccountforLCAalongwith

uncertaintyandproductcostsoverthesamelifecycle.Themethodintroducedthe

mathematicalrigorofanormativeapproachtoselectanoptimaldesignconceptby

theholisticconsiderationofmultipleobjectives[19].

Anotherapproachpresentsanontologicalframeworkdesignedtorepresent

boththeobjectivesthatpertaintosustainabledesignandtheapplicable

sustainabilitystandardsandregulations.Thisintegratedapproachnotonlycanease

theadoptionofthestandardsandregulationsduringadesignprocessbutcanalso

9

influenceadesigntowardsustainabilityconsiderations.Theresultsshowthatboth

thestandardsandcriteriamaybeconsideredatearlydesignstages.Furthermore,it

canbeusedtocapture,reveal,andpropagatethedesignintenttransparentlytoall

designparticipants[20].

ABillofMaterial(BOM)-basedapproachwasintroducedtoselectthemost

suitablematerialsformulti-criteriadecisionmakingoftheoptimalproductdesign.

Surrogatemodelsareconstructedwhichconsisttheenvironmentalobjectiveswith

othertraditionaldesignobjectives.Thennovelfeasibleapproximationapproachare

usedtoidentifyoptimalconceptsinthedesignspacebeyondtheoriginaldatasetof

theknowndesignalternatives.ThismethodcanstreamlineLCAestimationfor

materialselectionofmajorcomponentsinanewBOMattheearlydesignstages

[21].

Finally,asemanticframeworkdevelopedinoure-Designcenterisintegrated

withacommercialPLMsystem.Thisintegrationapproachisasemanticextraction

processthatexecutestheinterfacefromPLMtoaframeworkcompatiblewiththe

semanticweb,whilemaintainingthePLM’sBOM.Designexecutionwithina

semanticframeworkfacilitatesdynamiclinkingofproductinformationthroughout

thedesignprocess.ItalsopreservesandpropagatestheBOMrelatedinformation

fromPLMinalldesignstages[22].

Insummary,thesepreviousworkwithintheresearchgrouphavecovered

LCA,PLM,knowledgemanagement,multi-criteriadecisionmaking,material

selection,etc.Thisresearch,basedonthesepreviousworks,tookadvancestoward

furtherbenefitsbydeploymentofsomeoftheseconceptsormethodologiesabove.

10

2.2ProductLifecycleManagement(PLM)

AsdesignersnoticeagrowingvolumeoffilesgeneratedbyCADsystem,

engineersrealizethereisaneedtokeeptrackoftheminoneplace.Inthelate1980s,

ProductDataManagementSystem(PDM)hasemerged.PDMisusuallyconsidered

tobeasubsetofPLM.APDMallowdesignerstostandardizeitems,tostoreand

controldocumentfiles,tomaintainBOM’s,tocontrolitem,BOManddocument

revisionlevels,andimmediatelytoseerelationshipsbetweenpartsandassemblies.

Thisfunctionalityallowsthemtoquicklyaccessstandarditems,BOMstructures,

andfilesforreuseandderivation,whilereducingtheriskofusingincorrectdesign

versionsandincreasingthereuseofexistingproductinformation[23].

PLMevolvedfromthePDMapproach.WhilePDMfocusesonmanagementof

productdatawithinproductdesign,PLMhasamanagementfocusingondata,

processesandapplicationsforthewholelifecycleofaproduct.PLMisanintegrated

approachincludingnotonlyitems,documentsandBOM,butalsoanalysisresults,

specifications,engineeringrequirements,manufacturingprocesses,product

performanceinformation,suppliersandsoforth.PLMisalsoasystem.Amodern

PLMsystemhascapabilitiesofdesignworkflow,programmanagement,andproject

controlandspeedupoperations.Theweb-basedsystemcannotonlyaddressonly

onecompanybutitalsoenablesglobalcollaborationsbetweenmanufacturers,

suppliersandcustomers.PLMisacollaborativebackboneallowingpeopleof

differentfieldstoworktogethereffectively[24].

11

Ideation Design Production Services

InformationManagement

ProcessManagement

ApplicationIntegration

DocumentManagement ComponentManagement BOMManagement WorkflowManagement ClassificationManagement ChangeManagement

ProjectManagement RequirementManagement ManufacturingProcessManagement MaintenanceandRepairOperationManagement SupplyChainManagement IntegrationwithCAx,ERP,SCM,etc.

Visualization

Collaboration(Customers,Suppliers,OEMs)

DataAnalytics&Reporting

PLMDatabase

PLM

Figure2.1PLMarchitecture

UsuallyPLMintegratesdataprocessmetamodelmanagedbyadatabaseand

acentralcontrolleddatavaultforthestorageofallcreatedproprietarymodelsand

documents(e.g.CADmodels,documents,),Figure2.1.PLMmethodandtoolscanbe

clusteredintothreegroups[25]:

• Informationmanagement(e.g.methodsforidentifying,structuring,

classifying,modelling,retrieving,sharing,disseminating,visualizing

andachievingproduct,processandprojectrelateddata)

• Processmanagement(e.g.methodsformodelling,structuring,

planning,operatingandcontrollingformalprocesseslikeengineering

releaseprocess,reviewprocess,changeprocessornotification

processes).

12

• Applicationintegration(e.g.methodsfordefiningandmanaging

interfacesbetweenPLManddifferentapplicationlikeCAD,CAM,

Computer-AidedEngineering(CAE)andintegratedenterprise

softwaresuchasEnterpriseResourcePlanning(ERP),SupplyChain

Management(SCM)).

Figure2.2Relevantsoftwareusedindifferentdesignaction

AstrongadvantageofPLMisitsapplicationintegrationwithdataprovided

withdifferentITsystemsusedbydifferentdepartmentsofenterprise,Figure2.2.

Computer-aideddesign,manufacturing,andengineeringsystem(CAD,CAM,CAE)

usedforproductandprocessdesign;materialrequirementsplanning,advanced

production,manufacturingexecution,andenterpriseresourceplanningsystems

(MaterialRequirementPlanning(MRP),AdvancePlanningandScheduling(APS),

ManufacturingExecutionSystem(MES),ERP)usedformaterialsandproduction

13

processplanning;andsupplychainmanagementandcustomerrelationship

managementsystems(SCM,CustomerRelationshipManagement(CRM))usedfor

dataandcommunicationsmanagementwithcustomersandsuppliers.

Overall,PLMinthemoderneraissometimesinterpretedasa“systemof

systems”.Vendorsdefinedas‘PLMsuppliers’comefromthreediversebackgrounds

andareadoptingstrategiestoexpandtheirpastfoci.Theseinclude[26]:

• SiemensandDassaultSystèmes,fromthedigitalengineeringworld

tryingtoconnecttotheoperationmanagementprocesses.

• SAPandOracle,fromERPworldattemptingtoconnecttodigital

manufacturingandengineeringtoolsandplatforms.

• Windchill,fromgenericinformationandcommunicationstechnology

(ICT)worldaimingatestablishingcollaborativeenvironmentsfor

integration,basicallyusingwebtechnology.

2.3ProductStructureinPLM

Aproductmodelcanberepresentedindifferentstructures.Differentusers

willalsoworkwithdifferentstructures.Forexample,engineering,accounting,

productionmanagement,andassemblymayallhavedifferentrequirementsforthe

BOMstructures.Fordesigner,throughoutthedevelopmentprocess,designchanges,

componentsaremodified,productsarerestructuredandprojectstatusisupdated

accordingly.

Toefficientlyconsiderenvironmentalassessmentduringproduct

development,aCAD-likeproductstructurewillbeservedasthefoundationofthe

14

utilizedmodel.Themostimportantdefinitionsforsuchastructureislistedbelow

[27]:

• Aproductstructureconsistsofassemblies,parts,andfeatures.

• Assemblies,parts,andfeaturesarecomponentsoftheproduct.

• Assembliesconsistsofsubordinateassembliesandparts.

• Partsconsistoffeaturesandhaveanassignedmaterial.

• Featurescanbespecializedtospecifickindsoffeatures.

• Eachcomponentcanbesubordinatetoonlyoneothercomponentto

ensureahierarchicaltreestructureratherthananetwork.

Mostproductmodelsthatareusedwithinmodern3DCADsystemsfollow

theserules,sometimeswithsmalldeflections[28].Anenvironmentalassessment

thatisbasedonthesamestructuralitemscouldeasilytransformandreuseexisting

productpresentationdirectlyfromCADorPLMsystems.

2.4LifeCycleAssessment(LCA)

LCAisa“cradletograve”approachforassessingindustrialsystems.“Cradle

tograve”meansresourcesfirstlymustbeextractedfromearthandconvertedinto

materialorcomponentsfromwhichtheproductismade,infrastructuremust

provideitsfunctiontotheplantandemployees.Whentheproductenteritsendof

lifestage,thematerialsaretoberecycledorreturnedtoearth.LCAincludesfive

stagesof:rawmaterialextraction,manufacturing,distribution,useandendoflife.

LCAevaluatesallstagesofaproduct’slifecyclefromtheperspectivethattheyare

interdependent.Itenablestheestimationofcumulativeenvironmentalimpacts

resultingfromallstagesintheproductlifecycle,oftenincludingimpactsnot

15

consideredinmoretraditionanalyses.Byevaluatingtheimpactsthroughoutthelife

cycle,LCAprovidesacomprehensiveviewoftheenvironmentalaspectsofthe

productorprocessandamoreaccuratepictureofenvironmentaltrade-offsin

productandprocessselection[29].Itisatoolforrelativecomparison,therebyitcan

beusedbydecisionmakerstocompareallmajorenvironmentalimpactsinthe

choiceofalternativecoursesofaction[30].

TheInternationalStandardsOrganization(ISO)startedastandardization

processforLCA[31].Fourstandardsweredevelopedforlifecycleassessmentand

itsmainphasesandissuedinISO14000seriesofstandardsforEnvironmental

Management.TheframeworkforLCAisshowninFigure2.3.

Figure2.3ISO14040Lifecycleassessmentframework

AsillustratedinFigure2.3LCAisaniterativeprocess.

• Goalandscopedefinition:goalandintendeduseofLCAisdefined,

andtheassessmentisscopedintermsofboundariesofthe

productsystem.

• LifeCycleInventory(LCI):Alifecycleinventoryisaprocessof

quantifyingenergyandrawmaterialrequirements,atmospheric

16

emissions,waterborneemissions,solidwastes,andotherreleases

fortheentirelifecycleofaproduct,process,oractivity.

• LifeCycleImpactAssessment(LCIA):theevaluationofpotential

humanhealthandenvironmentalimpactsoftheenvironmental

resourcesandreleasesidentifiedduringtheLCI.Itattemptsto

establishalinkagebetweenproductorprocessanditspotential

environmentalimpacts.

• Interpretation:InterpretationisthephaseoftheLCAwherethe

resultsoftheotherphasesareinterpretedaccordingtothegoalof

thestudyusingsensitivityanduncertaintyanalysis.

Computer-aidedtoolstosupporttheapplicationofLCAcanbedividedinto

twomajorgroups[32].Firstly,variousgeneralinventoriesarepre-compiledtobe

usedtoperformLCAlater.Suchinventoriescontaindatasetsrelatedtogeneral

processes,likeresourceextraction,energysupply,materialsupply,chemicals,

metals,wastemanagementandtransportservices.Eachdatasetcontainsgeneral

descriptiveinformationalongwiththedetailedinput/outputdata,parameterized

withrespecttoareferenceunit.ExamplesofsuchdatabaseareEcoinvent[33],ETH-

ESU96[34],etc.Secondly,varioustypesofanalysistoolsaredevelopedand

implemented.Suchtoolsallowusertodescribetheprocessunderinvestigationin

termsofelementaryprocesses,eventuallyclusteredandrelatedtoeachother,in

ordertodefinemorecomplexprocesses.Theusercanthenparameterizethe

differentprocessesbysettingtheallocationvalues,andselecttheappropriateeco-

indicatortobeusedtoperformtheimpactassessment.Examplesofsuchtoolsare

SimaPro,GaBiandOpenLCA.

17

LCAsoftwarewillsignificantlysavetimetocollect,analyzeandmonitora

product’senvironmentalperformance.LCAsoftwareisdevelopedtosupporttheISO

framework.Sincecollectionofdatafortheenvironmentalexchangebetween

processesandenvironmentisnormallylabor-intensive.ThedatabasewithinLCA

softwarestoresdatainaunitprocesswhichallowsthemtobeusedasbuilding

blocksindifferentlifecyclemodels.Thedataisusuallyaboutthemostimportant

processes(manufacturing,transportation,recycle)andmaterial(metal,plastic,etc.).

Asfortheinterpretationpart,LCAsoftwarecangivedesignersdirectviewthrough

aggregationofnumbersandgraphs.Somealsohavescenarioanalysiswhichhelps

designtoreduceenvironmentalimpactsbychangingcertainaspectsoftheproduct

systemthatyoumodelled.

2.5OverviewofSustainabilityandSustainableDesignMethodologies

Sustainabilityisnotonlyaboutenvironment.Itsimultaneouslyaddressesthe

socialimpacts,theenvironmentalimpacts,andtheeconomicimpactsofthe

company’sactivitiesasintroducedintheconceptofTripleBottomLine(TBL)[35].

Figure2.4Thedimensionsofsustainability

18

AsshowninFigure2.4,theintersectionofthreespheresliesthemost

sustainableproductthatbalanceeconomic,socialandecologicaldimensions.Many

organizationshaveadoptedtheTBLframeworktoevaluatetheirperformanceina

broaderperspectivetocreategreaterbusinessvalue[36].Integratedsustainability

triangleisonesuchtoolthatdoesnotonlyprovideawaytoquantifysustainable

performanceofaproduct[37],butalsointroducesanappropriateinstrumentfor

thesystemizationandevaluationoftheperformanceofacompanyregarding

sustainabilitymanagement[38].

However,traditionallybusinessesmaintainastrongfocusonfactorsthat

haveaclearanddirecteffectontheireconomicperformance.Severalsustainable

designmethodologies,suchasLifeCycleDesign(LCD),DesignforEnvironment

(DfE),thattrytobalancebetweenthreeaspectsinTBLaredeveloped.These

methodologiesuseenvironmentevaluationtoolsincludingLCAtodeterminethe

environmentalperformanceofaproduct.

LCDisatermwhichhascometohaveagreatdealofoverlapwithDfE[39].It

isanapproachformoreeffectivelyconservingresourcesandenergy,preventing

pollution,andreducingtheaggregateenvironmentalimpactsandhealthrisks

associatedwithaproductsystemwhichintegratesenvironmentalrequirements

intotheearliestphasesofdesignandbalanceswithotherrequirementslike

performance,cost,cultural,andthelegalcriteria.Conceptssuchasconcurrent

design,cross-disciplinaryteams,multi-objectivedecisionmaking,andtotalcost

assessmentareessentialelementsofit[40].

19

Table2.1Optimizingstrategiesonproductlifecycle

LifeCycle DfEStrategies SpecificStrategies

Rawmaterial

Materialuseoptimization

Designforresourceconservation-Reductionofmaterialuse-Userenewablematerial-UserecycledandrecyclableDesignforlowimpactmaterial-Avoidtoxicorhazardoussub.-Useoflowerenergycontent

Manufacturing

Cleanmanufacturing

Designforcleanerproduction-Minimizethevarietyofmaterial-Avoidwasteofmaterial-Selectlowimpactancillarymaterialandprocess

Distribution

Efficientdistribution

Designforefficientdistribution-Reducetheweightofproduct-Reducetheweightofpackaging-Ensurere-usableandrecyclableTransportpackaging-Ensureefficientdistribution

ProductUse

Cleanuse/operation

DesignforenergyefficiencyDesignformaterialconservationDesignforminimalconsumptionAvoidanceofwasteDesignforlow-impactuse/operationDesignfordurability

EndofLife

EndofLifeoptimization

Designforre-useDesignforre-manufacturingDesignfordisassemblyDesignforrecyclingDesignforsafedisposal

DesignforEnvironment(DfE)isasystematicconsiderationofdesign

performanceintermsofenvironment,healthandsafetyobjectivesoverthefull

productandprocesslifecycle.EstablishinganappropriateDfEstrategyfor

designingasustainableproductiscrucialindeterminingtheenvironmentalaspects

oftheproduct[41].DfErequiresthecoordinationofseveraldesignanddata-based

activities,suchasenvironmentalimpactmetrics,datamanagement,design

optimizationandothers[42].Exampleofenvironmentalimpactmetricsor

20

methodologiesforderivingthemaregivenbyVeroutisetal[43]andO’Shea[44].

Therearealsogeneralguidelinesfordevelopingenvironmentalfriendlyproducts,

suchasthe“TenGoldenRules”[45].Theenvironmentalimpactsofaproductcanbe

reducedthroughasetofDfEstrategiesofoptimizingeachstageofproductlifecycle

asshowninTable2.1[46].

DespitethemanyexistingDfEmethodsandtools,theiruseisstilllimited.

Smallandmedium-sizecompanieshaveexperiencewithDfEprojects,butthey

rarelyleadtotheuseofDfEinordinaryproductdevelopment[47].Mostcompanies

donottreatDfEasamanagementissue.Finally,itiscommonthatwhenacompany

doespracticeDfE,thefocusisonenvironmentalredesignofproductinsteadofthe

developmentofnewproducts.Givenallthis,thepotentialbenefitsofDfEhavenot

beenrealized[48].

2.6Multi-criteriaDecisionMaking(MCDM)

Asmentionedabove,asustainabledesignshouldbalanceenvironmental,

performance,cost,culturalandlegalrequirements.Theintegrationof

environmentalconsiderationsmustfinditsplaceamongmanyotherpriorities

consideredinthedevelopmentofanewproductasshowninFigure2.5.Usually,

someofthesecriteriacannotbeconsideredintoamonetaryvalue,because

environmentalconcernsofteninvolveethicalandmoralprinciplesthatmaynotbe

relatedtoanyeconomicuseofvalue.Selectingfrommanydesignalternativesoften

involvesmakingtrade-offs.Nevertheless,considerableresearchofMCDMhasmade

availablepracticalmethodsforapplyingscientificdecisiontheoreticalapproaches

tocomplexmulti-criteriaproblems.MCDMmethodhasbeenutilizedtoiteratively

21

solveengineeringproblems[49].TheapplicationofMCDMinengineeringdesign

canbefoundinmanyliteratures[49][50][51].

Figure2.5Designattributesconsideredinnewproductdevelopment

Multi-attributeutilitytheory(MAUT)orAnalyticalHierarchyProcess(AHP)

arebothdecision-makingtechniquesthatbeingutilizedtoiterativelysolve

engineeringproblems.Theyemploynumericalscorestocommunicatethemeritof

oneoptioncomparedwithothersonasinglescale.Scoresaredevelopedfromthe

performanceofalternativeswithrespecttoanindividualcriterionandaggregate

intoanoverallscore.ThegoalofMAUTistofindasimpleexpressionfordecision-

makerspreferences.MAUTtransformsdifferentcriteria(cost,environmentalindex,

performance,etc.)intoadimensionlessscale(0-1)ofutility.Utilityfunctionforeach

criteriaconvertthecriteriaunitsintothe0-1utilityscaleandarecombinedwith

weightingfunctionsofthecriteriawithintheoveralldecisiontoforadecisionscore

22

foreachalternative.MAUTreliesonthedecisionmaker’spreferences.Thegoalof

decisionmakersistomaximizeutility[52].

Priortothisresearch,HypotheticalEquivalentsandInequivalentsMethod

(HEIM)[53]wasusedforconceptselectioninsustainabledesignwithinthe

researchgroup.Also,amethod[54]thatexpandsHEIMtohandlemulti-leveland

multi-attributetrade-offswasdeveloped.Thesepreviousstudieshaveprovedthe

usefulnessofHEIMinsustainabledesign.Inthisresearch,HEIMwasalsousedfor

decision-making.

Theselectionofbestconceptindesigndecision-makingdependsonweights,

sameasMAUTandAHP.Asitcanbedifficultforadecisionmakertoexplicitlystate

theiraccuratepreference,HEIMwasformulatedtodeterminethedecisionmaker’s

trueweightsimplicitlybyrankingasetofhypotheticalalternativesinorderto

assessattributeimportance,anddeterminethemdirectlyfromadecisionmaker’s

statedpreferences[55].Whenapreferenceisstated,suchas“Ipreferhypothetical

alternativeAoverB”,constraintsareformulatedandanoptimizationproblemis

constructedtosolvefortheattributeweights.Theweightsaresolvedby

formulatingthefollowingoptimizationproblem,

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓 𝑥 = 1 − 𝑤.

/

.01

2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜ℎ 𝑥 = 0(2.1)

𝑔(𝑥) ≤ 0

where,theobjectivefunctionensuresthesumoftheweightsisequaltoone.Xisthe

vectoroftheattributeweights,nisthenumberofattributes,𝑤. istheweightof

23

attribute𝑖.Theinequalityconstraintsarebasedonasetofstatedpreferencesfrom

thedecisionmaker.IfthedecisionmakerpreferhypotheticalalternativeAto

alternativeB,forexample,

𝐴 > 𝐵(2.2)

then,theirvalueofalternativeAisgreaterthanthatofalternativeB,whichcanbe

expressedas

𝑉(𝐴) > 𝑉(𝐵)(2.3)

Finally,theinequalitycanbeformulatedasaninequalityconstraintforthe

optimizationproblem,asshowninEq.2.4

𝑉 𝐵 − 𝑉 𝐴 < 0𝑉 𝐵 − 𝑉 𝐴 + 𝛿 ≤ 0(2.4)

The𝛿inEq.2.4isasmallpositivenumberincludedtotransformthestrict

inequalitytothemorestandardconstraintsrepresentation ≤ whileensuringV(A)

isstilllargerthanV(B).

Theequalityconstraintsaredevelopedbasedonstatedpreferenceof

alternativesequally.Theirvalueisequal,givingthefollowingEqn.2.5

𝑉 𝐴 = 𝑉 𝐵 𝑜𝑟𝑉 𝐴 − 𝑉 𝐵 = 0(2.5)

Thevalueofanalternative(alternativeAinthiscase)isgiveas

𝑉 𝐴 = 𝑤.𝑟H.(2.6)/

.01

where𝑟H. istheratingofalternativeAonattribute𝑖.

24

Finally,theoptimizationprobleminEq.2.1canbesolvedinordertofindthe

trueattributeweightsusingEqn.2.4,todetermineascoreforeachalternative.

AnormalprocessofexecutingHEIMincludes:1)Identifytheattributes,2)

Determinethestrengthofpreferencewithineachattribute,3)Setuphypothetical

alternatives,4)Normalizethescaleandcalculatethevalueforeachalternative,5)

Formulatethepreferencestructureasanoptimizationproblem,6)Solveforthe

preferenceweights,7)Makeadecision.

2.7DecisionSupportforSustainabilityinPLM

LCAhasbecomeaninvaluabledecision-supporttoolthatcanbeusedby

manufacturers,suppliers,customers,policy-makersandotherstakeholders[56].

However,applicationofLCAanditsintegrationintodecision-makingprocesses

havenotbeenaswidespreadasexpected.Duringtheproductdevelopmentprocess,

designersworkincollaborationwithdifferentdesignparticipants,asaresult,the

developmentofadecision-supportsystem(DSS)tosupportaneco-designapproach

mustthereforeconsiderthenatureofthedesignwork,thesequenceofactivities,

thevalidationprocessandtheshareresponsibilitieswithinthecorporationinorder

tobeefficient[57].PLMmanagesandstoresproductdata.However,facedwitha

hugeamountofinformation,thelackofdecisionsupportleavesdesignerslooking

foraproperwaytomakeadecisioninsteadofusingpastexperienceinmostofthe

cases.Golovatchevetal.[58]alsoproposedanextgenerationPLMIT-architecture

thatsupportsPLM-processinthedimensions:Decisionsupport,Operational

supportandintegrationofsupplementalbusinessapplications.Thus,adecision-

supportsystemseemsnecessarytobeusedwithinthePLMenvironment.

25

ThemainpurposeofaDSSistogatherandconsolidatedatainorderto

providemanagementwithaggregatedinformationontheproductlifecycle.They

canhelpgenerateandguidethepreferenceofstakeholdersintoorganized

structuresthatcanbelinkedwithothertechnicaltoolsfromriskanalysis,modeling

andcostestimations.Theyalsoprovidegraphicaltechniquesandvisualization

methodstoexpressthegatherinformationinunderstandableformats.Fewofthem

havebeenconnectedwithPLM.

Poudeletetal.[59]assertsthatdesignersnotonlyrequireatooltosupport

theassessmentofdifferentalternatives,buttheyalsoneedadatabasetostoreallof

thealreadytestedsolutions.Andtheyalsosetoutseveralmainrequirementsfor

suchDSS:

• Thetoolshouldallowdesignerstocomparedifferentdesign

alternativesintermsofenvironmentandcostperformances;

• Thetoolshouldbesimpletouseandfitperfectlyintodecision-making

process;

• Thetoolwillbebasedonrigorousenvironmentalmetricssupported

byanLCAapproach;

• Theresultsobtainedfromthetoolshouldbesimpleenoughtobe

understood.

EventhoughproposingaDSSinPLMisnotthefocusofthisresearch,the

authorisstillasupporterofthisthought.Sointhiswork,asimplifieddecision

supportmoduleusingaspreadsheetuploadedintoPLMisincludedinthe

integrationsystem.ThesimplifiedDSSstoresthedesignattributesoftestedand

untestedalternatives.TheseattributesareeitherextractedfromPLMorcollect

feedbacksfromLCA.Then,theseresultsarenormalizedandcombinedwithweights

26

calculatedfromHEIM.Optimalalternativeswillbefinallyselectedbasedonthe

preferencesofthedecisionmaker.

27

CHAPTER3

STATEOFTHEART

ThischapterintroducescurrentsolutionsonPLMandLCAintegrationand

alsoCAD/LCAintegration,includinginterfacedapproachandintegrationapproach.

Finally,besidesLCA,someotherwaysofintegratingenvironmentalassessmentin

PLMareintroduced.

3.1OverviewofLCAintegratedwithPLM/CAD

Normally,integratingtwosystemsisthroughinterfaceapproachor

integrationapproach.Theinterfaceapproachismostcommon.Itusuallyinvolves

twostandalonesystemexchanginginformationbetweeneachother,suchasPLM

andCADsystem.OnecanuseCADsystemtobuildmodel,drawings.Through

interface,modelsordrawingscanbeopenedandmodifiedinPLMsystem.Interms

ofintegratingLCAwithPLM,thereissomeresearchdonebothontheinterfaceand

integrationapproach.However,existingresearchoutcomesseemtofocusmoreon

theintegrationofLCAwithCADratherthanPLM.

3.1.1Interfaceapproach

Mathieuxetal.haveproposedthe“DEMONSTRATOR”[60].Itisaprototype

oftoolbasedonfeaturetechnologyinextractingCAD/PDMdata,fromCATIAv5

(CAD)toEIME(LCA).Theidentifiedbenefitsofthisinterfaceare:timesaving,more

datacollected,datakeyed-inonlyonce.However,thelimitationsarethatallthe

environmentaldatarequiredbytheLCAtoolcannotbelocatedintheCADandPLM

system,mostofthedataarerelatedtoproductstructure(componenttree,mass…)

ratherthanproduct&correspondingprocessesinotherlifecyclephases:

28

manufacturing,transportation,use,endoflife.Thisworkhasdemonstratedthata

directconnectionbetweenCADandLCAtoolsprovideslessinformationthanusing

PLMbutmostoftheadditionalcollecteddataarenotlocatedinthePLMwitha

directlink.TheinformationisinattachedWorddocumentsorexpertapplications

[61].Consequently,thenecessarydatatocarryoutaLCAstudyisnoteasytoobtain.

PernexasandGreenDeltaproposedandimplementedaninterfacecalled

“eLCA”[62]wasdevelopedthatallowsadynamicaccesstotheLCAtoolfrom

ENOVIAusingtwonewPDMtypes:LCAProductSystemwhichmakesthelinkwith

someproductsystemdefinedintheLCAandLCAContainerwhichmakesthe

inheritanceofaLCAproductsystemforapartdependingitpartfamily.Thelimits

arethatdataregardingeachpartaremanuallysetthroughtheirtwonewPDMtypes

andthenaLCAresultcanbeacquired.Alsodesignersmaybefacedwithasituation

thatanovelpartdoesnotbelongtoanyproductsystemdefinedintheLCAtool.In

otherwords,environmentaldataaboutapartcannotbesetupthroughsimulationof

howitwillbemade.

Maroskyetal.[63]presentedthestructureofanalgorithmthatallowsa

mutualtransferofdatabetweenCADandLCA,thistransferisbasedonextracting

datafromCADmodel.TheyproposedthatdataformatsofCADandLCAhaveto

exchangeable.Dataaboutproductspecificationsthatcannotbeprovidedbythe

productmodelbutisneededasdatainputforLCA,shouldbeprovidedbytheLCA

database.Inthesameway,Cappellietal.[64]proposedaframeworkthatisbased

ontheanalysisofthetreestructureofCADprojectcomposedofassemblies,

subassemblies,partsandfeatures,andconsiderthatfeaturesrepresentdata

29

associatedwithassemblymodelthatcanbestoredinCADfilesorinaspecific

database.Afterthat,theydeveloped“EcoCAD”.Theinformationinputwayfor

environmentalassessmentmakesitnottostudytheoverallimpactofacomplex

productbutratherpreventmostoftheworseenvironmentalerrorsduringthe

virtualdesignphase.

Similarly,Computer-AidedLifeCycleInventory(CALCI)tool[65]was

developedtoprovidearchitectureandauserinterfacetoassociateentitiesofPLM

systemcomponentswithentitiesofLCAsoftwareandlifecycledatabases.However,

useofSimplifiedLCA(SLCA)andmissinglifecyclestagesmakeresultsaccuracy

remaintobeseen.Morbidonietal.[66]developsanewsoftwaretoolwhich

integratesdatafromdifferentdesignsupportingsystemusingSLCA.Thedifference

fromCALCIisthatitconsidertheassessmentofthecompleteproductlifecycle.

3.1.2Integrationapproach

Currently,thereisnoLCAthatisembeddedwithinPLM.Therearemany

researchesonLCAintegratedwithCADsystem.Ottoetal.[67]introduceda

frameworkfortheintegrationofdatafromaproductmodelandanLCIdatabase.It

allowsefficientdataretrievalofLCIrelevantproductinformationandprovidesa

toolforpracticalevaluationofdigitalproductmodelsandprocessmodels.

DassaultSystèmesSolidWorksincludesSolidWorksSustainabilityand

SolidWorksSustainabilityXpresstoprovideacompletedashboardofLCA

informationfordeterminingtheenvironmentalimpactsofpartorassemblydrawn.

ItallowsLCAanalysesinrealtimeonpartsorassemblyandreplacementof

comparablematerialsinrealtimetoseehowtheyaffectenvironmentalimpact[68].

30

Also,EcologiCAD[27]worksasastandaloneassessmentsystemthatinconjunction

withCADsystemforecologicalassessmentduringdevelopmentstages.Thelackof

thissolutionishisdependencetotheCADsystemusedinthiswork.

ThedrawbacksofcurrentlyCADintegratedwithLCAsystemsarethatthey

useSimplifiedLCA(SLCA),whichneglectsthewholelifecycle(inparticularuseand

endoflife)andlackofdetailedestimationonmaterialusedandmanufacturingcycle

impact.LiteratureshowsthatSLCAsystembasedonintegrationofCADtoolswith

LCAdatabasesaredeeplyinaccurate,comparedwithdedicatedLCAtools.

Hochschorneretal.[69]evaluatedtwosimplifiedLCAmethodsandcomparedtothe

resultsofaquantitativeLCA.Theyconcludethatasimplifiedandsemi-quantitative

LCAcanprovideinformationthatiscomplementarytoaquantitativeLCA.They

suggestthatasimplifiedLCAcanbeusedbothasapre-studytoaquantitativeLCA

andasaparallelassessment,whichisusedtogetherwiththequantitativeLCAinthe

interpretation.

3.1.3SeveralConceptsofLCAIntegratedwithCAD/PDM/PLM

Exceptfortheexistinginterfacedorintegrationsystems,therearealsomany

conceptsproposedfortheintegrationofLCAwithdifferentsystems.

AframeworkisintroducedfortheintegrationofCADmodels,EDM/PDM

databasesandLCIdatabases[70].EfficientandsemanticallymappingofCAD

modelsdataintoLCI-relevantdataisrealizedbyusingLCIprocess-relevant

attributesandfeaturetechnology.

Knowledge-basedapproximatelifecycleassessmentsystem(KALCAS)[71]

isdevelopedwithaimofimprovedesignefficiencybymanaginghigh-levelproduct

31

information.Itconsistsaproductinformationmodule,LCAmodule,databaseand

knowledge-basedapproximateLCAmodule.Itprovestheinformationexchangeof

differentdomainscanbefeasibleandvaluabletothedecision-makingofdesign

alternativesbyemphasizingthecollaborativedesignenvironment.

Afour-layeredstructureEnergy-savingandEmission-ReductionLCAsystem

wasproposedbasedonInternetofThingsandBOM[72].TheconceptofbigBOMis

proposed,whichcanfacilitatetheeffectivedataintegrationandexchangebetween

theproposedsystemandexistinginformationsystem,suchasPDM,ERP,andSCM.

TheyproposedbigBOMisacombinationoftheexistingdataineachstageofthe

productlifecycle,andtheLCI-relevantdatageneratedintheprocessofeachstage

fromdesignBOM,manufacturingBOMtouseBOManddisposalBOM.

3.2OtherWaysofIntegratingEnvironmentalAssessmentinPLM

Besidestheachievementsmentionedabove,severalmethodologiesabout

integratingenvironmentalassessmentinPLMhavebeenproposed.Yousnadjetal.

arguesfullLCAstudyisnotapplicableintheearlystagesofdesignduetolackof

information.TheyproposedamethodologyofconnectingasimplifiedLCAtoolwith

PLMandERPtoevaluateanentireproductportfolio[73].Januschkowetzetal.

describeshowanLCIonaproductcanbecompiledusinganERPsystem.Itshows

thattheenvironmentaldatacanbeintegratedintoERPsystems,whichfacilitates

theregistrationofenvironmentaldataanddecreasestimeofgatheringLCIdata[74].

Eigneretal.proposedaconceptforanintuitiveandinteractiveeco-efficiency

assessmentwhichcanbefullyintegratedinPLMsolutions.Itenablesthatthe

32

increasedcomplexityduetoenvironmentalfactorsremainsmanageableand

environmentalpotentialsforaproductcanbeidentifiedandinfluencedearly[4].

33

CHAPTER4

CHALLENGES

4.1DesignParadoxofConsideringEnvironment

Inordertopreventlatechanges,useofnon-hazardousmaterialsandthe

environmentalimpactsshouldbemonitoredandevaluatedasearlyaspossible.

However,asshowninFigure1.1,theparadoxofeco-designbetweenknowledgeof

theproduct,potentialenvironmentalimprovementanddesignsolutionsusually

preventstheuseofLCAatearlydesignstageduetodataunavailability.Asaresult,a

fullLCAwillbeunfeasibleforthestudyofalternativesthatsubstantiallydifferfrom

theoriginallyassessedproduct[15].Bythetimetheproductsarematureand

enoughLCA-relevantdataareavailableforacompleteenvironmentalevaluation,

muchofthedesignspaceislocked-in.SimplifiedorstreamlinedLCAaredeveloped

tomitigatethisissue.Butitturnsouttobeinaccurateduetoexclusionofsomelife

cyclestages.Itonlyallowsforqualitativecomparisonsofalternativesatearlydesign

stage.Tomaintainaccuracy,acompletelifecycleshouldbeconsidered.

ThereareresearcherswhoproposethatanewfullLCAisnotrequiredfora

newproductifintendedenvironmentalevaluationisimplementedintheearly

designstages[75].Duringredesigningaproduct,previousmodelofproductcanbe

deployed.LCAresultsshouldbescalableifnewfeaturesareaddedinthenewer

modelinordertocalculatetheLCAresultsofthenewermodel.Incaseanew

dependentproductisdeveloped,atermLCA-familywasintroducedasasetof

productswhoseLCAsharesacommonbehaviorandcanthereforebecomparedin

somepracticalway.

34

Thus,areferenceproductofthesimilartypeorthelastgenerationproductof

thecompanycanbeusedtosolvetheinformationunavailabilityatearlystage,since

manypartswithinaproductcanbereused.Also,areferencemodelwillhelp

designerstoidentifyenvironmental“hotspots”.

4.2DifferentRepresentationofProductinLCAandPLM

Aproductcanberepresentedusingdifferentkindsofmodels.Processand

productmodelaremodels,whichareusedinLCAandproductdevelopmentwith

CAD.TheydescribetheproductfromadifferentpointofviewaslistedinTable4.1

[63].

Table4.1Differencesbetweenprocessandproductmodel

Differences ProcessModel ProductModelMainobjective Descriptionandguidanceon

processesofaproduct’slifecycle

Descriptionofaproduct’sconstructionstructureandspecificationsoftheproduct

Levelsofstructure Processesofaproduct’slifecycle

Assemblyofaproduct

Methodologicalorigin/mainareaofapplication

LCAmethodology/LCAsoftwaretools

Productdevelopment/CADsoftwaretools

InLCAsoftwaretools,eachassessmentrequiresmanualremodelingof

productdata,andthemanualassignmentofecologicaldatasets.Verybasic

principlesofutilizedmethodologyapproachesinexistingsolutionsprevent,orat

leastrestrictthedigitalintegrationintoexistinginfrastructures.Structuralitems

likeassemblies,parts,andfeatures,whichrepresenttheframeofvirtualproduct

data,arenotconsideredastheyareusedinCAD,PLMsystems,asshowninFigure

4.1.Instead,materialandprocessareusedforthemainsystemstructure.

35

StructuralitemsrepresentproductmodelinPLM

Aggregate

StructuralitemsnotconsideredinLCA,insteadmaterialsandprocessesareaggregated

Figure4.1DifferentpresentationofproductmodelbetweenPLMandLCA

ManycurrentLCAsoftwaredonotconsiderthedefinitionofanindividual

lifecycleforeachcomponent,andthenormalizationofafunctionunitbythe

definitionofanindividuallifetimeforeachcomponent.Thisresultsinhuge

complexitywhendealingwithacomplexproductsystem.Sincematerialsand

processesareaggregatedduringremodelingprocess,identificationsof

environmental“hotspots”regardingcomponentswithinproductsystembecome

difficult.What’smore,theremodelingoftheentirelifecycleofaproductincreases

developingtimecausedbycomplexityofremodelingprocessanddatakeyedtwice

duetopoorinterconnectionofLCAwithotherdesigntools.

Thus,LCAandPLMsoftwaretoolsshallbelinked,datastructuringneedsto

beconsistent.Then,productmodelinPLMcanbeeasilymigratedtoLCAand

lifecycle-relevantinformationisextractedtocompletethelifecycleofthatproduct

model.

36

4.3PropermappingsfromPLMtoLCA

ThenextbarrieristhecollectionofdatafromPLMsystemandconnectionto

LCA.TheBOMinformationfromPLMneedtobeascomplete,error-freeand

consistentaspossibleundergiveconstraintsandmustbeinareadableformatby

LCA[76].TheworkofTheretetal.[61]assertsthatadirectconnectionbetween

CADandLCAtoolsprovideslessinformationthanusingPLM.Data,suchasmaterial

typeandweight,aredefinedinCADsystem.Additionaldata,suchasusageandend-

of-lifetreatments,areusuallyattachedtoWorddocumentsorexpertapplications,

whichishardtobelocatedinthePLMwithadirectlink.Consequently,the

necessarydatatocarryoutaLCAstudyisnoteasytoobtain.

Thus,propermappingsneedtobebuiltinorderforLCAtoextractrightdata

fromtherightplace.Currently,theformatsusedinCAD/PLMandLCIarenot

exchangeable.Propertiesoftheproduct,suchasmaterialsandprocesses,needtobe

mappedtodatafromLCIdatabasetobeusedinLCA.Otherinformationthatdefined

inembeddedfilesneedstobemachine-readable.However,thisoperationcanbe

hardintermsofcomplicatedend-of-lifetreatmentscenariosforexample.Manually

inputsshouldbeallowedtocompletethelifecycle.Ifdataismissingforcarryingout

theLCA,itshouldbeaskedtoprovidethisdatabyselectingmissingprocesses.

4.4LackofcomprehensiveLCIdatabaseandStaticNatureofLCA

InordertoperformaLCAstudy,adatabaseincludingtheecologicalbalances

ofvariousmaterials,manufacturingprocesses,sourcesofenergyproduction,modes

oftransportation,end-of-lifetreatment,etc.,isrequired.Thesedata,whentheyare

notdirectlymeasured,areoftenpresupposedconditionsofthedataissuedfrom

37

regulatoryreportsandindustrialstudies[13].AlthoughtherearesomeLifeCycle

Inventory(LCI)database,likeEcoinvent,NERLU.S.LCIdatabase,itisstillhard

sometimestofindpropermaterialtypesorprocessestodescribethelifecycleof

developingproduct.Timeandmoneyarestillinvestedtofindtherightdatafilling

intotheproperplace.Anotherimportantproblemconcernsthedataupdating;the

staticnatureofLCAdatacanimpedenewproductdesignandinnovation[77].

Facingtheunavailabilityofreliableactualizeddata,thoroughstudiesofthemissing

ecologicaldata,andotherimpediments,areessential.

ButthankstoLCAbecomemoreimportantduetoeithergovernment

regulationsordemandsofhighlycompetitivemarkets,oneargumentincreasingly

heardisthatLCAwillberequiredinthenearfutureforeveryproductandprocess

[78].Thiscanpotentiallyresultinmoreecologicaldatatobedevelopedtosolvethe

problemofdatainsufficiency.

4.5DesignersLackingKnowledgeofEco-design

AnotherproblemisthedesignerslackingexpertLCAknowledgeandtime

[15].Allthedesignparticipantshavetheirownbundleofknowledge.Inaddition,

someofthemmayhaveabasicunderstandingofotherspecificdomains.Inorderto

helpallthedesignparticipantstointegratetheenvironmentalimpactintheirdesign

activities.Theywillneedadditionalknowledge.However,agenerallackof

environmentalskillsisnotedateachstageofdesignprocess[79].Consequently,itis

difficulttousetheappropriatesoftwareandtoshareaglobalunderstandingabout

thewaytheenvironmentshouldbeintegratedinthedesignprocess.Thelackof

coherencebetweentheenvironmentalstakesasunderstoodbyparticipantsfrom

38

differentdepartmentsandbyitsproviders,raisesthequestionoftheenvironmental

managementstrategy[80].

Insuchcase,theseenvironmentalresultsshouldbeapparentand

understandabletodesigners.Researchers[75]proposedthatakeysuccessfactorto

bringLCAtoearlydesignstagesisthewaytheresultsofenvironmentalevaluation

shouldbevisualized,similartoFEAmodulesintegratedwithCAD,wheresome

parametersneedtobespecifiedtoobtainvisualizedandunderstandableresults.In

termsofselectingoptimalalternatives,quantitativeresultsrepresentingthe

environmentalperformanceofanalternativeshouldbeobtainedaccompaniedby

thecompletionofdesignparametersandreadytousedirectlywithoutoverburden

designers.

39

CHAPTER5

PROPOSEDSYSTEM

Inthischapter,onewaytosolvedifferentrepresentationofproductmodelin

LCAandPLMareintroducedbyanalyzingfeaturesofassemblytree.Then,

LCAatPLM-aLifeCycleAssessmentconceptualframeworkisproposedtotransform

productmodelusedbyPLMintoprocessmodelusedbyLCAwhilemaintainedthe

productstructure.Then,asubstancecompliancemoduleisalsoproposedtomake

sureenvironmentalregulationsarecheckedearly.ThenLCAframeworkand

substancecompliancecomposetheSustainabilityModule.Asystemarchitecture

includingSustainabilityModule,PLMandotherdesignsupportingtoolsisshownat

theend.

5.1OpeningProductModelfromPLMtoLCA

Theoperationsandrepresentationsinthetwosystemsaredifferent.Inorder

tointegratethem,firstlyacommonrepresentationofproductmodelmustbeused.

However,theaggregatedmaterialsandprocessesinLCAdonotclearlyindicate

whichpartisa“hotspot”andaredifficulttochangewhenanotheralternativeis

workedout.ThemaingoalistoletLCAtoreceivestructuralitemsandusethemto

performaLCAstudy.

Insection2.3,productstructureusuallyusedinPLMisintroduced.Aproduct

structureincludesassembly,partsandfeatures.Assemblyconsistsofsub-assembly

andparts.Partsconsistoffeatures.Eachpartorsub-assemblycanbesubordinateto

onlyoneotherassemblytoensureahierarchicaltreeratherthananetwork[27].

40

Ahierarchicaltreestructurecomprisesoffourentitytypes,namelytheroot,

nodes,leafsandfeatures.Suchadatastructurebasicallyresemblesaproducttree

consistingofrootrepresentingproductandasetofassemblies(treenodes),parts

(treeleafs)andattributes(processfeatures).

Analyzingeachentityinthetreestructure,eachtypemayresideindifferent

LCAphaseswithdifferenttypeofprocesses.Forexample,apart,i.e.aleaf,is

definedasanodewithnochild.Itisproducedbyintermediatematerialsthrough

productionLCAphase.Theseintermediatematerialsaretransformedfromraw

materialsthroughrawmaterialextractionLCAphase.Then,itisassembledwith

otherpartsusingenergytoformanassembly,i.e.anode.Inthiscase,thenodecan

beassociatedtoproductionLCAphase.Bothassembliesandpartsneedtobe

transportedtocertainplaces.SobothnodeandleafhastransportationLCAphase.

Finally,partsaredisposedorrecycledindividuallyorwithinanassembly.They

finallyhaveendoflifeLCAphase.

Morbidoniandassociatesconcludethatactualdataentitiesofthosetypecan

beassociatedtoprocesstypesandlifecyclephasesasshowninTable5.1[65].

Table5.1Entity,Lifecycleandprocesstype

Entity LCAphase Typeofprocesses

Root

ProductionUse

Endoflife

AssemblyTransportation

Energyproduction

Node ProductionEndoflife

AssemblyTransportation

Leaf

ProductionEndoflife

MaterialTransformationTransportation

Feature Manufacturing Machining

41

Afterdefiningeachentityinthehierarchicaltreestructureassociatedtofive

LCAphases,aproductmodelusingstructuralitemscanbeopenedinLCAdirectly

receivedfromPLM.

5.2CompletetheLifeCycleInformationExtractedThroughProperMappings

Aftertheentitieswithinaproductmodelcanbeassociatedwithdifferentlife

cyclestages,thenextstepistoextractpropermaterialsandprocessesinorderto

completetheentirelifecycleoftheproduct.Actualdataofindividualallocation

parameterareextractedmainlyfromPLMordesignsupportingsystemsintegrated

withPLM.Mappingscouldbebuiltthroughprogrammedprocedurestoallow

automaticallyextractionfrommultipleplaces.Forexample,featureslikematerial

andvolumeshouldbelinkedtomaterialtransformationprocesses.Thisinformation

canusuallybefoundinaCADorPLMsystem.Featureslikemanufacturingmethods

areavailableinCAMormanuallyselectandassign.Otherfeaturessuchas,

transportationmodesanddistance,endoflifetreatmentscenario,canbefoundin

embeddeddocumentsattachedtoeachstructuraliteminPLM.Forthoseembedded

documents,amachine-readableformatshallbeenabledforautoextraction.If

recycleorreuseisconsidered,completeend-of-lifetreatmentscenariosshallbe

developed.Forthemissingprocessestocompletealifecycle,manuallyselection

fromanLCIdatabaseiscombinedwithanauto-extractionprocess.Table5.2shows

requirementsoflifecyclestagestocompleteaLCAstudyandplacestoextractthem.

42

Table5.2Requiredinformationforlifecycleandextractionplaces

LifeCycle Requirements ExtractionplacesRawmaterialExtraction

(Transformation)

•Material•Geometry•Volume

CAD,PLM

Production

•Manufacturingprocess•Energy•Machineselection

CAM,CAPP,PLM

Transportation •Transportationmodes•Distance

PLM

ProductUse

•Energy•Resources•Parts

PLM

EndofLife •End-of-lifetreatmentscenarios PLM

Finally,aproductmodelusedbyPLMandotherComputer-aidedtechnology

(CAx)canbekeptusingitsoriginalstructureandlifecycleinformationassociated

withdifferententitiesaremappedfromPLMtofivelifecyclestagesthatlinkedto

theseentities.Figure5.1showstheconceptofsuchmappingsfromPLMtoLCA.

PLM,CAx,etc..

Product

-transport-usage-EOL

-...

Assembly

-assembly-transport-EOL

-...

Part

-material-volume-manufacturing-transport-EOL-...

RME EOLUseTransportationProduction

...

Root Node Leaf

Figure5.1MappingconceptfromPLMtoLCA

43

5.3ProposedLCAatPLM

AconceptofaLCAframeworkthatincorporatesfivelifecyclestagesis

proposedtoreceiveproductmodeldirectlyfromPLM.Itkeepstheformofaproduct

treeandextractsrelevantinformationfromPLMandotherdesignsupportingtools.

Then,theseinformationisfilledintofivelifecyclestagesincludingRawMaterial

Extraction(RME),Production,Transportation,UseandEnd-of-life(EOL).Through

thismeans,noeffortisusedforremodelingtheentirelifecycleofaproductby

buildingacompleteLCAmodel.

AnexampleofproducttreeinFigure5.2isusedtoshowhowproductmodel

andlifecycle-relevantinformationareusedintheLCAframework.Inthiscase,Ais

therootrepresentingaproduct,Bisnoderepresentinganassembly,andC,D,Eare

leafsrepresentingsinglepart.

Figure5.2Exampleofaproductinassemblytree

5.3.1RawMaterialExtractionPhase

IntheRawMaterialExtraction(RME)block,typesofmaterialandother

geometricalpropertiesarerequired.AsshowninTable5.1,leafsintheassembly

treehavelifecycleprocessesofmaterial,transformation,transportationandendof

44

life.Sowithinthisblock,onlyleafshaveinputplace.Availableinformationcanbe

foundfrompropertiesdefinedduringCADdesignphasesorfromPLM.

Optimalmaterialselectionearlyinthedesignprocesswillimprovethe

overallimpactsofproducts.Ljungberg[81]arguedthatmaterialselectionisoneof

themostimportantfactorsthataffectthequesttoachievemoresustainable

products.HereamaterialselectionlibraryisproposedtobeusedwithPLMto

providematerialinformationtothedesigners.FinalRMEblockconceptfigureis

shownbelowusingtheexample.

Figure5.3RMEinproposedLCAframework

5.3.2ProductionPhase

Intheproductionblock,manufacturingprocessesandenergiesareneededto

manufacturetheintermediatematerialsfromRMEblocktothefinishedparts.This

isthefeatureofleafs.Besidesleafs,treerootandnodesalsohaveinputareas.The

assemblingofdifferentpartsintoanassemblyorarootmayrequireenergy.LCI

databasecontainsmostofthecurrentmanufacturingprocessesandenergy

45

consumptionwhichcanbeenoughforanevaluation.Notonlyoneprocessbutalso

multipleprocessescabeselectedorextractedbasedonthedesigninformation.

Thereisalsoaneedtobuildamachinedatabasethatcontainsalistof

processingmachinesavailableinthecompany,withspecificconsumption[82].Bya

combinationofselectionofmultipleprocessesandmachinesacompanyowns,itis

possibletomodelthecorrectandrealmanufacturingprocess.Onechallenge

mentionedabovethatLCIdatabaseswhichareneversufficientcanbemitigatedbya

customizableLCAdatabasewhichcontinuouslyupdatethelatestLCIbyadding

processes,andaddingoradjustingtheavailablemachines.Aconceptualfigureof

Productionblockisshownbelow.

Figure5.4ProductioninproposedLCAframework

5.3.3TransportationPhase

IntheTransportationblock,transportationmodesanddistancearerequired

tocompletethisstage.Alltheentitiesinthetreestructurecanbeassociatedto

transportationphaseasshowninFigure5.5.

Traditionally,whenremodelingthisstageusingLCAsoftwareormethods,

anaggregatedestimationofmodesanddistanceisusedtorepresentthewhole

46

producttransportationstage.However,byseparatingtheentireproductstructure

intoeachpart,inotherwords,separatingtheoneentirelifecycleofaproductinto

onelifecycleforeachpart,everyentityinthetreestructurecanhaveitsown

transportationmodesanddistance.Thiswillhelptounderstandhowtheselection

ofsupplierinfluencesthefinalecologicalimpacts.Thisisratherimportantinreal

world.Sincenowadays,oneproductisseldomproducedinoneplace.Theselection

ofsupplierwhileconsideringthecostandalsoenvironmentalimpactsbecomesa

problem.

Figure5.5TransportationinproposedLCAframework

5.3.4UsePhase

TheUsephasecansometimescontributemosttotheenvironmentalimpact

ofaproduct.Theuseofthefinishedproductincludesuseofresourcesorenergyand

useofcomponents.Firstly,theuseofenergyorresourcescanbeselectedprocesses

fromLCAdatabaseandassignthemtheproduct.Secondly,duetothedegradationof

thecomponentsandtheirsubsequentsubstitutionormaintenance,thereplacement

andrepairhavearelevantcontributionandcomputationoftwoormoreofthem.So

intheUsecolumn,itenablesmultipleselectionsfromprocesseslikethe

47

consumptionofelectricity,water,tocomponentstoallowthemaintenanceand

replacementphasestobeconsidered.OnlyrootcanbeassociatedwiththeUse

phaseasshowninFigure5.6.

Figure5.6UsephaseinproposedLCAframework

5.3.5End-of-LifePhase

Finally,theEnd-of-Lifestageislittlemoredifficultythantheformerstages.

Firstbarrieristhatusuallyduringthedesignstages,thefinalend-of-lifetreatment

scenariosarenotdecided.ItisnecessarytoenvisageeverypossibleEnd-of-Life

treatmentscenariosandthisprocessisusuallytime-consuming.Thesecondissueis

thereisatendencyforsustainableproductsslidingfromacradle-to-graveapproach

toacradle-to-cradleone[83].Thiscanbeseenfromseveralregulations,suchas

End-of-LifeVehicle(ELV)[refer]whichisdesignedtopromotecollection,reuseand

recyclingofvehicles.Usuallyaclosed-loopindustrialsystemimpliesthat

manufacturersdonotonlytakecareofproductmanufacturinganduse,butalsoof

howproductscanbetakenbackandtreatedattheirend-of-lifeorre-includedin

newlifecycles[84][85].Reuse,remanufactureandrecycleareofgreatimportance

48

tolowertheenvironmentalimpactsofaproduct.Gehinetal.[86]introduced3R

strategyforclosed-loopsystemnamedafteramixofthethreeEOLscenarios:Reuse,

RemanufactureandRecycle.Forexample,ifthecomponent𝑖isrecycledinaclosed-

loopsystem(itisassumedthattherecycledmaterialisusedformanufacturethe

sametypeofcomponents)orremanufactured,orreused,thenforeachusagecycle

between2and𝑢. andforthepercentageofrecoveredproduct,thematerialstage

impactissettozero.Ifthecomponent𝑖isremanufactured,orreused,thenforeach

usagecyclebetween2and𝑢. andforthepercentageofrecoveredproduct,the

manufacturingimpactissettozero.Theenvironmentalimpactattributedtoeach

lifecyclephasecanbecalculateddependingontheEOLchoices.Sointheproposed

EOLcolumn,eachcomponenthasfourchoices:Reuse,Recycle,Remanufacturing

andothertreatment(Disposal,incineration,Landfill,etc.).Morbidonietal.[66]

providesanapproachtosolveEOLtreatmentscenarios.Intheirpaper,they

proposedfirstlyintheReusechoice,thereusetimescanbespecifiedforthe

calculationofenvironmentalimpact,acomponentcanbereusedmoretimesduring

theproductlifecycle,afteritcannotbeused,theotherthreechoicescanbeselected.

SecondlyintheRecyclechoice,theusercanselect“closedloop”or“Genericrecycle”

asrecycletypes,thefirstcasethematerialisreusedforthesamecomponent

production,intheothercasethematerialisusedforotherapplications.Inthe

Remanufacturingchoice,percentageofcomponentsthatcanbeeffectively

remanufacturedisdefinedaswellasremanufacturingtimes.Aftercomponentscan

nolongerbeused,recycleandothertreatmentchoicescanbeselected.Inthelast

choice,OtherTreatment,anEOLprocess(Incineration,Landfill,etc.)canbeselected

49

fromLCAdatabase.Tosavetime,thesefourchoicescanbeassignedtoparts,

assembliesandthewholeproduct.ItisnotnecessarilytodefineEOLforeachpart.

EOLstageunlikeotherstagesstronglydependsonthetypesoftheproduct.Usually

forlesscomplexproduct,OtherTreatmentchoiceissufficient.Butforproductslike

vehicleorelectronicdevices,amixofallfourchoiceswillbeselectedanddefined.

BydefiningalltheEOLtreatmentlikethis,adirectviewofEndoflifephasewillbe

acquiredforanalyzingproductagainststrictenvironmentalregulationsduringthe

designstage.AnillustrativefigureofEOLcolumnisshownbelow,eachEOLcanbe

openedandselectfromfourchoicesanddefinerelevantdatatocompleteEOLstage.

Figure5.7EOLinproposedLCAframework

5.3.6OverallLCAFramework

AfterintroducingfiveblocksoftheproposedLCAframework,theoverallLCA

frameworkinSustainabilityModulewithinPLMisshowninFigure5.8.Eachblock

canbeopenedseparatelyforinformationinputinordertocompletethelifecycle.

Theideaofmakingenvironmentalimpactsasadependentpropertyattachedto

assembliesorpartsisintroduced.DesignerscanperformaLCAstudyjustafteran

assemblyisdesigned.Theresultswillbeusedforquickaddtotheproductand

50

comparisonwithotherassemblydesign.Whenarevisionofassemblyorproductis

workedout,anewLCAresultwillbeattachedtotherevision.Bythismeans,the

designerscanmonitortheenvironmentalimpactsdirectly.Thedependentproperty

canbevisiteddirectlyduringthecalculationofacompleteproduct,which

significantlysavecomputingtimewhendealingwithacomplexproductstructure.

RME Production TransportationEnergy Modes/Distance

Processn1/Energy Modes/Distance

Material1/volume Processn2/Energy Modes/Distance

Material2/volume Processn3/Energy Modes/Distance

Material1/volume Processn4/Energy Modes/Distance

Use EOLUsageprocesses/Components

EOL

EOL

AB

C

ED

AB

C

ED

AB

C

ED

AB

C

ED

AB

C

ED

Figure5.8OverallproposedLCAframework

SeveralworksonLCAintegratedwithCAD[27][64][65]usedacommon

ideathatcomponentsinaproducttreecanbeassociatedwithdifferentlifecycle

phases.Thisideaestablishedthefundamentalbasisforthiswork.However,these

fundamentalworksdevelopedauserinterfacethatconnectsaCADsystemandLCA,

andinputlifecycleparametersonecomponentafteranotherbyvisitingeachentity

inanassemblytreeinCADsystem.Thus,theyarestilltwostand-alonesystems.

Someofthemexcludedcertainlifecyclestagesforsimplification.

ThisworkproposedaLCAframeworkusedinaPLMsysteminorderto

retrievedatathatcannotbeprovidedbyanassemblytreeusedinaCADsystem.

51

What’smore,thisworkintegratesaproductmodelandaprocessmodel,andbrings

theminthesameinterface.Thisfeaturegivesdesignersadirectviewon

componentsassociatedwiththeirlifecyclestagesandallowsthemtoeasilyselect

andmodifydifferentprocesses.Also,thisframeworkcoversacompletelifecycle,

whichguaranteesmoreaccurateenvironmentalperformanceoftheproduct.Many

features,includingprocessmanagementandintegrationwithdesignsupporting

tools,providedbyPLMbeyondasingleCADsystemcannotonlybringdesign

participantsofdifferentexpertiseintooneplacebutalsoprovidesmore

comprehensiveinformationofaproduct.

5.4ProposedSubstanceComplianceModuleusedinPLM

Theenvironmentalconcernusuallystartswith“complyingwithregulations”.

Acertainproductbelongstoacertaincategorythatmightfallunderrestrictions.

Sometimes,theyareevenmoreimportantthanalowerenvironmentalimpacts.

Fallingtocomplywiththeseregulationsmakesproductunabletoentermarketfor

theworstcase.

Areviewofsomeoftheenvironmentalregulationsfoundtheyfocuson

differentlifecyclestages.RoHS,alsoknownas,Lead-Free,standsforRestrictionof

HazardousSubstances.Itrestrictstheuseofsixhazardousmaterialsfoundin

electricalandelectronicproducts.REACHalsoaimstoprotecthumanhealthand

environmentthroughtheidentificationoftheintrinsicpropertiesofchemical

substances.Regulationsofsuchfocusonearlierlifecyclestagesinordertomaintain

theproductdonotconsistofrestrictedmaterials.However,inrecentyears,more

andmorefocushasbeenonthereuse,recyclingandrecoveryoftheproductsafter

52

theyaredisposed.RespondingtoconstantlymoredemandingEuropeanlegislation,

notablyforelectricalandelectronicequipment,worn-outvehiclesorhazardous

substances,manufacturershavetodevelopEnd-of-Life(EOL)strategies[83].For

example,theEuropeanUnion’sEnd-of-LifeVehicle(ELV)Directive,whichcameinto

forceinSeptember2000,aimsatmakingdismantlingandrecyclingofELVsmore

environmentalfriendly.Itsetsclearquantifiedtargetsforreuse,recyclingand

recoveryoftheELVsandtheircomponents.Wasteofelectricalandelectronic

equipment(WEEE)alsofocusontheend-of-lifestagesbysettingtargetsof

collection,recyclingandrecoveryforalltypesofelectricalgoods.

CurrentsolutionsonthesemattersincludesEnvironmentalComplianceand

productsustainabilitymoduleusedinTeamcenterfromSiemens,WindchillProduct

AnalyticsfromPTCandproductcompliancesoftwarefromThinkstep.BOM

combinedwithinformationprovidedfromsuppliersenablethemtotrackand

managethecomplianceofproductsveryearly.WithBillofSubstance(BOS)

acquiredfromBOMandsuppliers,itiseasiertochecktheuseofhazardous

materialsatverystart.ComparedwithREACHandRoHS,ELVandWEEEtarget

mainlyontheendoflifephase.IntheproposedLCAframework,detailedscenarios

canbesetforeachpartorassembly.Afteranalternativeisworkedout,designers

canhaveadirectlyviewontheEnd-of-Lifephasebygeneratingadisassembly

report,recoveryrateorotherways.Eventhoughthesesettingsmaynotbefinal

ones,itsmainaimistoimprovetheknowledgeoftheproductattheearliesttimefor

designers.

53

Finally,asthecomplyingwithregulationsisthestartoftheeco-design

process,thesubstancecompliancemodulewillbeserveasagateofYESandNO.

Newalternativesthatcomplywiththerelevantregulationsaftercheckedby

substancecompliancemodulewillcontinuetheirdesignprocesses.New

alternativesthatviolatetheregulationsaftercheckingwillbemarkedandreturned

nomatterhowgoodtheirLCAresultsare.Thisprocesskeepsallthedevelopingnew

alternativescomplywithregulationsfromthestarttotheendofdevelopment

process.

5.5ProposedSystemArchitecture

Planning ConceptualDesign

DetailedDesign

EmbodimentDesign

Text&Prototype

Designprocess

PLM

CAD CAM,CAPP DecisionMaking

MaterialSelectionLibrary

ProductSpecificationBOM ManufacturingInformationembedded

inducuments

SustainabilityModule

LCAdatabase

SubstanceCompliance

Machinedatabase

feedbacks

DesignersManufacturingspecialists

DecisionMakers

Customers

ManagementWastemanagementprofessionals

LocalorGlobalEvaluation

Suppliers

Environmentalspecialist

LCA@PLM

Figure5.9Proposedsystemarchitecture

TheSustainabilityModulewillbelikeotherintegratedapplicationswithin

PLMlikeCAD,CAM,etc.AproposedsystemarchitectureisshowninFigure5.9.The

PLMserveasthefoundationforallbymanaginginformationfromallsourceto

maximizeinformationsharingandinteroperability.Informationthatareembedded

54

inthedocumentshelpstranslateneedsintodesigngoalsandcompletelifecycle

informationthatcannotextractfromCAx.Adecision-makingmoduleisaddedatthe

endfordesignattributescollectionandcomparisonofalternatives.Sinceadecision-

supportsystemislackinPLM,inthiscaseaspreadsheetisattachtoPLMfor

decisionmaking.

Thisarchitectureincludestwolevels.Firstly,thehorizontallevelisanormal

productdesignprocess.DifferentfromthedefinitionoflifecycleinPLM,i.e.from

ideation,designtoservice,thisarchitecturemainlyemphasizesitsuseduringdesign

stages.Usuallytheboundarybetweenphasesarevague.Thedesignprocessisnota

phaseafterphaseprocedure.Sometimesadetaileddesignalternativemaygoback

toplanningphaseandrestart.Themostsustainabledesignmeetsallthecriteria

definedatthestart,balancingcost,performance,environmentalimpactsandsoon.

However,duringtherealimplementation,therearealwaystrade-offs.Inorderto

getamoreoptimaldesign,theverticallevelwillhelp.Afterdesignalternativesare

workedout,theywillsendtoSustainabilityModuleforidentifying“hotspots”,check

substancecomplianceandgenerateanenvironmentalreport.Theseinformationare

feedbacktoPLMtonotifydesignersontheenvironmentalperformanceofthat

alternativeforfuturemodifications.Thesereportsarealsoattachedtoeach

alternativeandfillintothedecision-makingmodule.Sincethereisnoboundary

betweendesignstages,designerscanmakelocalorglobalevaluationanddonot

havetowaitonlyafterthelifecycleinformationofanalternativeiscomplete.Local

evaluationmeansdesignerscanevaluatefinishedassemblyorparts,whileglobal

evaluationmeansevaluateoffullproductintermsoftheenvironmentalimpacts.

55

Also,afterevaluation,instantfeedbackissentbacktoPLM.Throughconstant

feedbacks,productsintermsofenvironmentalimpactsarewellmonitored.

CombinedwithotherdesignattributesgatheredfromPLMandotherplaces,all

designattributesarestoredindecisionmakingmoduleforaholisticconsideration

ofalldesignattributes.

Anotherfeatureofthearchitectureistheparticipationofpeoplefrom

differentfields.Bringalldesignparticipantsintooneplaceiscrucialforshorten

developingtime,maximizinginformationsharingandinteroperability.There

certainlyareroleswhicharenotshownintheframework,however,thebasicideais

thatpeoplerangingfromcustomers,supplierstodesignersofdifferentdepartments

shouldhavetheirrolesintherightplaceattherighttime.

56

CHAPTER6

DESIGNMETHODOLOGY

Asustainabledesignmethodologyisproposedusingtheconceptofproposed

SustainabilityModuleintegratedwithinPLM.Thedesignmethodologycombined

withLCAatPLMmainlytriestosolvethechallengesmentionedinChapter4.Some

designstepsuseofcapabilityprovidedbyaPLMsystem.Themaindesignprocessof

themethodologyisshowninFigure6.1followedbyadetailedillustrationofeach

process.Weillustratethismethodologyisusedatearlydesignstages,where

potentialdesigngoalsandalternativesareestablishedforcomparison.

Planning&Management

Planning DesignStage Test&Prototype

UseSustainableModuleforInvestigations

FeedbackstoPLM

PLM

SustainabilityModule

SetDesignGoals

IdentifyDesignAlternatives

UseSustainableModuletoGenerate

EnvironmentalReports

CollectFeedbacks

ExecuteHEIMandSelecttheOptimalAlternative

PrepareforNewDesignInitiatives

StartingPointforNewProducts

Ifgoalsarenotmet

Step1.1

Step1.2

Step1.3

Step2.1

Step2.2

Step2.3

Step2.4

Step2.5

Step3.1

Figure6.1Proposeddesignmethodology

57

6.1BeforeDesignStage

AsshowninFigure1.1,aPLMsystemhascapabilityofdatamanagement,

processmanagementandintegrationwithotherdesignsupportingtools.Itisalsoa

collaborativebackboneallowingpeopleofdifferentfieldstoworktogether

effectively.SomeofthefeaturesprovidedbyPLMarehelpfulforexecutingeco-

designprocesses.Thus,manyauthorsagreethatPLMisthekeyconceptforthe

establishmentofeco-designprocesses[4][5][6][7].

Beforedesignstage,planningphaseexertsamajorinfluenceonallphasesof

development.Teamcoordination,strategies,needanalysisandbaselineareallneed

tosupportdesignprojects.Inthesectionsbelow,planningphasemakesfulluseof

capabilitiesofPLM.

6.1.1Step1.1:PlanningandManagement

Firstly,PLM’sprojectmanagementiscriticaltoproductdevelopmenteither

intermsofcollaborationsordevelopingtime.PLMcanhelpbuildinganeco-design

teamfromdifferentfieldsinaproject.Whentheskillsandknowledgeofmany

disciplinesareavailableduringallstagesofaproject,memberswithintheteamare

notoverwhelmedbythetaskofincludingenvironmentalcriteriaintheirdesign.

Projectmanagementalsocanhelptocreateschedulewithmilestonesand

deliverablessothatprojectarefinishedefficientlyandon-timesinceeveryone

throughouttheproductlifecyclehaswhattheyneedtogettheirworkdone

effectively.

58

Secondly,PLM’srequirementmanagementcandocumentdesign

requirementsfromdifferentsourcesfromgovernmentalregulations,standardsand

customerneedsanddeterminewhethertheserequirementsaresatisfied.

Formulatingrequirementsisprobablymostcriticalphaseofdesign.

Requirementsshouldbestatedindetailfordesignteamtotranslateneedsinto

solutions.Afterformulatingdesignalternatives,theycanbeevaluatedonhowwell

theymeetrequirements.Itisimportanttospendenoughtimetodevelopproper

requirements.

Thirdly,PLM’sdocumentmanagementcanhelpmanagealltypesoffilesfrom

specification,2D/3Ddrawingstospreadsheetsandtechnicalpublications.Withthis

feature,designrequirementsarewelldocumented,basedonwhichdifferentdesign

alternativesareformulated.Inthismethodology,comprehensiveenvironmental

profilesarealsostoredintheformofadocument.Aspreadsheet,usedasadecision-

makingmodule,isuploadedtobeusedforcollectingdesignattributesanddecision-

making.

Besidesusingthesefeatures,somemoreworkneedtobedoneduringthe

planningphase.NeedsAnalysisisusuallyperformedoffthesystem.Needscome

frommanysources,includingcustomers,researches,orexistingproductsystems.In

anycase,theneedwhichadesigncommitsmustbeclearlystatedandexisting

optionsformeetingtheneedmustbeassessed.

Thefocusofthisresearchistopursuethemostsustainablepathwaysfor

addressingneeds.Baselineanalysisofexistingproductsandbenchmarking

competitorsmayindicateopportunitiesforimprovingaproduct’senvironmental

59

performance.Foraredesigningprocess,componentsandsubassembliesarealready

availableinthereferencemodel.Wenzelandcolleaguesrefertoalreadyexisting

componentsandsubassembliesasreferenceproducts,andassumethat

environmentalinformationisalreadyavailableforthesesystems[87].Inthiscase,a

referencemodelofacompany’slastgenerationproductorproductofsimilarfamily

couldbeusedforanalysisandsolvingthedataunavailabilityatearlydevelopment

stage.Usually,productdatahavealreadybeenstoredinPLMandreadyforuse.

Environmentalprofileofthereferencemodelwillbeinstantlyavailableusing

SustainabilityModule.

However,forcompletelynewproductswithlittleinformationisreadilyat

hand,therearetwosolutionsthatcansolveinformationunavailabilityatearly

designstage.Firstly,sincenewproductareusuallybasedonexistingtechnologiesin

newcompositions,itispossibletocomposeausefulreferenceproductbyputting

existingunitsandtechnologiestogethertoformafictivemodel.Thesecondsolution

istheideaofLCA-comparisonproductfamilies(LCP-families)[88]asasetof

productswhoseLCAsharesacommonbehaviorandcanbecomparedinsome

practicalway.Eventhoughthestartingphasewilltakesometimeforacompletely

product,oncethedesignprocessisfinished,futuredevelopmentwillbecomemuch

easierandfaster.

6.1.2Step1.2:UseofSustainabilityModuleforanInitialInvestigation

Theinitialinvestigationincludesthreeparts.Firstly,anenvironmental

profileofthereferenceproductwillbegenerated.Allinformationaboutthe

60

referenceproductarestoredinPLMintheformofhierarchicaltreewithdetailed

BOMandotherLCI-relevantinformation.LCAatPLMwillreceiveproductmodel

fromPLMandextractrelevantinformationfrommultipleplacestocompletethelife

cycleofthereferenceproductandfillintothefiveLCAblocks.Muchinformationcan

beautomaticallyextracted,whiledesignerscanalsomanuallyselectLCItocomplete

thelifecycle.

However,theenvironmentalprofileofaproductisasummaryofall

environmentalimpactsthroughouttheproduct’slifecycle.Makingtheseimpact

categoriescleartonon-environmentalexpertsisquitecriticalifenvironmental

attributesaretobeusedearly.InanattempttosimplifytheLCAoutputfordecision-

making,thegreatestenvironmentalimpactshavebeenconsideredforsimplicity.

Throughnormalization,characterizationandweighting,multipleenvironmental

impactscategoriesaretransformedintoanenvironmentalindexthatindicatethe

overallenvironmentalperformanceoftheproduct.Suchaquantitativenumber

requiresnoenvironmentalexpertiseandcanbeeasilyunderstoodandusedby

designers.Theoverallenvironmentalprofilewillbehelpfultoanalyzetheproduct

improvementintermsofenvironment.Thesingleenvironmentalindexisusedfor

purposeofsupportingdecision-makingprocess.

Secondly,asubstancecompliancereportwillbegenerated.Thesubstance

complianceinSustainabilityModulewillhelptocheckwhetherthereferencemodel

complieswiththeexistingenvironmentalregulationsinordertoidentifythe

restrictions.Itwillmakesureallthecomponentswithinthereferencemodelcanbe

reusedandassembledintoanewproduct.Thesuccessofthisstepgreatlydepends

61

onthecommunicationwithsuppliers.Adirectviewatend-of-lifetreatmentofthe

referenceproductalsocanbeacquiredforanalysis.

Thirdly,themostimportantsourcesofenvironmentalimpactinthe

referencemodel’slifecycle(environmental‘hotspots’)arepointedoutinorderto

identifypotentialfocusareasforthefurtherproductdevelopment.TheLCA

frameworkseparatethewholelifecycleofaproductintoeachuniquelifecycleofa

partoranassembly.Eachuniquelifecyclewillgeneratethecomponent’sLCA.Then,

thesecomponent’sLCAresultsaretransformedintoenvironmentalindexesusing

thesamecharacterization,normalizationandweightingmethodasusedabove.

Theseindexeswillbeattachedtothecomponentsaccordingly.Thedesignerscan

compareallthecomponentswithinanassemblyaccordingtheseenvironmental

indexesandthendeterminewhichcomponentsare‘hotspots’.Also,thefivelife

cyclephaseswillnotifydesignerswhichstagesofthereferencemodelcontribute

most.

Withanoverallreportregardingtheenvironmentalperformanceofthe

referencemodel,environmentalrequirementscanbeformulated.Newalternatives

canbeidentifiedbyreplacingtheenvironmental‘hotspots’.TheLCAresultsof

referencemodelcanbealsoservedasameasureofsuccesswhenitiscompared

withnewsetsofalternatives.

6.1.3Step1.3:FeedbackstoPLM

Thegeneratedenvironmentalreportincludingenvironmentalprofile,

substancecompliancereportandenvironmental‘hotspots’arethenfedbackto

62

PLMtoallowallthedesignparticipantstoview.Managementpersoncanmakenew

environmentalpolicyandmakeenvironmentalrequirementsonthefutureproduct.

Thesubstancecompliancereportwillnotifydesignerswhetherall

componentswithinthereferencemodelcomplywithregulations.Ifsomeofthem

arevioletstheregulations,theywillhelpsetdesigngoalsonsolvingthatissue.For

othercomponents,theyaresafetobereused.

Allthedesignattributesofthereferenceproductarealsofilledintothe

decision-makingmoduleinPLM.Itwillworkasabaselinetoevaluatethe

performanceofthenewalternatives.

6.2DesignPhase

ThisdesignprocessusessomeoftheideasfromNASDOP[19]developedby

Dr.Eddywhoisincooperationwiththeauthoronthisresearch.TheNASDOP

designprocessfirstidentifiesdesignalternativesbasedondesigngoals.Then,for

eachalternative,LCAandLCC(LifeCycleCosting)areusedtoaccountforall

environmentalandcostflowstodeterminetheresultingenvironmentalandcost

attributes.Thenuncertaintiesareaccountedforduetosignificantuncertaintyin

environmentalandcostdata.HEIM(hypotheticalequivalentsandinequivalents

method)isexecutedtofindtheweightsoftheattributesbasedonthestated

preferencesofthedecisionmaker.Finally,MAU(Multi-attributeutility)valueare

computedforeachdesignalternativeandthealternativewithgreatestMAUvalueis

chosen.Ifthedesigngoalsarenotmet,newsetsofdesignalternativesareidentified

andrepeattheprocessesuntilthedesigngoalsaremet.

63

6.2.1Step2.1:SetDesignGoals

Aftertheplanningphases,designrequirements,needanalysisareall

formulatedandstoredinPLM.Aninitialinvestigationofthereferencemodelisalso

performedtogetenvironmentalrequirements.Then,designgoalsarefirstlysetin

ordertoidentifynewalternativesthatsatisfythem.

6.2.2Step2.2:IdentifyDesignAlternatives

Aftertheenvironmentalprofileofthereferenceproductisacquired,design

goalsincludingallaspectsoftheproductsuchas,cost,environmentalperformance,

feasibility,etc.mustbetakenintoconsiderationtoensurethenewalternativesat

leastgetclosetothegoals.Newfunctionalitiescanbeaddedtothereference

productinordertomeetthecurrentcustomer’sneeds.

Regardingtheenvironmentalperformances,itistimetodeterminewhether

someoftheenvironmental‘hotspots’canbemoderatedorremovedbymodifying

orreplacingcertainsolutionsinthereferencemodel.Throughthismeans,

environmentalimprovementscomparedtothereferencemodelcanbeachievedif

environmentalreportsfromPLMaretakenasanopportunitytorethinktraditional

solutions.Asforthosenon-environmental‘hotspots’,detailedinformationabout

themcanbereuseddirectlyduringthedesignphase.

Then,newalternativesareidentifiedthroughmodifyingorreplacingcertain

solutions,addingnewfunctionalitiesandreusingcomponentsinthereference

model.Materials,weightandprocessesaredetermined.Allenergyusesorpartsare

takenintoaccount.Transportationprocessesareincluded.End-of-Lifetreatment

scenariosarebuiltupbasedonestimations.

64

6.2.3Step2.3:UseSustainabilityModuletoGenerateEnvironmentalReports

Afterthestrategiesofidentifyingnewalternativesareset,theBOMofeach

newalternativeisformedwiththeuseofdesignsupportingtools,suchasCAD,and

storedinthePLMintheformofaproducttreestructure.Productproperties,such

asmaterialstypesandmanufacturingprocessescanbefoundinthePLM.

Informationonlifecyclestages,suchastransportations,useandend-of-life,are

includedintheWordfilesorothertypesofdocumentsuploadedintoPLM.

Withtheavailabilityoftheseproductdata,theentirelifecycleofthe

alternativecanbemodeledinordertogetanLCAresult.However,theproposed

LCAatPLMdoesnotneedthelifecycleremodelingprocess.Itkeepstheproduct

modelandfillslifecycleinformationassociatedwithdifferentcomponentsinthe

producttreeintofivelifecyclestages.Anenvironmentalprofileisgenerated

throughthis.Also,anotherpart,substancecompliance,intheSustainabilityModule

willcheckthesenewalternativesattheearliestwhethertheycomplywith

environmentalregulationsinordertoredesignorexcludethebadalternativesto

preventlatechange.

IfpropermappingsarebuiltfromPLMtoLCA,theLCAresultwillbe

generatedinreal-time.ItchangesthestaticnatureofLCAandletLCAdynamically

updatedwiththemodificationsinalternativessothatthedesignersareawareof

howwellnewalternativesbecomecomparedwithreferencemodelintermsof

environmentalimpacts.

65

RMERME ProductionProduction

TransportationTransportation

UseUse

EOLEOL

RME Production

MaterialsVolumes

Use

Transportation

EOL

EmbeddedFiles

BOMStructure

LCAModel

Root

Node

Leaf

Root

Node

Leaf Transformation

Assembly

Assembly

Root

Node

Leaf

Transportationmodes/Distance Root

Node

Leaf

Usageprocesses/components

Root

Node

Leaf

EOL

EOL

EOL

PLMside:

PLMside:

LCAside:

Figure6.2InformationextractionfromPLMtoLCAatPLMtoLCA

66

Thisstepisbetterillustratedwithanexample.Afteranewalternativeis

identified,aBOMiscreatedinPLM,asshowninFigure6.2.ThisBOMwillmainly

providelifecycleinformationtothefirsttwolifecyclestages,RMEandProduction.

Otherinformationthatcannotberepresentedusingaproducttreeareembeddedin

Wordfilesordocumentstoprovidelifecycleinformationtothereststages,which

areTransportation,UseandEOL.AfterpropermappingsarebuilttoconnectPLMto

thisLCAframework,alifecycleoftheproductmodeliscomplete.Thus,LCAresults

willbeavailable.

However,sincethisresearchdoesnotyetinvolveanyprogramming,itsaim

istoprovideaconceptonhowLCAcanbebestusedwithinPLMandablueprintfor

softwaredevelopers.Thus,thisconceptisachievedthroughotherwayfirst.

AnLCAmodeliscreatedwithspecificcreatingrulesusingacommercialLCA

software.InFigure6.2,fivelifecycleprocesseswhicharemarkedinredboxare

deliberatelycreatedtorepresentthefiveLCAblocksinLCAatPLM.Otherprocesses

areeitherselecteddirectlyfromLCIdatabasestoserveasinputsorforconnection

purpose.Throughthismeans,asimulationoftheproposedLCAatPLMisfirstly

achievedbyusingaLCAtoolandaPLMsystemseparately.

However,asmentionedabove,thematerialsandprocessesareaggregatedin

LCAwithoutconsideringtheproducttree.ThereisnowaytogetLCAresultson

eachsinglepartexceptforcreatingLCAmodelsofeachpartoneafteranother

manually,whichissignificantlytime-consuming.Thus,althoughtheauthor

simulatestheoperationsinLCAatPLMbyinputproductpropertiesbasedonthe

producttreeonebyone,thesamematerialsorprocessesarestilladdedtogetherin

67

theend.Duetolimitedtime,theLCAresultsofeachpartarenotgenerated.

Otherwise,theywillmakethisresearchmorecompleteontheaspectofidentifying

environmental‘hotspots’basedoneachpart.

Butthatdoesnotnecessarilymeanthese‘hotspots’cannotbeidentified.The

LCAtoolenablesdetailedenvironmentalanalysis.Whichlifecyclestagescontribute

mosttotheenvironmentcanbeeasilyidentified.Theidentificationof

environmental‘hotspots’basedonpartsrequiresextraanalysisbyopeningimpact

resultsofeachlifecyclestage.Thisprocessrequiressometime.Theproposed

LCAatPLMtendstomakethisprocessmoreapparentandeasy.

Simulationofanotherpart,SubstanceCompliance,intheSustainability

ModuleisachievedmanuallybyanalyzingtheBOMagainstenvironmental

regulations.Overall,thesimulationofSustainabilityModuleisdonebyusingLCA

andPLMseparatelyhoweverbasedoncertainrules.ThissectionshowshowaLCA

toolisactuallyintegratedwithaPLMsystem.

6.2.4Step2.4:CollectFeedbacks

Afterenvironmentalreportshavebeengenerated,PLMcollectsthem.

Differentcategoriesofenvironmentalimpacts,throughnormalization,

characterizationandweighting,aretransformedintoanenvironmentalindexand

filledintodecision-makingmoduleuploadedinPLM,inthiscase,aspreadsheet.

Theywillbeusedasoneofthedesignattributesforselectingtheoptimal.Asthe

newalternativesareidentified,otherdesignattributesareset,suchascost,

performanceandotherrelevantattributes.Thedecision-makingmodulealso

collectsthemandbringsalltheattributesintooneplace.Itisstraightforwardfor

68

designerstoviewallthedesignattributesatthesametimeandexecutethe

comparisonprocess.

6.2.5Step2.5:ExecuteHEIMandSelecttheOptimalAlternative

Atthestep,thegoalofthisresearchismet,whichisaholisticconsideration

ofenvironmentalimpactsalongthisotherdesignattributesatearlydesignstage.

Newalternativeandreferenceproductarecomparedwitheachotherfromaholistic

considerationofalldesignattributes.QualitativeandQuantitativecomparisoncan

bothbeappliedtothedecision-makingprocess.

Qualitativeanalysiscanbefirstlyusedforexcludingmostlyunlikely

alternativeinordertosavetimeforperformingaquantitativeanalysis.Ifthecost,

forexample,istheonlysignificantdifferencebetweendifferentalternatives,the

comparisonofcostswillnotrequireanydecision-makingprocess.Ifmoreattributes

areconsidered,thealternativeswillbehardtotellfromeachother.

Inthiscase,quantitativecomparisonusingMulti-CriteriaDecisionMaking

(MCDM)methodwillbeused.Multipleattributeshavealreadybeenlistedinthe

decision-makingmoduleincludingenvironmentalimpacts,costandsoon.Theycan

thenbeevaluatedasaMCDMprocessusingHEIM.Thepreferenceamongthedesign

attributesaremodeledusingHEIM.Thenanoptimizationproblemisformulated

basedonthepreferencestructure.Theproblemissolvedforweights.Finally,the

alternativewithmaximumvalueistheoptimalone.

Itshouldbenotedthatthelargestenvironmentalimprovementpotentials

arenotnecessarilyfoundamongthese“hotspots”.Theimprovementpotentialcan

bezeroifactualsolutionshavealreadybeenoptimizedtothebestsituation.This

69

canbereviewedbymonitoringtheenvironmentalimprovementsonthe“hotspots”

componentsineachalternative.Iftheirresultsarenotsodifferent,theredesign

processshouldfocusonthelesssignificant‘hotspots’.Asthedesignprocesses,the

selectedalternativeisdevelopedwithmoredetails.Theincreaseknowledgeabout

theproductmayvalidateoriginalassumptionsmadeduringtheconceptualdesign

stage,butitcouldalsorevealthatoneormoreoftherequirementscannotbemet.In

suchcase,thedesignprocessrequiresanadditionaliteration.

6.3AfterDesignPhase

Basedonthecomparisonofvariousalternativeswithdifferencepreferences,

theoptimalonesshallbeselected.Minorproblemsrevealedatthispointcanstillbe

corrected.Afterformalapproval,theestablishmentoftheproductcanbegin.

6.3.1Step3.1:PrepareforNewDesignInitiatives

Thefinaldetailsofthebestalternativeareworkedout.Detaileddrawing,

engineeringspecifications,andfinalprocessdesignarethencompleted.Whenall

detailsofthebestalternativeshavebeensettled,thefinalenvironmentalprofileof

theproductcanbegenerated.Beforeimplementation,thealternativeiscompared

toreferencemodel.Finalevaluationshouldidentifybothstrengthsandweaknesses.

Fromthesustainabilityperspective,theprofilewillserveasdocumentationforthe

environmentalpropertiesoftheproductandenvironmentaladvantageswhichhave

beenachievedcomparedwiththereferencemodel.

However,thedesignactiondoesnotendatthispoint.Productdevelopment

isacontinuousprocess.Aftertheproductentersthemarket,feedbacksmaybe

70

returnedforopportunityofimprovement.Theexistingproductsshouldbeviewed

asthestartingpointfornewinitiatives.

WithallinformationstoredandwellsetupinPLM,futuredevelopment

processcanbesignificantlyfacilitated.

71

CHAPTER7

CASESTUDY:CHARCOALGRILLREDESIGN

Inthischapter,acasestudyofredesigningacharcoalgrillisperformedto

illustratethedesignmethodologyandsystem.SincethereiscurrentlynoLCAand

PLMintegrationsystem,asimulationoftheproposedconceptisintroducedusing

LCAandPLMseparately.TwocommercialLCAandPLMsoftwareareintroduced

andshowedhowtheywillbeintegratedtosimulatetheproposedLCAatPLM,as

mentionedinSection6.2.3.Afterthesimulation,itisappliedtoaWebercharcoal

grillthatusedbyChoi[89][90].Intheirpaper,theproductlifecyclescenariofora

baselinecharcoalgrillisdefinedbasedonrealisticscenariosandassumptions.

7.1SimulationoftheProposedSystemConcept

Sincecurrently,thereisnoLCAsoftwareintegratedwithPLM.Twostand-

alonesoftwareareusedincombinationtosimulatetheproposedsystem.GaBi6

fromThinkstepisusedforevaluatingenvironmentalimpactandTeamcenter10

fromSiemensisusedasPLMsystem.AspreadsheetisuploadedintoTeamcenterto

collectdesignattributesandhelpsthedecision-makingprocess.

TheuseofGaBi6requiresremodelingprocessofanentirelifecycleofa

productbycreatingcustomizedblocks.Ineachoftheseblocks,inputsandoutputs

thatremodelthelifecycleoftheproductwillbedefined.Theseinputsusually

includematerialtype,weight,energiesandprocesses.Theoutputsarethefinal

outcome,usuallyfinishedassemblyorpart,withinthatblock.Thelastblock’s

outputservesastheinputofthenextblock.Thentheyareallconnectedtogetherto

72

completethewholelifecycle.Overall,theremodelingprocessenabledbyLCA

softwareisratheropenaslongastheusersfollowcertainrules.

RMERME ProductionProduction

TransportationTransportation

UseUse

EOLEOL

Figure7.1SimulationofLCAatPLM

However,inordertosimulatetheproposedLCAframework,thosefive

indispensablelifecyclestagesthatfollowsLCA1400seriesareprescribedon

purpose.Thosefivestages,asintroducedabove,consistsofRME,Production,

Transportation,UseandEOL,asshowninFigure7.1.Thehighlightedinredboxare

thesefivecustomizedblocksthatsimulatetheproposedLCAframework.Ineach

block,inputsandoutputsaredefinedbasedonproductproperties.Forexample,the

73

RMEblockisformedbyseveralprocessesforproducingtheparts.Theweightof

thesepartsserveasinputstoRME,asshowninFigure7.2.Otherblocksarecreating

forconnectionpurpose.Theydonotcreateanyenvironmentalimpacts.Allother

LCAmodelofotheralternativeswillfollowthiscreatingrules.

RMERME

Consists

Detailsofinputsandoutputs

Figure7.2InputsandOutputsinRME

ThedesignprocessismostlyimplementedinthePLMsystem.Andallthe

informationisstoredthereintheformofassemblytree,BOMandembeddedfiles,

asshowninFigure7.3.

74

Figure7.3DesigninPLM

Withineachblock,lifecycleinformationofeachentitytype(root,node,leaf)

associatedwithitslifecyclestagearefilledintothesefiveredboxes.Thismapping

processisdonemanuallybyreadingentityanditsinformationinPLMandwriting

themintotheLCAmodelcreatedbyGaBi.Throughthisprocess,theproposed

conceptissimulated.

ThenenvironmentalprofileswillbegeneratedandfedbackfromGaBiand

storedinTeamcenter.DesignattributesareinputintospreadsheetuploadedinPLM.

Otherdesignprocesses,suchasperformanceevaluation,decision-making,willbe

doneofftheproposedsystem.

7.2CaseStudy:BeforeDesignStage

7.2.1Step1.1:PlanningandManagement

Firstly,adesignteamisformed.Sincethiscasestudyisonlyforresearch

purpose,onlytworolesareinvolved,whichareadesignerandanadministrator.

75

TheAdministratorfirstcreatesaprojectinPLMcalledCharcoalGrillRedesign.Role

ofdesignerareassignedtotheauthorandauthoritytoaccesstodifferent

information.Requirements,designspecificationsareembeddedinWordfilesand

uploadedintoPLMforsharing.

AreferenceproductisacquiredfromChoietal.[89][90].Intheirpaper,

well-definedinformationofabaselinecharcoalgrillisavailableincludingBOM,

manufacturingprocess,useinformationandEnd-of-Lifetreatmentscenarios.They

proposeasustainabledesignmethodologyusingthebaselinecharcoalgrill.Other

informationincludemanufacturing,useandend-of-lifecanbefoundintheirwork

[90].

Figure7.4ReferenceproductinPLM

76

Then,basedonthisbaselinecharcoalgrill,allofthedetailedinformationis

inputintoPLM,asshowninFigure7.4.Theinformationthatcannotbepresentedin

theformofaBOMstructure,areembeddedintheWordfiles.

Then,generaldesigngoalbasedoncustomeranalysisandotherwaysare

concluded.Comparedwithgasgrillorelectronicgrill,ametalcharcoalgrillshould

keepitspricelowtosatisfythemarked.Itsperformanceneedtobeupgraded.Three

generalgoalsarelistedbelow:

1.Minimizethecostandkeepitbelow$100

2.Minimizetimetoheatupthecookingzonetoidealcookingtemperature

3.Minimizecookingtime

7.2.1Step1.2:UseofSustainabilityModuleforanInitialInvestigation

AfteralltheinformationaboutthereferenceproductismatureinPLM,use

theSustainabilityModuleforaninitialinvestigation.Again,sincethereisnoLCA

andPLMintegrationsystem,wewillsimulatetheproposedLCAframeworkusing

GaBi6andfilleachlifecycleblocksbasedonthebothBOMandembeddedfilesfrom

PLM.ThemappingsfromPLMtotheproposedLCAframeworkisillustratedusinga

part(Charcoalgrilllid)fromreferencemodelinFigure7.5

Thematerialandprocessestoproduceacharcoalgrilllidismappedfrom

PLMtotheproposedLCAatPLMasconnectedbyblackarrow.Intheend,bothLCA

resultswillbegeneratedonthelidpartandthewholereferencemodel.ThelidLCA

resultwillbesentbacktotheplacewhereotherpropertiesofitarestoredasa

dependentproperty.Inthiscase,itsenvironmentalimpactsaretransformedintoan

index.Thus,theideaofseparatingproductlifecycleintoindividuallifecycleofper

77

partorassemblywilleasilyhelptoidentifyenvironmental‘hotspots’.However,this

functionisnotachievedinthisresearch.Theyareidentifiedbyanalyzingthe

detailedLCAreportsgeneratedbyGaBi.Additionally,thefullproductLCAwillbe

sentbacktoPLM,includingdifferentcategoriesofimpacts.

RME Production TransportationColdrolledsteel/3.115kg

Castiron/1.835kg

Use EOL

Charcoalgrill

LidCookinggrate

Charcoalgrill

Lid

Charcoalgrill

Lid

Charcoalgrill

Lid

Charcoalgrill

Lid

Cookinggrate Cookinggrate

Cookinggrate Cookinggrate

Cutting&bendingprocess/1.5kWhelectricity

Diecasting/0.7kWhelectricity

4000km/28tontruck

30briquttes

60%recycling/40%incineration60%recycling/40%incineration

Feedbacks

LidLCA

ProductLCA

Figure7.5ExampleofmappingsfromPLMtoLCAatPLM

TosimulatetheLCAatPLM,anLCAmodelofthebaselinecharcoalgrillis

created.SameastheLCAmodelmentionedinSection6.2.3,itincorporatesfivelife

cyclestagesrepresentingfivelifecycleblocksproposedinLCAatPLM,asmarkedin

redinFigure7.6.Again,otherlifecyclestagesintheFigureareeitherservedas

inputtothestageorforconnectionpurpose.Theydonotproduceanykindsof

78

environmentalimpacts.WithineachoflifecycleprocessesintheLCAmodel,inputs

andoutputsaresetupallbasedontheinformationbasedonthereferencemodel

fromPLM.Userscanclickalltheselifecycleprocessestosetandviewinputsand

outputs,sameasshowninFigure7.2.Duetothelengthofthisthesis,onlytheLCA

modelsofallnewalternativeswillbeshowninthisresearch.Finally,asimulationof

LCAatPLMisillustratedwithFigure7.6.Thefigureshowshowthelifecycle

informationisfirstlymappedfromPLMtotheproposedLCAframework,thenusea

commercialLCAtooltosimulatetheframework.

RME Production TransportationColdrolledsteel/3.115kg

Castiron/1.835kg

Use EOL

Charcoalgrill

LidCookinggrate

Charcoalgrill

Lid

Charcoalgrill

Lid

Charcoalgrill

Lid

Charcoalgrill

Lid

Cookinggrate Cookinggrate

Cookinggrate Cookinggrate

Cutting&bendingprocess/1.5kWhelectricity

Diecasting/0.7kWhelectricity

4000km/28tontruck

30briquttes

60%recycling/40%incineration60%recycling/40%incineration

Figure7.6UseLCAtosimulateLCAatPLMwithanexample

79

AfterLCAmodeliscreatedandfilledwithlifecycleinformation,an

environmentalprofilecanbegenerated.CurrentLCAsoftwareisabletogenerate

comprehensiveenvironmentalreportsthatcoverdifferentcategoriesofimpacts.

However,inordertosolvethechallengeofdesignerslackingenvironmental

knowledge,thecategoriesofimpactsshouldbeeasyandrepresentative.The

environmentalimpactsaresimplifiedfordecisionmakingpurposes.Traci1.08

providedbyGaBi6whichincludessixcategoriesofenvironmentalimpactsisused.

Thosecategoriesinclude:GlobalWarmingPotential(GMP),AcidificationPotential

(AP),EutrophicationPotential(EP),OzoneLayerDepletionPotential(ODP),

PhotochemicalOzoneCreationPotential(POCP)andHumanToxicityPotential

(HTP).ThereferencedcharcoalgrillenvironmentalimpactsareshownasTable7.1.

Table7.1Environmentalimpactsofbaseline

Thentheenvironmentalregulationsarecheckedatthistime.Regulationslike

REACHandRoHScanbecheckedbasedonBillofSubstance(BOS).Sinceacharcoal

grilldoesnotcontainelectricalparts,regulationslikeWEEEisnotapplicabletoit.If

itiselectricalproductoravehicle,sincetheend-of-lifetreatmentscenarioshave

80

beenalreadysetupinLCAatPLM,adisassemblyreportwillbegeneratedtogive

designersdirectionknowledgeonthepercentageofrecoveryandtreatments.

Besidesenvironmentalregulations,therearealsosomedesignregulationsofa

charcoalgrill,likeEuropeanStandardEN1860-1:2013-Appliances,solidfuelsand

firelightersforbarbecuing-Part1:Barbecuesburningsolidfuels-Requirements

andtestmethods[91,92,62,92,92,92,62,62,36,36].Theseregulationsarenotin

theconcernduringthisresearch.Afterapproval,norestrictedmaterialsareused.

Allpartscanbereusedinthefuturealternatives.

Theredesignprocessinthisresearchmainlyfocusesonmodifyingor

replacingenvironmental‘hotspots’inordertomoderateorremovethem.However,

thefunctionalityofidentifyingthese‘hotspots’isnotachieved.Itisachieved

throughananalysisofimpactsindifferentlifecyclestagesinLCA.Table7.2shows

aportionofthewholeLCAreport.Wecaneasilyidentifythatusephasecontributes

totheenvironmentmost.Environmental‘hotspots’areidentifiedbyextending

thesecategoriesofimpactsandperforminganalysisonthem.Inthisresearch,four

environmental‘hotspots’areidentified,whicharegrillbowl,lid,bottomgrateand

charcoalgrill.Thesepartsmakeupmostofthecharcoalgrill’sweight.Thus,the

redesignprocessfocusonthesefourpartstowardsimpactreduction.

7.2.3Step1.3:FeedbackstoPLM

InthePLM,specificfoldersarecreatedtostorereportsfromdifferentplaces.

Alsoaspreadsheetisusedfordecision-making.

AsshowninFigure7.5,bothpartLCAandproductLCAarefedbacktoPLM.

ThendesignattributesarecollectedfromPLMandsenttothedecision-making

81

moduleuploadinthePLM.Inthiscase,theenvironmentalimpactsaswellasthe

index,afternormalization,characterizationandweighting,arestoredin“Baseline

designLCA”file.Thentheenvironmentalindexisfilledintothedecision-making

module.ThecostoftheproductisgeneratedusingBOMreportfeatureofPLMand

thenalsosenttodecision-makingmodule.Astheheatingperformanceisalso

anotherdesigncriterion,theperformanceofthereferencemodelisevaluated.A

quantitativeresultrepresentingtheperformanceisfilledtoo.Theseattributeswill

becomparedwithnewalternatives.ThecontentsisshowninTable7.3.

7.3CaseStudy:DesignStage

7.3.1Step2.1:SetDesignGoals

Firstly,thegeneraldesigngoalsarementionedabove:

1.Minimizethecostandkeepitbelow$100

2.Minimizetimetoheatupthecookingzonetoidealcookingtemperature

3.Minimizecookingtime

Then,basedontheenvironmentalprofileobtainedabove,usestageandraw

materialextractionstageareidentifiedtobethephasesthatcontributemosttothe

environmental.Thus,twostrategyofnewalternativesareworkedoutshownin

Table7.2.

Table7.2Strategiesofnewalternativesandgoals

Strategynumber DescriptionofStrategy DesignGoal

#1

Componentsfromrenewableresources

50%morerecyclingandhalfgreenhousegasimpact

#2

Efficientduringuse

1/3lessenergyduringuseand2%morematerialsandmanufacturingimpacts

82

7.3.2Step2.2:IdentifyDesignAlternatives

Regardingtheenvironmental“hotspots”identifiedearlyandlargestimpacts

fromthem,theywillberedesignedtowardsthedesigngoals.Forstrategyone,more

recyclablematerialswillbechosenforcomponents.Aluminumisamorerecyclable

materialbuthasahigherthermalconductivity,whichmeansitcannotmaintainheat

withinthegrill.Aluminumoxideontheotherhandseemsaperfectmaterialtokeep

heat.Thus,surfacetreatmentofanodicoxidationisappliedonthealuminumbowl

andlidtoincreaseheatinsulation.Forthesecondstrategy,materialwithmuch

lowerthermalconductivityisselectedformaintainheat.Thus,toachievethesame

performanceofthebaselinedesign,lesscharcoalisused.Severalpotentialmaterials

arestainlesssteel,castiron,ceramic,etc.Consideringthedesigngoals,stainless

steelisselectedasthesecondalternative.

Regardingtheheatingperformance,foradirectcookingprocess,lidand

bowlmaintainheattoenabletheinternalspacereachidealcookingtemperature

faster.Thecookinggrateconductheatdirectlytomeat.Sinceanormalgrillhasa

ratherlonglifecycle,replacingtheparts,especiallygrates,areinevitable.Castiron

gratestendtorust.Intheentirelifecycleofacharcoalgrill,severalcastirongrates

areneedediftheyarenotkeptwell.Thiswillpotentiallyincreasetheenvironmental

impactsforonecharcoalgrill.Stainlesssteelisoneofthematerialsthatdonotneed

extracareandeasytobemanufactured.Thus,stainlesssteelisusedfornew

materialascookinggratesandbottomgrates.Thus,fourconceptualalternativesare

identifiedusingdifferentcombinationsofmaterialsmentionedabove.Table7.3

showsthesefouralternatives.

83

Table7.3Maincomponentsofnewalternatives

Alternatives MainComponentsAlternative#1 AnodizedaluminumbowlandlidwithcastirongratesAlternative#2 StainlesssteelbowlandlidwithcastirongratesAlternative#3 AnodizedaluminumbowlandlidwithstainlesssteelgratesAlternative#4 Stainlesssteelbowl,lidandgrates.

Figure7.7DetailedBOMofalternative#3inPLM

Aftertheidentifications,thedesignprocessismainlyperformedinPLMto

buildBOMandotherlifecycleinformationforeachnewalternative.Forthe

alternativesthatusecastirongrates,threepiecesareassumedtobeusedinonelife

cycleofacharcoalgrill.Foralternativesthatusesstainlessgrates,oneisassumed

84

foronelifecycle.Finally,allBOMarebuilt,asshowninFigure7.7.PLM’s‘BOM

compare’lightsupthepartwithineachalternativeinredtoshowthedifferences

fromreferenceproduct.

7.3.3Step2.3:UseSustainabilityModuletoGenerateEnvironmentalReports

Afterthedesignisfinished,thesealternativeswillbesenttoSustainability

Moduleinstantlytogetreal-timeenvironmentalreports.Sameastheprocessof

performinganenvironmentalstudyonthereferenceproductusingSustainability

Module,LCAmodelsofthenewalternativesarecreatedwiththesamerulewhich

usesfivemainlifecycleprocessestosimulatethefivelifecycleblocksproposed.

TwoLCAmodelsareshownhereinFigure7.8and7.9.

Figure7.8SimulationofLCAframeworkonalternative#2

85

Figure7.9SimulationofLCAframeworkonalternative#3

Afteranalyzingallthegeneratedenvironmentalreports,norestrictedusesof

materialsarefound.Theenvironmental‘hotspots’arestillidentifiedasthosefour

parts.Someofthemincreasetheimpactscomparedwithreferencemodel,while

someofthemmoderatethe‘hotspots’.

Sincemostofthepartscanbereused,theenvironmentaldependentproperty

significantlysavescomputingtime.Theinstantenvironmentalreportsalsoreduce

developmenttimeandmakeenvironmentalperformanceofalternativesavailableat

earlydesignstage.

86

7.3.4Step2.4:CollectFeedbacks

Then,theenvironmentalreportsarefedbacktoPLM,sameastheprocessof

referencemodelsendingreportsbacktoPLM.Comprehensiveenvironmental

reportsarestoredinspecificfolderaswellasotherdesignattributes.Thenthe

environmentalindexofeachalternativeisfilledintothedecision-makingmodule.

Thesequantitativenumbersareapparenttodesignersandcanbeuseddirectlyin

thedecision-makingprocess.Theproductioncostattributesareacquiredusing

BOMreportinPLM.Theheatingperformanceisevaluatedusingcomparisons

againstthebaselinedesign.Itiscalculatedbasedonanormaldirectcookingprocess

whichmeansplacingthemeatonthegrateaftertheinternaltemperaturereaches

idealtemperaturewithlidclosedatfirst.Forsimplification,theexactcookingtime

isnotcalculated.Instead,thecookingtimeissettoTsecond.Theotheralternative’s

cookingtimeiscalculatedaccordingly.Finally,theperformanceattributesoffour

alternativesare0.74T,0.58T,2.294Tand1.798Trespectively.Thenallthese

quantitativenumbersarecollectedbydecision-makingmodule,asshowninTable

7.4.

Table7.4Designattributesindecision-makingmodule

LCA Productioncost($) Performance(s)Reference 0.7282 76.15 TAlternative#1 0.6061 83.46 0.74TAlternative#2 0.5060 92.35 0.58TAlternative#3 0.5681 80.65 2.294TAlternative#4 0.5058 89.545 1.798T

87

7.3.5Step2.5:ExecuteHEIMandSelecttheOptimalAlternative

Atfirstglance,intermsofenvironmentalimpacts,allthesealternativeshave

lowerimpactscomparedwithbaseline.Duetobettermaterialsareusedandits

manufacturingprocess,theproductioncosthaveincreasedandtheperformance

varies,too.Insummary,allalternativeshavetheirtrade-offs.Sincemostofthe

informationarealreadyindetailandreflectthetrueaspectsoftheproduct,the

executionofthemethodologyisbestaccomplishedbyanaccurateand

computationallyefficientdecisionmodel.HEIM(HypotheticalEquivalentsand

InequivalentsMethods)wasusedoninthiscasethatinvolveselectionfrommultiple

attributeshavingvariousadvantagesanddisadvantages.However,theselectionof

theoptimalalternativelargelydependsonthepreferencesofthedecisionmaker.An

underconstraintoptimizationproblemisfirstlyformulatedtocomparethewining

alternativesunderdifferentpreference.Then,moreconstraintsareintroduced

basedontheauthor’spreference,asinglerobustalternativeisfound.Theprocessof

modelingpreferencesresultingindifferentoptimalalternativeswillincreasethe

productknowledgesothattheywillbeusedforfuturedevelopment,whichwillbe

illustratedinthefinaldesignstep.

ThemainexecutionofHEIMisexecutedasfollows.Firstly,theattributesare

identifiedmainlyasshowninTable7.4.Nextstepistodeterminethestrengthof

Preferencewithinattributes.Here,weassumeriskaversedecisionmakingforLCA

results,slightlyriskproneforcostandriskpronetendencyfortheperformance

attributes.WewillusethestrengthofpreferencesasshowninFigure7.10.

88

LCA Cost($) Performance(%)

Score

Figure7.10Strengthofpreferences

Thenasetofhypotheticalalternativesareestablished.KulokandLewis[93]

deployedathreelevelL9orthogonalarraytosolveadesignproblemwiththree

attributes.Thestandardutilityvaluesineachcellcorrespondtothenormalized

mostdesirable,leastdesirableandmid-leveldesirableforeachsingleattribute.

Thus,theattributevaluesateachlevelcorrespondtosingleattributesutilityvalues

of1(mostdesirable),0(leastdesirable)and0.5.TheweightsofLCA,production

costandperformancearerepresentedwith

𝜔1, 𝜔2and𝜔Qrespectively.Table7.5showsthehypotheticalalternativeswiththeir

correspondingattributesvalues.

Table7.5Normalizedscoreforhypotheticalalternatives

Hypotheticalalternative

LCA Productioncost Performance Totalvalues

A 0 0 0 0B 0.5 0.5 1 0.5𝜔1 + 0.5𝜔2 + 𝜔QC 1 1 0.5 𝜔1 + 𝜔2 + 0.5𝜔QD 0 0.5 0.5 0.5𝜔2 + 0.5𝜔QE 0.5 1 0 0.5𝜔1 + 𝜔2F 1 0 1 𝜔1 + 𝜔QG 0 1 1 𝜔2 + 𝜔QH 0.5 0 0.5 0.5𝜔1 + 0.5𝜔QI 1 0.5 0 𝜔1 + 0.5𝜔2

89

Therealvaluescorrespondingtothehypotheticalalternativesisshownin

Table7.6.

Table7.6Realvaluesofhypotheticalalternatives

Hypotheticalalternative

LCA Productioncost($) Performance(s)

A 0.7282 92.35 2.294TB 0.6753 80.53 0.58TC 0.5058 76.15 0.823TD 0.7282 80.53 0.823TE 0.6757 76.15 2.294TF 0.5058 92.35 0.58TG 0.7282 76.15 0.58TH 0.6753 92.35 0.823TI 0.5058 80.53 2.294T

Afterthepreferencestrengthshavebeendeterminedinordertoavoidthe

flawsofassumingalinearpreferencestructure,normalizationiscarriedout,as

showninTable7.7.

Table7.7Normalizedalternativescores

LCA Productioncost PerformanceReference 0 1 0.1855

Alternative#1 0.8223 0.5089 0.5268Alternative#2 0.9998 0 1Alternative#3 0.9148 0.6893 0Alternative#4 1 0.151 0.0007

Nextstepistheformulationofpreferencestructureasanoptimization

problem.Here,thepreferencestructureisassumedasC>B>A,E>F>D,G>I>H.By

usingthevaluesshowninTable7.5,sixconstraintscanbecreated.Therefore,the

completeoptimizationproblemcanbeformulatedbelow:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓 𝑥 = [1 − 𝑤1 + 𝑤2 + 𝑤Q ]2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝐺1 = −0.5𝜔1 − 0.5𝜔2 + 0.5𝜔Q + 𝛿 ≤ 0

90

𝐺2 = −0.5𝜔1 − 0.5𝜔2 − 𝜔Q + 𝛿 ≤ 0

𝐺Q = 0.5𝜔1 − 𝜔2 + 𝜔Q + 𝛿 ≤ 0(7.1)

𝐺V = −𝜔1 + 0.5𝜔2 − 0.5𝜔Q + 𝛿 ≤ 0

𝐺W = 𝜔1 − 0.5𝜔2 − 𝜔Q + 𝛿 ≤ 0

𝐺X = 0.5𝜔1 − 𝜔2 − 0.5𝜔Q + 𝛿 ≤ 0

Where𝛿 = 0.001

Thesolutionforthepreferenceweightsareobtainedusingoptimization

technique.However,thisisanunderconstraintoptimizationproblem.Different

startingpointswillresultindifferentweights.Aftercalculation,baselinedesign,

alternative#1andalternative#3areallpossiblewinnersdependingthechosenset

offeasibleweightsasshowninFigure7.11.Themeanvalueofweightsresultingin

differentwiningalternativesareshowninTable7.8.

Figure7.11Feasibleweightsandwinningalternatives

𝝎𝟐

𝝎𝟑

𝝎𝟏

Baseline

Alternative#1 Alternative#3

91

Table7.8Attributesweights

MeanvalueofweightsAttributesWeights Baseline Alternative#1 Alternative#3

𝝎𝟏 0.1016 0.2542 0.3353𝝎𝟐 0.5238 0.4508 0.5416𝝎𝟑 0.3746 0.2950 0.1234

Localweightthatleadtobaselinedesignhavingthegreatestutilityscoreare

coloredblue,thosethatleadtoalternative#1winningarecoloredorange,andthose

leadtoalternative#3winingarecoloredyellow.Thegreytriangleplanerepresents

thesetsoflocalweightsthatsumtoone.Theminimum,maximumandmeanvalue

arecalculatedforeachattributesandrecordedinTable7.9.Themeanvalueare

usedforcalculatingtheutilityscoreofeachalternativeandthetotalutilityscorefor

eachalternativeisshowninTable7.10.

Table7.9Attributesweights

AttributesWeights Minimum Maximum Mean𝜔1 0.002 0.3982 0.2446𝜔2 0.4010 0.6656 0.5044𝜔Q 0.0013 0.4980 0.2510

Table7.10Utilityscoreforeachalternatives

Baseline Alternative#1

Alternative#2

Alternative#3

Alternative#4

UtilityScore 0.5510 0.5901 0.4956 0.5714 0.3225

Inordertofurtherconstrainthedesignspacesothatonlyonewinneris

found,constraintsmustbeaddedwhichseparatethethreeregionsofthespacethat

leadtoadifferentalternativewinning[53].Threenewpairsofhypothetical

alternativearecreatedinordertoplaceconstraintsbetweenanytwooftheregions.

92

Theboundariesbetweentheregionsarelocatedwherethevaluesofthetwo

alternativesareequalasdefinedby

𝑉 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑉(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒#1)

𝑉 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑉(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒#3)(7.2)

𝑉 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒#1 = 𝑉(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒#3)

Bysuchdefinition,theboundarylinecanbedeterminedandconvertedintoa

preferenceconstraint.Forexample,thevaluefunctionsforbaselineandalternative

#1are:

𝑉 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝜔2 + 0.1855𝜔Q(7.3)

𝑉 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒#1 = 0.8223𝜔1 + 0.5089𝜔2 + 0.5268𝜔Q(7.4)

Therefore,

𝑉 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑉 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒#1 (7.5)

𝜔2 + 0.1855𝜔Q = 0.8223𝜔1 + 0.5089𝜔2 + 0.5268𝜔Q = 0(7.6)

Tocreatenewhypotheticalalternatives,thetermsinEq.7.6arerearranged,

asinEq.7.7

0.8223𝜔1 + 𝜔Q = 0.4911𝜔2 + 0.6587𝜔Q(7.7)

ItisimportanttonotethatEq.7.7isjustonepossiblerearrangement.The

rightandlefthandsideofEq.7.7aretwovaluefunctionsthatcorrespondtotwo

differenthypotheticalalternatives.Therestofthefouralternativesaredevelopedin

thesameway.UsingthestrengthofpreferenceofFigure7.10,thesixalternatives

areunnormalizedandpresentedinTable7.11.

93

Table7.11NewUnnormalizedhypotheticalalternatives

Hypotheticalalternative

LCA Productioncost($) Performance(s)

J 0.6061 92.35 0.58TK 0.7282 80.63 0.68TL 0.5681 92.35 2.294TM 0.7282 83.21 TN 0.5058 78.64 0.77TO 0.5718 80.53 0.58T

Now,inordertoachievearobustwinningalternative,preferencesarestated

overthenewsetsofhypotheticalalternativesfromJtoO.Inthiscase,weassumed

thatJ>K,M>L,O>Nforthepreferencestructure.

Theadditionalconstraintsmadefromthecomparisonareaddedtothesetof

inequalityconstraintsandnewoptimizationproblemisformulatedinEq.7.8.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓 𝑥 = [1 − 𝑤1 + 𝑤2 + 𝑤Q ]2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝐺1 = −0.5𝜔1 − 0.5𝜔2 + 0.5𝜔Q + 𝛿 ≤ 0

𝐺2 = −0.5𝜔1 − 0.5𝜔2 − 𝜔Q + 𝛿 ≤ 0

𝐺Q = 0.5𝜔1 − 𝜔2 + 𝜔Q + 𝛿 ≤ 0

𝐺V = −𝜔1 + 0.5𝜔2 − 0.5𝜔Q + 𝛿 ≤ 0(7.8)

𝐺W = 𝜔1 − 0.5𝜔2 − 𝜔Q + 𝛿 ≤ 0

𝐺X = 0.5𝜔1 − 𝜔2 − 0.5𝜔Q + 𝛿 ≤ 0

𝐺f = −0.8223𝜔1 + 0.4911𝜔2 − 0.3413𝜔Q + 𝛿 ≤ 0

𝐺g = 0.9148𝜔1 − 0.3107𝜔2 − 0.1855𝜔Q + 𝛿 ≤ 0

𝐺h = −0.0925𝜔1 − 0.1804𝜔2 − 0.5268𝜔Q + 𝛿 ≤ 0

where𝛿 = 0.001

94

Theoptimizationproblemissolvedagainusingoptimizationtechnique.

Figure7.12showsthatallthefeasiblepointsnowleadtoalternative#1asbeingthe

robustwinningalternative.

Figure7.12Feasibleweightsandonerobustoptimalalternative

Theminimum,maximumandmeanareagaincalculatedforeachattributes

weightandrecordedinTable7.12.

Table7.12Finalattributesweights

AttributesWeights Minimum Maximum Mean𝜔1 0.117 0.2293 0.1937𝜔2 0.4459 0.5413 0.4816𝜔Q 0.2294 0.4164 0.3247

ThemeanvalueforeachweightinTable7.13isusedforcalculatingutility

scoresforthethreeattributes.TheutilityscoreoneachattributeisfoundinTable

𝝎𝟐 𝝎𝟏

Alternative#1undernewconstraints𝝎𝟑

OriginalAlternative#1

95

7.7.Finally,thetotalutilityscoreofeachdesignalternativeisfoundinTable7.13.In

thiscase,alternative#1hasthegreatestutilityscoreandisthemostpreferred.

Thereisnochangeinthewinningalternativebasedontheirutilityscore,whilethe

utilityscoredoeschangeaftermoreconstraintsareaddedtotheoptimization

problem.Theimportantdifferentbetweenusingtheadditionalconstraintsisthe

greaterconfidencethatthedecisionmakerhasaftermakingthreeadditional

pairwisecomparison.

Table7.13Utilityscorefordesignalternatives

Baseline Alternative#1

Alternative#2

Alternative#3

Alternative#4

UtilityScore 0.542 0.575 0.518 0.509 0.267

Finally,weassumethatalternative#1istheoptimalalternativebasedonour

preference.Itwillbeselectedtoproceedthedevelopmenttothenextphaseother

thandesignstage,whichisnottheresearchfocusofthisthesis.Again,itiscompared

withdesigngoals.Iftheyarenotmet,weshouldgobacktoStep2.2andidentify

newalternatives.Inthiscase,aluminumpartscanberecycledmorethan50%.

Globalwarmingpotentialhasbeenreducedby24%.Foralternative#3,aluminum

partsandstainlesssteelpartenablemorethan50%recyclerate.Theglobal

warmingpotentialshasbeenreducedby20%.Foralternative#2,24%lessenergy

isusedand50%moremanufacturingandmaterialimpacts.WithproperEnd-of-life

treatmentwhichletthestainlesssteeltoberecycledto50%,total5%more

manufacturingandmaterialimpactscomparedwithbaselinedesign.Insummary,

sincethegreenhousearemainlyproducedduringuse,especiallyforacharcoalgrill,

96

thedesigngoalofhalfglobalwarmingpotentialmaybealittleaggressive.Butthe

newalternativeshavehalfmetthatgoal.Thus,tosomeextent,thedesigngoalsare

75%met.Ifthedesigngoalsarelessaggressive,weassumethatthenew

alternativesbasicallymetthem.

7.4CaseStudy:AfterDesignStage

7.4.1Step3.1:PrepareforNewDesignInitiatives

Ananalysisisperformedontheresultsafterthedecision-makingtoselect

potentialalternativesforthenewproductdevelopment.Inordertoillustratethis

step,weassumethatalltheresultsarebasedonourpreferencestructure.

Firstly,alternative#1isselectedtobetheoptimalone.Thus,itsproduct

propertieswillbedetailedintherestofthedevelopmentphasesandstoredinPLM

servedasthereferencemodelforthenewproductdevelopmentinthefuture.For

therestofthealternatives,especiallyforbaselinedesignandalternative#3,they

arefoundthatwiththesimilarpreferenceoverproductioncost,different

preferencesontheothertwoattributesresultindifferentwinningalternatives.If

weassumeenvironmentalimpactsoverperformance,alternative#3wins.Ifwe

assumeperformanceoverenvironmentalimpacts,baselinedesignisbetterthanthe

restones.Foralternative#1,thechoiceofweightsmoretendstobalancethethree

attributeswhilealittlemoreemphasisisputonproductioncost.Thus,thedesignof

choiceisdifferentbasedondifferentpointofviewoverattributes.Finally,the

developedconceptualalternativesprovideproductknowledgeabouthowto

improvethedesignperformanceintermsofLCA,productioncostandproduct

performance,separately.Thus,alternative#3iscriticaltothenewproduct

97

developmentwithgoalsofmoreenvironmentallyfriendly.Baselinedesigniscritical

tonewproductdevelopmentwithgoalsofbetterperformance.

TheFiguregeneratedafterHEIMshowingallthefeasiblealternativesand

winningalternativesareaddedtofuturedevelopmentfolder.Thefigureshowing

alternative#1istheoptimalsolutionisattachedtothe“Alternative#1:Aluminum

bowlandlid”folderasthepreferredscenario.Then,alltheinformationcombined

withalternative’sBOMwillallbesavedinPLMasfuturealternativesforthenew

productdevelopment,asshowninFigure7.13.

Referencemodel

BetterLCA

Betterperformance

Figure7.13Developedalternativesstoredforfuturedevelopment

98

CHAPTER8

DISCUSSION

8.1Summary

ThisthesisidentifiedtheseveralchallengesofpreventingcurrentLCA

softwarefromintegratingwithPLM.Thesechallengesincludeparadoxofeco-design,

differentrepresentationofproductinPLMandLCA,difficultiesofextracting

informationfromPLMtoLCA,lackofcomprehensiveLCIdatabaseanddesigners

lackingknowledgeofeco-design.Thus,aconceptofaLCAframework,LCAatPLM

includingfivelifecycleblocks,isproposedwhichkeepstheproductmodelusedby

PLMintheformofaproducttreeandperformanenvironmentalassessmentthatis

basedonthesameproductmodel.Forcompletingthelifecycleinformation,entities

intheproducttreerepresentingproduct,assemblyandpart,canbeassociatedto

thefivelifecycleblocksinLCAatPLM.Theseinformationiseitherprovidedby

designsupportingtoolsorPLM.IttransformsLCAfromanevaluationtoolused

afteradesignisalreadycompletedtoonethatcanguidedesignsearlierwithinthe

PLMenvironment.Inordertochecktheenvironmentregulationsearlytoprevent

latechange,asubstancecompliancemoduleisalsoproposed.Thesetwoparts

formedSustainabilityModuletobebetterusedwithinthePLMenvironment.Then,

asystemarchitectureisshownthatusesPLMasthefoundationofinformation

collectionandsharing.Asustainabledesignmethodologyisproposedtobeusedat

earlydesignstageforaholisticconsiderationofenvironmentalperformancealong

withotherdesignattributesoveracompletelifecycle.CombinedwithSustainability

99

Module,itintegratestheuseofPLMandLCAtofacilitatethedesignprocesstoward

sustainability.

Acasestudyisperformedthroughasimulationoftheproposedsystemand

proposedmethodology.Theresultsrevealthattheenvironmentalprofilesofthe

productalternativesareavailablejustafteralltheproductpropertiesaredefined

foreachnewalternativeinPLM.Tobeapparentfordesignersatearlydesignstage,

environmentalindexisusedtoprovideasimplifiedandquantifiednumberthatcan

beusedalongwithotherquantifieddesignattributesfordecisionmakingusing

HEIMatearlydesignstage.AfterexecutingHEIM,productknowledgeisacquired

aboutdifferentpreferencesresultingindifferentalternatives.Thesealternatives

willbesavedinPLMasconceptualalternativesforthefutureproductdevelopment.

8.2Limitations

Inordertogettheenvironmentalperformanceofalternativesattheearliest

timefordesigners,theproposedLCAframeworksacrificessometoachievethatgoal.

Thus,thereareseverallimitationsofthisnewconcept.

Firstly,wastearenotconsidered.TheproposedLCAframeworkreadsthe

BOMinformationdirectlyfromPLMandmapstheinformationofexactweights,

materialsorprocessesoftheassemblyintofivelifecycleblocksandcalculatesaLCA

result.InarealremodelinglifecycleofaproductwithLCA,inputsandoutputsare

setupineachlifecyclestageandtheysometimesdonotequalwitheachother.It

willintroducedeviationsdependingonthepercentageofrawmaterialtobe

manufacturedintofinalpart,whencomparedwithLCAremodelingusingLCAtools

100

Inaddition,facedwithinsufficientLCIdatabase,amissingprocessor

materialthatcannotbeselecteddirectlycouldincreaseadditionalburdento

designers.Duringtheimplementationofthecasestudy,sinceananodizingprocess

isnotavailable,theauthorspendsadditionaltimeremodelingit.Suchsituation

appearstoowhendealingwiththeEnd-of-LifetreatmentscenarioinLCA.Thus,a

completeLCIdatabaseshouldbethefoundationforeasyselectionandassigningto

properplaces.

Finally,thisLCAframeworkisonlyproposedtobeusedbydesignersforthe

considerationofenvironmentalimpactsalongwithotherdesignattributesatearly

designstage.Itonlyaimstogetanenvironmentalindictorusedforcomparison

amongotheralternatives.InordertogetacomprehensiveLCAresult,specialized

LCAtoolsarestillnecessaryafterallthedetailedproductpropertiesaredefined

usuallyatlatedesignstage.However,thisframeworkaimstopreventlatechangeto

thelargeextent.

8.3Benefits

Thisresearchmainlyrevealsthattheenvironmentalimpactscanbe

consideredalongwithotherdesignattributesatearlydesignstagesbyprescribinga

waytointegrateLCAintoPLM.Besidesthat,thenewconceptalsointroducedmany

benefits.Thesebenefitsmakeitsignificantlyusefulduringdesignstages,especially

atearlydesignstagefordesigners.

Firstly,designersdonotneedtheexpertiseandtimetoremodeltheentire

lifecycleoftheproductinordertogettheenvironmentalperformance.Theproduct

dataarekeyedonceandthenextractedfromPLMintoLCAframeworkdirectly.An

101

environmentalprofilebecomesavailablejustafteranalternativeisfinished.It

significantlyreducesthedevelopmenttimeifenvironmentalimpactsareconsidered

duringdesign.

Then,ithelpsconstantlymonitortheenvironmentalimprovementsof

alternativesthroughreal-timefeedbackstoPLM.Asconceptualalternativesare

filledwithmoredetails,feedbacksofenvironmentalperformanceareconstantly

sendbacktoPLManddocumented.Designerscanhaveanimprovedknowledge

aboutproducttowardssustainability.ThisfeaturechangesthestaticnatureofLCA

intoadynamicnumberthatchangeswithdesignalternatives.Theenvironmental

impactsofalternativesareconsideredalongwithotherdesignattributesatthe

earliesttime.

TheconceptofLCAframeworkintroducedtheideaofseparatingentirelife

cycleofaproductintouniquelifecycleofeachpartorassemblybasedonthe

assemblytree.Andaftercalculation,makeenvironmentalimpactsasadependent

propertythatattachedtothatcomponenttosavecomputingtime.Thisallowsthe

quickidentificationofenvironmental“hotspots”.

Theproposedsystemalsoallowsforlocalorglobalcomparisonintermsof

environmentalimpacts.Globalcomparisonenablesdesignerstocomparewhole

product,whilelocalcomparisonenablestocompareassembly,subassemblyor

singlepart.Quickevaluationsofsubassemblyorpartenablethelowest-impacts

componentstobeusedinthefullassembly.

ComparedwithexistingsolutionsofLCAintegratedwithPLMorCAD,more

accurateLCAresultscanbegotrepresentingmoreaccurateenvironmental

102

performanceofthealternatives.Althoughthisconceptcanstillnotbeableto

comparewithdetailedmodeloflifecycleofaproductusingLCAsoftware,itselects

fivemostimportantlifecyclestageswithoutmissinganystagesasdonewith

SimplifiedLCA.

CombinedwiththeSubstanceComplianceModulewhichconstantlychecks

therestrictuseofmaterialintheearlystageandprovidesdirectviewonEnd-of-Life

stage,itisbetterpreparedforeverstricterexistingandfutureregulations.

Finally,thedevelopmentofanewproductbecomesmucheasier.Sincethe

lastgenerationproductisdetailedinPLMalongwithenvironmentalprofiles,parts

canbereusedtothemaximum.Thesecomponentsalreadyhavedocumented

environmentalimpactssothattheycanbeextracteddirectlyandreadytouseinthe

newassembly.Theenvironmentalprofilewillalsonotifycurrentenvironmental

performanceand“hotspots”.Thus,itwillserveasanewreferenceproductand

provideguidanceontheidentificationofnewalternatives.

8.4FutureWork

TheworkdescribedinthisthesisprovidesaconceptofhowLCAcanbebest

usedinthePLMenvironment.Bydoingthis,environmentalimpactscanbe

consideredduringdesignphasesattheearliesttime.However,sacrificeshavebeen

madetoachievethisgoal.Thus,thisconceptstillhasseverallimitations.Thefuture

workcouldmainlyfocusonseveralplacesmentionedbelow.

Firstly,wasteshouldfindawaytobeconsideredinordertogetamore

accuratelifecycleoftheproduct.Aspecificholdercanbebuilttostorethe

informationofresiduesandlettheseresiduestoenterEnd-of-Lifestagesdirectly

103

aftertheProductionphase.ThentheLCAframeworkshouldnotbelimitedtoonly

fivelifecycleblocks.Theyshouldbecustomizedtomeettheneedsofdifferent

products.Finally,researchcanbedoneforotherwaystoconsiderenvironmental

impactsearlyinthedesignprocessinordertodesignmoresustainableproducts.

104

REFERENCES

[1] C.BrandmannandM.Altvater,"Growingregulatorycomplexityaschallenge-

Strategiesformanagingcompliancewithinternationalwasteregulations,"inElectronicsGoesGreen2012+(EGG),Berlin,2012.

[2] H.GmelinandS.Seuring,"Determinantsofasustainablenewproductdevelopment,"JournalofCleanerProduct,pp.1-9,2014.

[3] F.Mathieux,.L.Roucoules,L.LescuyerandD.Brissaud,"ConnectingCADandPLMsystemswithecodesignsoftware:Currentexperiencesandfutureopportunities.,"in16thInternationalConferenceonEngineeringDesign(ICED),Paris,2007.

[4] M.Eigner,K.-G.FAIßT,A.KEßLER,P.SCHÄFERetal.,"ACONCEPTFORANINTUITIVEANDINTERACTIVEFULLYPLM-INTEGRATEDECO-EFFICIENCYASSESSMENTINREAL-TIME,"inINTERNATIONALCONFERENCEONENGINEERINGDESIGN,ICED13,Seoul,2013.

[5] K.Ramani,D.Ramanujan,W.Z.Bernstein,Z.Fuetal.,"IntegratedSustainableLifeCycleDesign:AReview,"JournalofMechanicalDesign,vol.132,no.9,2010.

[6] N.Bey,.M.Z.HauschildandT.C.McAloone,"Driversandbarriersforimplementationofenvironmentalstrategiesinmanufacturingcompanies,"CIRPAnnals-ManufacturingTechnology,vol.62,no.1,pp.43-46,2013.

[7] F.Segonds,M.Iraqi-Houssaini,L.RoucoulesandP.véron,"Theuseofearlydesigntoolsinengineeringprocesses:acomparativecasestudy,"InternationalJournalofDesignandInnovationResearch,vol.5,no.3,pp.61-76,2010.

[8] H.GmelinandS.Seuring,"Determinantsofasustainablenewproductdevelopment,"JournalofCleanerProduction,vol.69,pp.1-9,2014.

[9] G.S.Bhander,M.HauschildandT.McAloone,"Implementinglifecycleassessmentinproductdevelopment,"EnvironmentalProgress&SustainableEnergy,vol.22,no.4,pp.255-267,2003.

105

[10] T.A.Bhamra,S.Evans,T.C.McAloone,M.Simon,S.PooleandA.Sweatman,"IntegratingEnvironmentalDecisionsintotheProductDevelopmentProcess.I.TheEarlyStages,"inEnvironmentalConsciousDesignandInverseManufacturing,Tokyo,1999.

[11] S.Ritzenand,IntegratingEnvironmentalAspectsintoProductDevelopment-ProactiveMeasures,Stockholm:MechineDesign,2000.

[12] J.ToddandM.AnnCurran,"StreamlinedLife-CycleAssessment:AFinalReportfromtheSETACNorthAmericaStreamlinedLCAWorkgroup,"SETACandSETACFoundationforEnvironmentalEducation,1999.

[13] D.Millet,L.Bistagnino,C.Lanzavecchia,R.CamousandT.Poldma,"DoesthepotentialoftheuseofLCAmatchthedesignteamneeds,"JournalofCleanerProduction,vol.15,no.4,p.335–346,2007.

[14] D.Yousnadj,G.Jouanne,N.Maranzana,F.Segonds,C.Bouchardand.A.Aoussat,"IntegrationofEnvironmentalAssessmentinaPLMContext:ACaseStudyinLuxuryIndustry,"inProductLifecycleManagementforaGlobalMarket,Heidelberg,SpringerBerlinHeidelberg,2014,pp.201-212.

[15] W.DewulfandJ.Duflou,"SimplifyingLCAUsingIndicatorApproaches-AFramework,"inCIRPseminaronlifecycleengineeringCopenhagen,Denmark,2003.

[16] S.Devanathan,D.Ramanujan,W.Z.Bernstein,.F.ZhaoandK.Ramani,"IntegrationofSustainabilityIntoEarlyDesignthroughtheFunctionImpactMatrix,"JournalofMechanicalDesign,vol.132,no.8,pp.1-8,2010.

[17] V.Mani,S.DasandR.Caudill,"DisassemblyComplexityandRecyclabilityAnalysisofNewDesignsfromCADFileData,"inProceedingsofthe2001IEEEInternationalSymposium,2001.

[18] J.Lagerstedt,"Functionalandenvironmentalfactorsinearlyphasesofproductdevelopment,"December2003.[Online].Available:http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A9267&dswid=-2857.

[19] D.C.Eddy,S.Krishnamurty,I.R.Grosse,J.C.WiledenandK.E.Lewis,"Anormativedecisionanalysismethodforthesustainability-baseddesignofproducts,"JournalofEngineeringDesign,vol.24,no.5,pp.342-362,2013.

106

[20] P.W.Witherell,D.Eddy,I.GrosseandS.Krishnamurty,"AnIntergratedApproachtoInformationModelingfortheSustainableDesignofProducts,"JournalofComputingandInformationScienceinEngineering,vol.14,no.2,2014.

[21] D.Eddy,S.Krishnamurty,I.Grosse,J.WiledenandK.Lewis,"Apredictivemodelling-basedmaterialselectionmethodforsustainableproductdesign,"JournalofEngineeringDesign26,vol.10,no.12,pp.365-390,2015.

[22] D.C.Eddy,S.Krishnamurty,I.R.Grosse,A.LiottaandJ.C.Wileden,"TowardIntegrationofaSemanticFrameworkWithaCommercialPLMSystem,"inASME2012InternationalDesignEngineeringTechnicalConferences&ComputersandInformationinEngineeringConference,NewYork,2012.

[23] T.E.GreadelandB.R.Allenby,IndustrialEcology,NewJersey:PrenticeHall,2003.

[24] A.SaaksvuoriandA.Immonen,ProductLifecycleManagement,Helsinki:Springer-VerlagBerlinHeidelberg,2005.

[25] M.Abramovici,"FutureTrendsinProductLifecycleManagement(PLM),"inTheFutureofProductDevelopment,Heidelberg,SpringerBerlinHeidelberg,2007,pp.665-674.

[26] S.Terzi,A.Bouras,D.DuttaandD.Kiritsis,"Productlifecyclemanagement-Fromitshistorytoitsnewrole,"InternationalJournalofProductLifecycleManagement,vol.4,no.4,pp.360-389,2010.

[27] S.Leibrecht,"FundamentalPrinciplesforCAD-basedEcologicalAssessments,"TheInternationalJournalofLifeCycleAssessment,vol.10,no.6,p.436–444,2005.

[28] M.Schichtel,ProductDatenmodellierung,Leipzig:FachbuchPublishing,2002.

[29] M.A.Curran,"LIFECYCLEASSESSMENT:PRINCIPLESANDPRACTICE,"U.S.EnvironmentalProtectionAgency(EPA).,2006.[Online].Available:http://nepis.epa.gov/Exe/ZyNET.exe/P1000L86.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2006+Thru+2010&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&.

[30] M.A.Curran,EnvironmentalLife-CycleAssessment,McGraw-Hill,1996.

107

[31] ISO,"ISO14001:2015Environmentalmanagementsystems--Requirementswithguidanceforuse,"InternationalOrganizationforStandardization,Switzeland,2015.

[32] A.Morbidoni,M.Recchloni,H.E.OttoandF.Mandorli,"EnablinganefficientSLCAbyinterfacingselectedPLMLCIparameters,"inProceedingsofthe8thInternationalSymposiumonToolsandMethodsofCompetitiveEngineering,Ancona,2009.

[33] "Ecoinvent,"Ecoinvent,[Online].Available:http://www.ecoinvent.org/.

[34] Pre-Sustainability,"ESU-ETH96,"WorldResourcesInstitute,[Online].Available:www.pre.nl/download/manuals/DatabaseManualETH-ESU96.pdf.

[35] J.Elkington,"Partnershipsfromcannibalswithforks:Thetriplebottomlineof21st-centurybusiness,"EnvironmentalQualityManagement,vol.8,no.1,pp.37-51,1998.

[36] T.F.SlaperandT.Hall,"TheTripleBottomLine:WhatIsItandHowDoesItWork?,"IndianaBusinessReview,vol.86,no.1,2011.

[37] M.Finkbeiner,.E.M.Schau,.A.Lehmannand.M.Traverso,"TowardsLifeCycleSustainabilityAssessment,"Sustainability,vol.2,no.10,pp.3309-3322,2010.

[38] M.Eigner,.M.v.HauffandP.D.Schäfer,"SustainableProductLifecycleManagement:ALifecyclebasedConceptionofMonitoringaSustainableProductDevelopment,"inGlocalizedSolutionsforSustainabilityinManufacturing,Heidelberg,SpringerBerlinHeidelberg,2011,pp.501-506.

[39] M.Hundal,"LifeCycleAssessmentandDesignfortheEnvironment,"inINTERNATIONALDESIGNCONFERENCE,Dubrovnik,2000.

[40] G.A.keoleianandD.Menerey,"LifeCycleDesignGuidanceManual:Envrironmentalrequirementsandtheproductsystem,"AnnArbor,1993.

[41] A.Stevels,"IntegrationofEco-designintotheBusiness,"inMechanicalLifeCycleHandbook,NewYork,MarcelDekker.Inc,2001,pp.509-527.

[42] C.Mizuki,P.A.SandbornandG.Pitts,"Designforenvironmental-asurveyofcurrentpracticsandtools,"inProceedingsof1996IEEEInternationalSymposiumonElectronicsandtheEnvironment,Dallas,1996.

108

[43] A.D.VeroutisandJ.A.Fava,"Frameworkforthedevelopmentofmetricsfordesignforenvironment(DfE)assessmentofproducts,"inProceedingsofthe1996IEEEInternationalSymposiumonElectronicsandtheEnvironment,WestChester,1996.

[44] M.A.O'Shea,"DesignforEnvironmentinconceptualproductdesign–adecisionmodeltoreflectenvironmentalissuesofalllife-cyclephases,"TheJournalofSustainableProductDesign,vol.2,no.1,pp.11-28,2002.

[45] C.LuttropandJ.Lagerstedt,"EcoDesignandTheTenGoldenRules:genericaadviceformergingenvironmentalaspectsintoproductdevelopment,"JounalofCleanerProduction,vol.14,no.15-16,pp.1396-1408,2006.

[46] H.BrezetandC.VanHemel,Ecodesign:apromizingapproachtosustainableproductandconsumption,Delft:UNEnvironmentProgramme,1997.

[47] R.Hillary,SmallandMedium-SizedEnterprisesandtheEnvironment:BusinessImperatives,Sheffield,UK:GreenleafPublishingLimited,2000.

[48] J.R.Ehrenfeld,"Designforenvironment:Anewframeworkforstrategicdecisions,"EnvironmentalQualityManagement,vol.4,no.4,pp.37-51,1995.

[49] S.Krishnamurty,"NormativeDecisionAnalysisinEngineeringDesign,"inDecisionMakinginEngineeringDesign,NewYork,ASMEPress,2006,pp.21-33.

[50] D.L.Thurston,"RealandMisconceivedLimitationstoDecisionBasedDesignWithUtilityAnalysis,"JournalofMechanicalDesign,vol.123,no.2,pp.176-182,1999.

[51] .D.L.Thurston,"Multi-AttributeUtilityAnalysisofConflictingPreferences,"inDecisionMakinginEngineeringDesign,NewYork,ASMEPress,2006,pp.125-133.

[52] G.A.Kiker,T.S.Bridges,A.Varghese,T.P.Seagerand.I.Linkov,"ApplicationofMulticriteriaDecisionAnalysisinEnvironmentalDecisionMaking,"IntegratedEnvironmentalAssessmentandManagement,vol.1,no.2,pp.95-108,2005.

[53] T.-K.See,A.Gurnani,K.Lewisand,"Multi-AttributeDecisionMakingUsingHypotheticalEquivalentsandInequivalents,"JournalofMechanicalDesign,vol.126,no.6,pp.950-958,2005.

109

[54] D.Stratton,S.Behdad,K.LewisandS.Krishnamurty,"AMulti-levelApproachtoConceptSelectioninSustainableDesign,"inASMEInternationalDesignEngineeringTechnicalConferences&ComputerandInformationinEngineeringConference,Buffalo,2014.

[55] A.GurnaniandK.Lewis,"Multi-AttributeDecisionMakingUsingHypotheticalEquivalents,"inASMEDesignTechnicalConferencesandComputerandInformationinEngineeringConference,Montreal,2002.

[56] G.Rebitzer,T.Ekvall,R.Frischknechtetal.,"Lifecycleassessment:Part1:Framework,goalandscopedefinition,inventoryanalysis,andapplications,"EnvironmentInternational,vol.30,no.5,p.701–720,2004.

[57] A.ChristopheandA.Franck,"Quellescapacitésdynamiquespourlesstratégiesdedéveloppementdurabledesentreprises?Lecasdumanagementdel’éco-conception,"inQuellescapacitésdynamiquespourlesstratégiesdedéveloppementdurabledesentreprises?Lecasdumanagementdel’éco-conception,Montreal,2007.

[58] J.GolovatchevandO.Budde,"NextGenerationPLM-anintegratedapproachfortheProductLifecycleManagementintheICTIndustry-NextgenerationPLM,"inProceedingsofICCPR2007:InternationalConferenceonComprehensiveProductRealization,Beijing,2007.

[59] V.Poudelet,J.-A.Chayer,M.Margni,R.Pellerinetal.,"Aprocess-basedapproachtooperationalizelifecycleassessmentthroughthedevelopmentofaneco-designdecision-supportsystem,"JounalofCleanerProduction,vol.33,pp.192-201,2012.

[60] .F.Mathieux,.R.Lionel,L.LescuyerandY.Bouzidi,"OpportunitiesandchallengesforconnectingenvironmentalassessmenttoolsandCADsoftware.,"inProceedingofLCM2005InnovationbyLifeCycleManagement,2005.

[61] .J.-P.Theret,D.Evrard,F.Mathieux,Y.LeGuernandP.Chemla,"IntegratingCAD,PLMandLCA:newconcepts,datamodel,architecture&integrationproposals,"inInnovationsinSharing-EnvironmentalObservationsandInformation,Ispra,2011.

[62] "eLCA-Connectro,"PernexasGmbH,[Online].Available:http://pernexas.com/?page_id=140.

110

[63] N.Marosky,J.Dose,.G.FleischerandR.Ackermann,"ChallengesofDataTransferbetweenCAD-andLCASoftwareTools,"in3rdInternationalConferenceonLifeCycleManagement,Zurich,2007.

[64] F.Cappelli,.M.Deloguand.M.Pierini,"IntegrationofLCAandEcoDesignguidelineinavirtualcadframework,"in13thCIRPINTERNATIONALCONFERENCEONLIFECYCLEENGINEERING,Leuven,2006.

[65] A.Morbidoni,M.Recchioni,H.E.OttoandF.Mandorli,"EnablingAnEfficientSLCAbyInterfacingSelectedPLMLCIParameters,"inProceedingsoftheTMCE,Ancona,2010.

[66] .A.Morbidoni,C.FaviandF.Mandorli,"ENVIRONMENTALEVALUATIONFROMCRADLETOGRAVEWITHCAD-INTEGRATEDLCATOOLS,"ActaTechnicaCorvininesis-BulletinofEngineering,vol.5,no.1,p.109,2012.

[67] H.E.Otto,F.Kimura,F.MandorliandM.Germani,"IntegrationofCADmodelswithLCA,"inProceedingsofEcoDesign:ThirdInternationalSymposiumonEnvironmentallyConsciousDesignandInverseManufacturing,Tokyo,2003.

[68] "SolidWorksSustainability::SolidWorksSustainability,"DassaultSystèmesSolidWorksCorporation,[Online].Available:http://www.solidworks.com/sustainability/sustainability-software.htm.

[69] E.HochschornerandG.Finnveden,"EvaluationoftwosimplifiedLifeCycleassessmentmethods,"TheInternationalJournalofLifeCycleAssessment,vol.8,no.3,pp.119-128,2003.

[70] H.E.Otto,F.KimuraandF.Manodorli,"SupportofDisassembly/RessemblyEvaluationwithinTotalLifeCycleModelingThroughFeatureNeighborhoods,"inProceedingofASMEInternationalDesignEngineeringandComputersinEngineeringConference,Atlanta,1998.

[71] J.-H.ParkandK.-K.seo,"Knowledge-basedapproximatelifecycleassessmentsysteminthecollaborativedesignenvironment,"inEcoDesign'03.20033rdInternationalSymposiumonEnvironmentallyConsciousDesignandInverseManufacturing,Tokyo,2003.

[72] F.Tao,y.Zuo,L.Xu,l.Lvandl.zhang,"InternetofThingsandBOM-BasedLifeCycleAssessmentofEnergy-SavingandEmission-ReductionofProducts,"IEEETRANSACTIONSONINDUSTRIALINFORMATICS,vol.10,no.2,pp.1252-1261,02MAY2014.

111

[73] D.Yousnadj,G.Jouanne,N.Maranzana,F.Segondsetal.,"IntegrationofEnvironmentalAssessmentinaPLMContext:ACaseStudyinLuxuryIndustry,"inProductLifecycleManagementforaGlobalMarket,vol.442,Yokohama,SpringerBerlinHeidelberg,2014,pp.201-212.

[74] A.JanuschkowetzandC.Hendrickson,"ProductandprocessLifeCycleInventoriesusingSAPR/3,"inProceedingsofthe2001IEEEInternationalSymposiumonElectronicsandtheEnvironment,Denver,2001.

[75] H.Ostad-Ahmad-Ghorabi,D.Collado-RuizandW.Wimmer,"TOWARDSINTEGRATINGLCAINTOCAD,"inProceedingsofInternationalConferenceonEngineeringDesign,PaloAlto,2009.

[76] B.McIntoshandC.Koffler,"presentationusingBOMimport&EPDtemplatestominimizethecostsoftypeiiiEPDSbythinkstep,"October2014.[Online].Available:https://issuu.com/peinternational/docs/presentation_-_using_bom_imports____ba691ef223904f.

[77] J.W.Owens,"Life-CycleAssessment:ConstraintsonMovingfromInventorytoImpactAssessment,"JournalofIndustrialEcology,vol.1,no.1,pp.37-49,January1997.

[78] H.E.Otto,K.G.MuellerandF.Kimura,"AFrameworkforStructuredDataRetrievalinLCAUsingFeatureTechnology,"inProceedingsEcoDesign2001:SecondInternationalSymposiumonEnvironmentallyConsciousDesignandInverseManufacturing,Tokyo,2001.

[79] D.Millet,"Intégrationdel’environnementenconception,"inl’entrepriseetledéveloppementdurable,Paris,2003.

[80] M.Rio,T.ReyesandL.Roucoules,"Aframeworkforecodesign:aninterfacebetweenLCAanddesignprocess,"InternationalJournalofEngineering-AnnalsofFacultyofEngineeringHunedoara,vol.9,no.1,pp.121-126,2011.

[81] L.Y.Ljungbergand,"Materialsselectionanddesignfordevelopmentofsustainableproducts,"Materials&Design,vol.28,no.2,pp.466-479,2007.

[82] A.Morbidomi,"TheEcoDesignIssue:proposalforanewapproach,methodologyandtools,"BrecceBianche,Ancona.

[83] A.Gehin,P.ZwolinskiandD.Brissaud,"ATooltoImplementSustainableEnd-of-LifeStrategiesintheProductDevelopmentPhase,"JournalofCleanerProduction,vol.16,no.5,pp.566-576,2008.

112

[84] R.GiutiniandK.Gaudette,"Remanufacturing:TheNextGreatOpportunityforBoostingUSProductivity,"BusinessHorizons,vol.46,no.6,pp.41-48,2003.

[85] W.KerrandC.Ryan,"Eco-EfficiencyGainsfromRemanufacturing—ACaseStudyofPhocopierRemanufacturingatFujiXeroxAustralia,"JournalofCleanerProduction,vol.9,pp.75-81,2001.

[86] A.Gehin,P.ZwolinskiandD.Brissaud,"Integrateddesignofproductlifecycles—Thefridgecasestudy,"CIRPJournalofManufacturingScienceandTechnology,vol.1,pp.214-220,2009.

[87] H.Wenzel,M.Z.HauschildandL.Alting,EnvironmentalAssessmentofProducts,Vols.1Methodology,ToolsandCaseStudiesinProductDevelopment,UnitedKingdom:Springer,1997.

[88] D.Collado-RuizandH.Ostad-Ahmad-Ghorabi,"ComparingLCAresultsoutofcompetingproducts-Developingreferencerangesfromaproductfamilyapproach,"JournalofCleanerProduction,vol.18,no.4,pp.355-364,2010.

[89] J.K.Choi,L.F.NiesandK.Ramani,"Aframeworkfortheintegrationofenvironmentalandbusinessaspectstowardsustainableproductdevelopment,"JournalofEngineeringDesign,vol.19,no.5,pp.431-446,2008.

[90] J.K.ChoiandK.Ramani,AQuestforSustainableProductDesign:ASystematicMethodologyforIntegratedAssessmentofEnvironmentallyBenignandEconomicallyFeasibleProductDesign,VDM-Verl.,2009.

[91] E.C.f.Standardization,"CEN/TC281-Appliance,solidfuelsandfirelightersforbarbecuing,"2013.[Online].Available:https://standards.cen.eu/dyn/www/f?p=204:7:0::::FSP_ORG_ID:6262&cs=1546BDAD2A13D0A601C7E76D2F35D0685.

[93] M.KulokandK.Lewis,"AMethodtoEnsurePreferenceConsistencyinMulti-AttributesSelectionDecisions,"JournaloMechanicalDesign,vol.129,no.10,2007.