ECE305#Homework#SOLUTIONS:#Week#8# - nanoHUB/uploads/Week8HW_Solutions5.pdf · Mark%Lundstrom% %...

Post on 27-Jan-2021

6 views 1 download

transcript

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  1  

    ECE  305  Homework  SOLUTIONS:  Week  8    

    Mark  Lundstrom  Purdue  University  

    (10.31.14)      1) A  silicon  diode  is  asymmetrically  doped  at   N D = 10

    19  cm-‐3  and N A = 1016  cm-‐3.    (Note  

    that  at   N D = 1019 the  semiconductor  is  on  the  edge  of  degeneracy,  but  we  can  assume  

    that  non-‐degenerate  carrier  statistics  are  close  enough  for  this  problem.)    Answer  the  following  questions  assuming  room  temperature.    Assume  that  the  minority  electron  and  hole  lifetimes  are  

    ! n = ! p = 10

    "6  s.    The  lengths  of  the  N  and  P  regions  are  

    L = 500 µm  and   L >> xp ,xn .  Assume  an  “ideal  diode”  and  answer  the  following  questions.  

     

     1a)    Compute   JD = ID A ,  the  diode  current  density  at  a  forward  bias  of     VA = 0.5  V.    

    Solution:  Since  this  in  a  one-‐sided  junction  with   N D >> N A  ,  essentially  all  of  the  current  is  due  to  electrons  injected  into  the  P-‐region.    

    JD = q

    ni2

    N A

    DnLn

    eqVA kBT !1( ) = J0 eqVA kBT !1( )     (*)    From  Fig.  3.5  on  p.  80  of  SDF,   µn = 1248 cm

    2 V-s  at   N A = 1016  .  

    Using  the  Einstein  relation,  we  find    

    Dn =

    kBTq

    µn = 0.026!1248 = 32.4 cm2 /s    

    The  diffusion  length  is:    

    Ln = Dn! n = 32.4"10#6 = 57 µm    

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  2  

    HW8  solutions  (continued):    Since   Ln

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  3  

    HW8  solutions  (continued):    2) Consider  the  diode  in  problem  1)  above  and  answer  the  following  questions.    

    2a)    If  the  diode  is  biased  such  that   JD = 10!6 A/cm2 ,  what  is   VA  ?  

     Solution:  

    Begin  with   JD = q

    ni2

    N A

    DnLn

    eqVA kBT !1( ) = J0 eqVA kBT !1( )    In  moderate  forward  bias,  we  can  drop  the  -‐1:    

    JD = J0eqVA kBT  

     so  

    VA =

    kBTq

    lnJDJ0

    !"#

    $%&  

     Putting  in  numbers:  

    VA = 0.026ln

    10!6

    9.1"10!12#$%

    &'(= 0.302 V    

    VA = 0.302 V  

     2b)    If  the  temperature  changes  from  300  K  to  301  K,  how  much  does   VA  change?    Solution:    Differentiate  the  expression  that  we  obtained  above:  

    dVAdT

    = ddT

    kBTq

    lnJDJ0

    !"#

    $%&

    '()

    *)

    +,)

    -)=

    kBq

    lnJDJ0

    !"#

    $%&+

    kBTq

    J0JD

    ddT

    JD J0`.1( )  

     

    dVAdT

    =kBq

    lnJDJ0

    !"#

    $%&'

    kBTq

    1J0

    dJ0dT

    !"#

    $%&  

    dJ0dT

    = ddT

    qni

    2

    N A

    DnLn

    !

    "#$

    %&  

     The  strongest  part  of  the  temperature-‐dependence  comes  from  the  exponential  factor  in   ni

    2 ,  so  we  can  ignore  the  temperature  dependence  of  the  diffusion  coefficient,  the  diffusion  length,  and  the  effective  densities-‐of-‐states  and  write:    

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  4  

    HW8  solutions  (continued):    

    J0 = Ke!EG kBT    

    then  

    1J0

    dJ0dT

    = 1Ke!EG kBT

    Ke!EG kBTEG

    kBT2

    "

    #$%

    &'=

    EGkBT

    2

    "

    #$%

    &',  

     which  can  be  used  to  find    

    dVAdT

    =kBq

    lnJDJ0

    !"#

    $%&'

    kBTq

    1J0

    dJ0dT

    !"#

    $%&=

    kBq

    lnJDJ0

    !"#

    $%&'

    kBTq

    EGkBT

    2

    !

    "#$

    %&  

     so    

    dVAdT

    =kBq

    lnJDJ0

    !"#

    $%&'

    EG qT

    !"#

    $%&.  

     Putting  numbers  in:    

    dVAdT

    = 1.38!10"23

    1.6!10"19ln 10

    "6

    9.1!10"12#$%

    &'(" 1.12

    300#$%

    &'(  

     

    dVAdT

    = 1.00!10"3 " 3.73!10"3 = "2.7 !10"3  

     

    dVAdT

    ! "3 mV/K  

     So  we  need  to  lower  the  applied  bias  about  3  millivolts  to  keep  the  current  constant  as  the  temperature  increases  1  K  or  1  degree  C.    PN  junctions  can  be  used  as  thermometers  because  the  diode  current  depends  sensitively  on  temperature.    A  more  careful  treatment  would  include  the  temperature  dependencies  of  the  bandgap,  effective  densities-‐of-‐states,  diffusion  coefficient,  etc.,  but  the  result  would  be  close  to  the  value  obtained  here.  

           

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  5  

    HW8  solutions  (continued):    3) The  sketch  below  shows  the  carrier  concentrations  in  a  PN  junction  at  room  

    temperature.    Answer  the  following  questions.    

       

    3a)    Is  the  diode  forward  or  reverse  biased?    Explain  your  answer.    

    Solution:  Forward  biased  because  there  are  excess  electrons  on  the  P-‐side  and  excess  holes  on  the  N-‐side.    

    3b)    What  is  the  acceptor  concentration  on  the  P-‐side?    

    Solution:     NA = 1016 cm-3  

     3c)    What  is  the  donor  concentration  on  the  N-‐side?    

    Solution:     ND = 1014 cm-3  

     3d)    What  is  the  intrinsic  carrier  concentration?    

    Solution:  

    n0 p0 = ni2    

    On  the  P-‐side:     n0 p0 = 1016 !107 = 1023     ni = 10

    23 = 3.16!1011 cm-3    

    On  the  N-‐side:     n0 p0 = 1014 !109 = 1023   ni = 10

    23 = 3.16!1011 cm-3      

    ni = 3.16!10

    11 cm-3  

         

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  6  

    HW8  solutions  (continued):    3e)    Do  low  level  injection  conditions  apply?    

    Solution:  YES.  

    On  the  P-‐side:     !n "xp( ) = 1010

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  7  

    HW8  solutions  (continued):    

    4a)     Is  the  diode  forward  or  reverse  biased?    

    Solution:  Forward  biased  because   Fn > Fp  .  

     4b)     What  is  the  value  of  the  applied  bias?    

    Solution:  

    qVA = Fn ! Fp  

    VA = +0.5 V  

     4c)     What  is  the  bandgap  of  the  semiconductor?    

    Solution:  Reading  from  the  graph:  

    EC ! EV = 1.25 eV  

     4d)     What  is  the  built-‐in  potential  of  the  junction.    

    Solution:  From  the  plot:    

    Vj =Vbi !VA = 0.25 V  

    Since:   VA = +0.5 V  

    Vbi =Vj +VA = 0.75 V  

    Vbi = 0.75 V  

       5) Consider  the  Si  diode  of  prob.  1)  and  make  one  change.    The  minority  carrier  lifetime  

    increases  by  a  factor  of  1000,  so   ! n = ! p = 10

    "3  s.    The  lengths  of  the  N  and  P  regions  

    are  still   L = 500 µm  and   L >> xp ,xn  .  Assume  an  “ideal  diode”  and  compute  the  

    forward-‐biased  current  density  at   VA = 0.6  V.      

    Solution:  We  recognize  that  the  minority  carrier  diffusion  length  will  change.  

    Ln = Dn! n = 32.4"10#3 = 1800 µm    

     Now   Ln >> L  ,  so  the  long  base  diode  of  prob.  1)  has  become  a  short  base  diode.  Instead  of  eqn.    (*)  in  prob.  1),  we  have  to  replace  the  minority  carrier  diffusion  length  by  the  length  of  the  P-‐region:  

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  8  

    HW8  solutions  (continued):  

    JD = q

    ni2

    N A

    DnL

    eqVA kBT !1( ) = J0 eqVA kBT !1( )  

    Write  the  saturation  current  density  as    

    J0 = q

    ni2

    N A

    DnL

    = qni

    2

    N A

    DnLn

    !"#

    $#

    %&#

    '#

    LnL  

     The  term  in  brackets  was  computed  in  prob.  1a),  and  so  was  the  diffusion  length.    Using  these  results:    

    J0 = q

    ni2

    N A

    DnLn

    !"#

    $#

    %&#

    '#

    LnL

    = 9.1(10)12{ }( 57500 = 1.04(10)12 A/cm2  

     The  current  becomes:    

    JD = J0 e

    qVA kBT !1( ) = 1.04"10!12 e0.6/0.026 !1( ) = 1.04"10!12 1.05"1010 !1( ) = 1.1"10!2   JD 0.6 V( ) = 1.1!10"2 A/cm2      Note:    The  lifetime  is  longer,  so  the  current  density  must  be  smaller  –  this  is  a  sanity  check.    Key  point  to  remember:    Long  base  diode:   L >> Ln  

    JD = q

    ni2

    N A

    DnLn

    eqVA kBT !1( )  

     Short  base  diode,   L