Eugenio Del Nobile - Lawrence Berkeley National Laboratory · Eugenio Del Nobile, UCLA September...

Post on 15-Feb-2019

215 views 0 download

transcript

Halo Independent Comparison of Direct Dark Matter Detection Data

Eugenio Del Nobile

TAUP2013

Astrophysical uncertainties

Eugenio Del Nobile, UCLA September 10, TAUP 2013

Baushev [1208.0392]Mao, Strigari, Wechsler, Wu, Hahn [1210.2721]

e.g.

Two approaches

Eugenio Del Nobile, UCLA September 10, TAUP 2013

Try to find alternative halo models, either driven by physical arguments or by fitting simulations or observationssee e.g. Freese, Lisanti, Savage [1209.3339] and references therein

Try to factor astrophysics out of your problem as much as you canFox, Liu, Weiner [1011.1915], Frandsen, Kahlhoefer, McCabe, Sarkar, Schmidt-Hoberg [1111.0292][1304.6066], Gondolo, Gelmini [1202.6359] + Del Nobile, Huh [1304.6183][1306.5273],Herrero-Garcia, Schwetz, Zupan [1112.1627][1205.0134] + Bozorgnia [1305.3575] (do not miss her talk tomorrow!)

Direct detection rate

Eugenio Del Nobile, UCLA September 10, TAUP 2013

R[E01,E

02](t) =

X

T

⇠T

Z E02

E01

dE0 ✏(E0)GT (ER, E0)

⇥Z 1

0dER

Z

vmin(ER)d3v

⇢ v

mDMf(v, t)

d�T

dER(ER,v)

Direct detection rate

Eugenio Del Nobile, UCLA September 10, TAUP 2013

R[E01,E

02](t) =

X

T

⇠T

Z E02

E01

dE0 ✏(E0)GT (ER, E0)

⇥Z 1

0dER

Z

vmin(ER)d3v

⇢ v

mDMf(v, t)

d�T

dER(ER,v)

DM velocity distribution

Direct detection rate

Eugenio Del Nobile, UCLA September 10, TAUP 2013

R[E01,E

02](t) =

X

T

⇠T

Z E02

E01

dE0 ✏(E0)GT (ER, E0)

⇥Z 1

0dER

Z

vmin(ER)d3v

⇢ v

mDMf(v, t)

d�T

dER(ER,v)

DM velocity distributionDM local density

Direct detection rate

Eugenio Del Nobile, UCLA September 10, TAUP 2013

R[E01,E

02](t) =

X

T

⇠T

Z E02

E01

dE0 ✏(E0)GT (ER, E0)

⇥Z 1

0dER

Z

vmin(ER)d3v

⇢ v

mDMf(v, t)

d�T

dER(ER,v)

DM velocity distributionDM local densityDifferential cross section

Direct detection rate

Eugenio Del Nobile, UCLA September 10, TAUP 2013

R[E01,E

02](t) =

X

T

⇠T

Z E02

E01

dE0 ✏(E0)GT (ER, E0)

⇥Z 1

0dER

Z

vmin(ER)d3v

⇢ v

mDMf(v, t)

d�T

dER(ER,v)

DM velocity distributionDM local densityDifferential cross sectionSum over all nuclides

Direct detection rate

Eugenio Del Nobile, UCLA September 10, TAUP 2013

R[E01,E

02](t) =

X

T

⇠T

Z E02

E01

dE0 ✏(E0)GT (ER, E0)

⇥Z 1

0dER

Z

vmin(ER)d3v

⇢ v

mDMf(v, t)

d�T

dER(ER,v)

DM velocity distributionDM local densityDifferential cross sectionSum over all nuclidesDetector energy resolution and acceptance

Algebraic maquillage 1

Eugenio Del Nobile, UCLA September 10, TAUP 2013

R[E01,E

02](t) =

Z 1

0d3v

f̃(v, t)

vH[E0

1,E02](v)

f̃(v, t) ⌘ ⇢�ref

mDMf(v, t)

H[E01,E

02](v) ⌘

X

T

⇠T

Z E+R (v)

E�R (v)

dERv2

�ref

d�T

dER(ER,v)

Z E02

E01

dE0 ✏(E0)GT (ER, E0)

Algebraic maquillage 1I

Eugenio Del Nobile, UCLA September 10, TAUP 2013

R[E01,E

02](t) =

Z 1

0dvmin ⌘̃(vmin, t)R[E0

1,E02](vmin)

R[E01,E

02](vmin) ⌘

@H[E01,E

02](vmin)

@vmin

⌘̃(vmin, t) ⌘Z 1

vmin

d3vf̃(v, t)

v

Bounds and fits

Eugenio Del Nobile, UCLA September 10, TAUP 2013

R[E01,E

02](t) =

Z 1

0dvmin ⌘̃(vmin, t)R[E0

1,E02](vmin)

For (conservative) bounds on the unmodulated rate, use

For “fits”, use ⌘̃[E01,E

02](vmin) ⌘

R[E01,E

02]R1

0 dvmin R[E01,E

02](vmin)

⌘̃unmod

(v0

) > ⌘̃0

✓(v0

� v)

Spin-independent interaction

Eugenio Del Nobile, UCLA September 10, TAUP 2013

CoGeNT0 highCoGeNT0 med.CoGeNT0 lowCRESST-IISIMPLEXENON10XENON100CDMS-II-GeCDMS-II-Si H2013Lm=9GeVêc2 fnê fp=-0.7

200 400 600 800 100010-25

10-24

10-23

10-22

10-21

vmin @kmêsDhrspc2êm@day

s-1 D

CoGeNT0 highCoGeNT0 med.CoGeNT0 lowCRESST-IISIMPLEXENON10XENON100CDMS-II-GeCDMS-II-Si H2013Lm=9GeVêc2 fnê fp=1

200 400 600 800 100010-27

10-26

10-25

10-24

vmin @kmêsD

hrspc2êm@day

s-1 D

Spin-independent interaction

Eugenio Del Nobile, UCLA September 10, TAUP 2013

CoGeNT1SIMPLEXENON10XENON100DAMA1 HQNa=0.30LCDMS-II mod. limitCDMS-II-GeCDMS-II-Si H2013Lm=9GeVêc2 fnê fp=-0.7

200 400 600 800 100010-25

10-24

10-23

10-22

10-21

vmin @kmêsDhrspc2êm@day

s-1 D

CoGeNT1SIMPLEXENON10XENON100DAMA1 HQNa=0.30LCDMS-II mod. limitCDMS-II-GeCDMS-II-Si H2013Lm=9GeVêc2 fnê fp=1

200 400 600 800 100010-27

10-26

10-25

10-24

vmin @kmêsD

hrspc2êm@day

s-1 D

Spin-independent interaction

Eugenio Del Nobile, UCLA September 10, TAUP 2013

CoGeNT1XENON10XENON100DAMA1HQNa=.30LCDMS-II mod. limitCDMS-II-GeCDMS-II-Si H2013Lm=9GeVêc2 fnê fp=1

200 400 600 800 100010-27

10-26

10-25

10-24

vmin @kmêsD

hrspc2êm@day

s-1 D

CoGeNT1XENON10XENON100DAMA1HQNa=.30LCDMS-II mod. limitCDMS-II-GeCDMS-II-Si H2013Lm=9GeVêc2 fnê fp=-0.7

200 400 600 800 100010-25

10-24

10-23

10-22

10-21

vmin @kmêsDhrspc2êm@day

s-1 D

Spin-independent interaction

Eugenio Del Nobile, UCLA September 10, TAUP 2013

CoGeNT0 highCoGeNT0 med.CoGeNT0 lowCoGeNT1CRESST-IISIMPLEXENON10XENON100DAMA1HQNa=0.30LCDMS-II mod. limitCDMS-II-GeCDMS-II-Si H2013Lm=6GeVêc2 fnê fp=1

200 400 600 800 100010-27

10-26

10-25

10-24

vmin @kmêsD

hrspc2êm@day

s-1 D

CoGeNT1XENON10XENON100DAMA1HQNa,CollarLCDMS-II mod. limitCDMS-II-GeCDMS-II-Si H2013Lm=9GeVêc2 fnê fp=1

200 400 600 800 100010-27

10-26

10-25

10-24

vmin @kmêsDhrspc2êm@day

s-1 D

More involved interactions

Eugenio Del Nobile, UCLA September 10, TAUP 2013

E.g., a WIMP with a magnetic moment

Lint =��

2�̄�µ⌫�Fµ⌫ () Hint = ��� ~� · ~B

d�T

dER= ↵�2

⇢Z2T

1

ER� 1

v2

✓2mT +m�

2mTm�

◆�F 2SI,T (ER)

+�̂2T

v2mT

m2p

✓JT + 1

3JT

◆F 2M,T (ER)

Response functions

Eugenio Del Nobile, UCLA September 10, TAUP 2013

RSI HvminLR HvminLR HvminL ê vmin3R HvminL ê vmin10

CDMS-II-SiH 7-9 keV L

100 200 300 400 500 600 700 800vmin @kmêsD

ResponsefunctionHarb

itraryunitL

RSI HvminLR HvminLR HvminL ê vmin3R HvminL ê vmin10

CoGeNTH 0.43-1.11 keVee L

100 200 300 400 500 600 700 800vmin @kmêsD

ResponsefunctionHarb

itraryunitL

RSI HvminLR HvminLR HvminL ê vmin3R HvminL ê vmin10

CoGeNTH 2.49-3.18 keVee L

300 400 500 600 700 800 900 1000vmin @kmêsD

ResponsefunctionHarb

itraryunitL

RSI HvminLR HvminLR HvminL ê vmin3R HvminL ê vmin10

DAMAH 2.0-2.5 keVee L

100 200 300 400 500 600 700 800vmin @kmêsD

ResponsefunctionHarb

itraryunitL

Response functions

Eugenio Del Nobile, UCLA September 10, TAUP 2013

RSI HvminLR HvminLR HvminL ê vmin3R HvminL ê vmin10

CDMS-II-SiH 7-9 keV L

100 200 300 400 500 600 700 800vmin @kmêsD

ResponsefunctionHarb

itraryunitL

RSI HvminLR HvminLR HvminL ê vmin3R HvminL ê vmin10

CoGeNTH 0.43-1.11 keVee L

100 200 300 400 500 600 700 800vmin @kmêsD

ResponsefunctionHarb

itraryunitL

RSI HvminLR HvminLR HvminL ê vmin3R HvminL ê vmin10

CoGeNTH 2.49-3.18 keVee L

300 400 500 600 700 800 900 1000vmin @kmêsD

ResponsefunctionHarb

itraryunitL

RSI HvminLR HvminLR HvminL ê vmin3R HvminL ê vmin10

DAMAH 2.0-2.5 keVee L

100 200 300 400 500 600 700 800vmin @kmêsD

ResponsefunctionHarb

itraryunitL

vrmin⌘̃[E01,E

02](vmin) ⌘

R[E01,E

02]R1

0 dvmin v�rminR[E0

1,E02](vmin)

Results for Magnetic DM

Eugenio Del Nobile, UCLA September 10, TAUP 2013

CoGeNT1DAMA1CDMS mod. limitCDMS-II-SiCDMS-II-GeXENON10XENON100m=6GeVêc2

200 400 600 800 1000

10-25

10-24

10-23

10-22

10-21

vmin @kmêsD

hé@day

s-1 D

CoGeNT1DAMA1CDMS mod. limitCDMS-II-SiCDMS-II-GeXENON10XENON100m=9GeVêc2

200 400 600 800 1000

10-25

10-24

10-23

10-22

10-21

vmin @kmêsD

hé@day

s-1 D

CoGeNT1DAMA1CDMS mod. limitCDMS-II-SiCDMS-II-GeXENON10XENON100m=15GeVêc2

200 400 600 800 1000

10-25

10-24

10-23

10-22

10-21

vmin @kmêsDhé@day

s-1 D

Results for Magnetic DM

Eugenio Del Nobile, UCLA September 10, TAUP 2013

CoGeNT0CoGeNT1DAMA1CDMS-II-SiCDMS-II-GeCDMS mod. limitXENON10XENON100m=6GeVêc2

200 400 600 800 1000

10-25

10-24

10-23

10-22

10-21

vmin @kmêsD

hé@day

s-1 D

CoGeNT0CoGeNT1DAMA1CDMS-II-SiCDMS-II-GeCDMS mod. limitXENON10XENON100m=9GeVêc2

200 400 600 800 1000

10-25

10-24

10-23

10-22

10-21

vmin @kmêsD

hé@day

s-1 D

CoGeNT0CoGeNT1DAMA1CDMS-II-SiCDMS-II-GeCDMS mod. limitXENON10XENON100m=15GeVêc2

200 400 600 800 1000

10-25

10-24

10-23

10-22

10-21

vmin @kmêsDhé@day

s-1 D

Conclusions

Eugenio Del Nobile, UCLA September 10, TAUP 2013

• Promising framework to compare different direct detection experiments in a halo-independent way

• Allows to “compare spectra” of different experiments

• Allows to ~fit the DM velocity distribution

• Quite solid in making (conservative) bounds

• So far it looks like astrophysical uncertainties alone cannot accommodate the discrepancies between different experiments

Drawbacks

Eugenio Del Nobile, UCLA September 10, TAUP 2013

• Non straightforward interpretation of the “crosses”

• Crosses lack a precise statistical meaning

• Difficult mapping of the rate onto vmin-space for experiments with different nuclei, as DAMA (Na-I) and CRESST (Ca-W-O)

• No information on how compatible unmodulated and modulated signals are

Directions of future improvement

Eugenio Del Nobile, UCLA September 10, TAUP 2013

• Non straightforward interpretation of the “crosses”

• Crosses lack a precise statistical meaning

• Difficult mapping of the rate onto vmin-space for experiments with different nuclei, as DAMA (Na-I) and CRESST (Ca-W-O)

• No information on how compatible unmodulated and modulated signals are