Extended CIM Model to WAMS - EPCC Workshop 2019 Wenbin.pdfPMU. SCADA. Low-frequency oscillations ....

Post on 20-Feb-2021

5 views 0 download

transcript

Extended CIM Model to WAMS

Beijing Sifang Automation Co., Ltd.,CHINA

Wenbin Qiqiwenbin@sf-auto.com

Introduction

In china , WAMS were established in the Regional \ Provincial control centers.More than 700 substations or power plants have been equipped with PMU, that includes:– Nearly all 750kV, 500kV, 330kV substations in state grid and

regional grids– Key 220kV and 110kV substations in provincial grids

– All generators with capacity of 600MW or above

Sifang Automation Co., Ltd . has over 50% of the WAMS and PMU market share in China. Until May 13, 19,982 measuring points of PMU have been installed at 103 substations and power plants in North China grid.Experience of using WAMS has been accumulated ,but the usage of its information is still a challenge.

Data Server

I / O Node Ser ver

comunicationserver

Workstation of dispatchingmodes and maintenance

Magnetic disk panel

EMS

ApplicationServer

Admi ni st r at i ve ser ver

SANexchanger

Parallel Computer

PMU

switch

WEBServer

firewall

Communicatioserver

The Architecture of Master station of WAMS

System Function

PMU SCADA

Low-frequency oscillations in real-time alarm

Frequency stability Real-time Alarm

Voltage stability in real-time alarm

Transient stability assessment

Security Stability Control

Load model identification

Network model andparameters check

Synchronous machine parameters check

Dispatch Decision Supporting

Dynamic Stability Assessment

Static stability assessment

power angle stability Real-time Alarm

data integration and state estimation

Heat stability Real-time Alarm

Voltage stability assessment

transmission power limit Calculation

Auxiliary services Assessment

Disturbance identification

The Main Functions Achieved

Dispatching monitor and control – Power flow distribution diagram – Power angle distribution diagram – Frequency / voltage monitor– Wind power output monitor plan– Generator run status monitor– Plant Main wiring diagram– Master / sub-station operating

conditions

Application – Disturbance identification– An FM Unit features assessment – Small disturbance oscillation

statistics

– Low-frequency oscillations detection

– The relative phase angle Monitor

– The characteristics of Wind monitoring and analysis

– Model parameters analysis

– State Estimation

Coherent bus grouping for low frequency oscillation

Besides mode frequency, amplitude and damping coefficient.Provide coherent bus grouping function.Identify the oscillation interface or oscillation center.Calculate oscillation power contribution of each nodes.

Nearly in the same phase

Nearly in opposite phase

Coherent bus grouping and oscillation power contribution in contour map

The mode frequency distribution of oscillations satisfying statistic conditions in a Shandong power grid

(1) Online scan all the active power PMU measurement and make fast frequency spectrum analysis

(2) If an oscillation power has amplitude greater than 10MW and lasts at least for 5 periods, then one oscillation with such mode frequency is recorded

(3) The above figure is a oscillation statistics for one month(4) For the found dangerous mode, an oscillation instance can be selected

to make further analysis(e.g. to get coherent bus groups and oscillation center)

Unit Frequency Characteristics Assessment

The Assessment of Unit FM Characteristics

Studies have shown that a unit characteristic frequency shows a great dynamic characteristics ,steady-state results have a larger deviation, therefore, only once time unit of data can’t reflect the capacity of a frequency modulation , it must be accumulated with the long-term real-time data which reflect an FM unit functional contribution to the system, also as a basis for assessment.using high-precision and synchronization measurement of unit frequency and power of WAMS, the energy contribution of unit FM can be calculated, if it is positive, shown unitcontribution to the grid frequency modulation.Day \ Month\ Quarter power of unitoutput.

1

0

0sgn( ) ( )maxt T

i tt t

H x P P Tδ

δ

+ +

= +

= × − Δ∑

Evaluation of An FM Unit

Parameter Identification and Verification

FigureFigure

5 .35 .3 the typical model and the parameters of the the typical model and the parameters of the simulation curve and the measured curvessimulation curve and the measured curves

WAMS parameter identification and verification, tell us:Model parameters accurate or not.How much error ?– Active error is not

Serious– Reactive error is

Serious

Model accurate?–– nono!!

Real-time Stability Monitor

The Critical Phase Angle and Transmission Power Monitor

System Layout

CIM Model in DatabaseTables and it’s corresponding column (Attributes ) follow CIM standard.Terminal attributes are introduced

Basic Table HostControlArea

SubControlArea

Substation

TapChanger

VoltageLevel

Bay

Disconnector

Breaker

GroundDisconnectorBusbarSectionSynchronousMachineEnergyConsumerCompensator

PowerTransformer

TransformerWinding

P o w e rS ys te m R e s o u rc e(f rom C o re )

C o n n e c to r

C o n d u c to r

Eq u iv a le n tS o u rc e

G ro u n d

J u m p e r

J u n c tio n

R e cti fi e r In ve r te r

R e g u la tin g C o n d E q

St a t i c V a rC o m p e n s a to r

S w i tc h

F u s e

T ra n s fo rm e rW in d in g

T a p C h a n g e r

D is c o n n e c to r L o a d B re a k S w i tc h

D C L in e S e g m e n t

AC L in e S e g m e n t

L in e

C o m p e n s a to r

Vo l ta g e C o n tro lZ o n e

B u s b a rS e c tio n

L o ad Are a(f ro m L o a d M o d e l )

Eq u iv a le n tL o a d(f ro m L o a d M o d e l )

In d u c tio n M o to rL o a d(f ro m L o a d M o d e l )

E n e r g yC o n s u m e rS t a tio n S u p p ly

(f ro m L o a d M o d e l )

C u s to m e rM e te r(f rom L o a d M o d e l )

H e a tExc h a n g e r

B a y(f ro m C o re )

Vo l ta g e L e ve l(f ro m C o re )

P o w e rT ra n s fo rm e r

S u b s ta tio n(f ro m C o re )

E q u ip m e n tC o n ta in e r( f rom C o re )

E q u ip m e n t(f rom C o re )

S yn c h ro n o u s M a c h i n e

G e n e ra tin g U n i t(f ro m P ro d u c t i o n )

B re a k e r

C o n d u c tin g E q u ip m e n t(f rom C o re )

P ro te c tio n Eq u ip m e n t(f ro m P ro te c t i o n )

G ro u n d D is c o n n e c to r

C o m p o s i te S w i tc h

Table Example 1Struc BREAKER{

int m_ID;char m_name[32];char m_description[64];char m_phases[4];int m_terminal0_id;int m_terminal1_id;SF_Byte m_normalOpen;SDateTime m_switchOnDate;int m_basevoltage_id;int m_equipmentcontainer_id;……

};

struct BUSBARSECTION{

int m_ID;char m_name[32];char m_description[64];char m_phases[4];int m_terminal0_id;int m_basevoltage_id;int m_equipmentcontainer_id;……

};

Table Example 2

Measurement ModelN a m in g

(f ro m C o re )

M e a s u re m e n tVa lu e Q u a l i ty

M e a s u re m e n tVa lu e S o u rc e

L im i tva l ue : N u m e r ic

Va lu e T o A l ia sva lu e : N u m e r ic

M ea s u re m e n tVa l ueva lu e : N u m e r ictim e S ta m p : Ab s o lu te D a te T im es e n s o rAc c u ra c y : P e rC e n t 11

+ M e a s u re m e n tVa lu e Q u a l i ty

1

+ M e a s u re m e n tVa lu e

1

0 ..n

1

+ M e a s u re m e n tVa lu e s0 ..n

+ Me a s u r em e n tVa lu e S o u rce1

L im i tS e ti s P e rc e n ta g e L im i ts : B o o le a n

0 ..n1

+ L im i ts

0 ..n

+ L im i tS e t

1

M e a s u re m e n tT yp e

Va lu e A l ia s S e t 1 ..n1+ Va lu e s

1 ..n+ Va lu e A l ia s S e t

1

U n i t( f ro m C o re )

C o n tro lT yp e

M e a s u re m e n tp o s i tive F lo w In : B o o le a nm a xVa lu e : N u m e r icm in Va lu e : N u m e r icd a ta T yp e : N u m e r ic T yp en o rm a lVa lu e : N u m e r ic

1 ..n

1

+ C o n ta in _ M e a s u re m e n tVa lu e s1 ..n

+ M e m b e rO f_ M e a s u re m e n t

1

0 ..10 ..n

+ Va lu e A l ia s S e t0 ..1

+ M e a su re m e n ts

0 ..n

0 ..n

0 ..n

+ L im i tS e ts0 ..n

+ M e a s u r em e n ts

0 ..n 0 ..n

1

+ M e a s u re m e n ts0 ..n

+ M e a s u re m e n tT yp e1

1

0 ..n

+ U n i t

1

+ M e as ur e m en ts0 ..n

C o n tro lva lu e : N u m e r ictim e S ta m p : Ab s o lu te D a te T im eo p e ra tio n In P ro g re s s : B o o le a nm a xVa lu e : N u m e r icm in Va lu e : N u m e r icd a ta T yp e : N u m e r ic T yp en o rm a lVa lu e : N u m e r ic

0 .. 10 ..n

+ Va lu e Al ia s S e t0 .. 1

+ C o n tro ls

0 ..n

0 ..n

1

+ C o n tro ls0 ..n

+ U n i t 1

0 ..n

1

+ C o n tro ls0 ..n

+ C o n tro lT yp e1

0 ..1

0 ..1+ M e a s u re d B y_ M e a s u re m e n t

0 ..1+ C o n t ro l le d B y_ C o n tro l

0 ..1

Extended Model for PMU Data

TABLE MEASUREMENT{

ID;//� � � IDTERMINAL_ID; //� �MEASUREMENTTYPE_ID; //� � � �POWERSYSTEMRESOURCE_ID; //� � IDPOWERSYSTEMRESOURCE_TABLEID; //� � � IDPOINTID0; //POINTTABLEID0; //POINTID1; //Pmu_DataCfg� � � � � � � IDPOINTTABLEID1; //Pmu_DataCfg_ID � 1006POINTID2; //POINTTABLEID2; //

ObjLinkNext}

Table Object{

ID;NAME;//DESCRIPTION;//TERMINAL0_ID;//� � � � IDTERMINAL1_ID;//� � � � IDEQUIPMENTCONTAINER_ID;//� � IDEQUIPMENTCONTAINER_TABLEID;//� � � IDmeasId;measIdx;

}

PMU data modelContinuous uploading PMU data, Its own time scale, interval 20ms.

Changing in SCADA(RTU) data transmission, No time scale, interval 1s.

Using fast Database design :– the entire Seconds data of SCADA and PMU cache in Database , to meet

the data requirements of second-class update of Man-machine interface.

– PMU data cache in the fast database with time scales to meet the dynamic curves of MS-level display and advanced applications.

Human-machine interface through CIM model , achieve the multi-source data access of SCADA and PMU.

RTDB mixed PMU data and SCADA Data

point0

PMU Real-time DataBase

point1 point2 point3timetime0time1

time2

Point1:SCADA data

mixed Data

from SCADA or PMU

Point1:PMU data point2:SCADA data Point 2:PMU data

Quick Data service

data from PMU at 1ms period

Slow data service In second

Dynamic Curve in ms

WAMS APP

Real-time DataBase

SCADA

PMU

PMU/SCADA relation table

Analog Table

PMU Table

Time stamp of PMU data

Multi-source Data Display

SVG Data<g id="100003714"><use x="472" y="306" width="20" height="16"

transform="rotate(0,472,306) scale(1,1) translate(- 11,-8)" xlink:href="#Breaker:湖北断路器横_0" class="kv500kV"/>

<metadata><cge:PSR_Ref ObjectID="大别山电厂\525.00千伏

\CB_5013"/></metadata></g>

CIM DATA<g id="100003714"><use x="472" y="306" width="20"

height="16" transform="rotate(0,472,306) scale(1,1) translate(-11,-8)" xlink:href="#Breaker:湖北断路器横_0" class="kv500kV"/>

<metadata><cge:PSR_Ref ObjectID="220004072"/>

</metadata></g>

Relation to CIM and SVG files

<cim:Breaker

rdf:ID="大别山电厂\525.00千伏\CB_5013

">

<cge:PSR_Ref

ObjectID="大别山电厂\525.00千伏\CB_5013

"/>

CIM

SVG

Import CIM data from EMS Import the SVG graphics of EMSUpload the PMU configuration files from PMU substation Automatically map the Measurement record to PMU point.draw some display pictures for WAMS

Five Steps for WAMS Implementation

EMSWAMS

IEC 61970 CIM file

SVG Vector graphic

file

SCADA Telemetry、Remote (104)

Online Lossless Compression of WAMS Data

Online Lossless Compression;

high-density non-destructive preservation, the compression ratio of 30%;

Quick search;1000G

The History of Data Storage of WAMS Master Station

Summary

Using the CIM model and SVG from EMS, the WAMS modeling becomes a much easier task.

Thank you!