ICRF scenarios for ITER’s half-field phase

Post on 14-Jan-2016

30 views 1 download

description

ICRF scenarios for ITER’s half-field phase. E. Lerche, D. Van Eester and JET-EFDA contributors 19th Topical Conference on RF power in Plasmas, Newport 2011. ICRF scenarios for ITER’s half-field phase. - PowerPoint PPT Presentation

transcript

19th Topical Conference on RF Power in Plasmas, Newport, 2011 1/34

ICRF scenarios for ICRF scenarios for ITER’s half-field phaseITER’s half-field phase

E. Lerche, D. Van Eester and JET-EFDA contributorsE. Lerche, D. Van Eester and JET-EFDA contributors

19th Topical Conference on RF power in Plasmas, Newport 201119th Topical Conference on RF power in Plasmas, Newport 2011

19th Topical Conference on RF Power in Plasmas, Newport, 2011 2/34

ICRF scenarios for ITER’s half-field phase

E. Lerche1, D. Van Eester1, J. Ongena1, M.-L. Mayoral2, T. Johnson3, T. Hellsten3, R. Bilato4, A. Czarnecka5, R. Dumont6, C. Giroud2, P.

Jacquet2, V. Kiptily2, A. Krasilnikov7, M. Maslov8, V. Vdovin9 and JET EFDA Contributors*

JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK

1 LPP-ERM/KMS, Association Euratom-‘Belgian State’, TEC Partner, Brussels, Belgium2 Euratom-CCFE Fusion Association, Culham Science Centre, UK

3 Fusion Plasma Physics, Association Euratom-VR, KTH, Stockholm, Sweden4 Institut für Plasmaphysik (MPI)-Euratom Association, Garching, Germany

5 Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland6 CEA(IRFM)-Euratom Association, Saint-Paul-lez-Durance, France

7 SRC RF Troitsk Institute for Innovating and Fusion Research, Troitsk, Russia8 Centre de Recherches en Physique des Plasmas, Association EURATOM-Conf. Suisse, Lausanne, CH

9 RNC Kurchatov Institute, Nuclear Fusion Institute, Moscow, Russia

*See the Appendix of F. Romanelli et al., paper OV/1-3, IAEA Fusion Energy Conference, Daejeon, 2010

19th Topical Conference on RF Power in Plasmas, Newport, 2011 3/34

Outline

- Motivation ICRF scenarios for initial operation phase of ITER (non-activated, half-field)

- Summary of main results of JET experiments (H plasmas)

N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

- Preliminary modelling of half-field ICRH scenarios

H plasmas: N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

4He plasmas: (Standard) N=1 H ‘minority’ ICRH Impact of H concentration (H-pellet’s)

- Summary & Discussion

19th Topical Conference on RF Power in Plasmas, Newport, 2011 4/34

Outline

- Motivation ICRF scenarios for initial operation phase of ITER (non-activated, half-field)

- Summary of main results of JET experiments (H plasmas)

N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

- Preliminary modelling of half-field ICRH scenarios

H plasmas: N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

4He plasmas: (Standard) N=1 H ‘minority’ ICRH Impact of H concentration (H-pellet’s)

- Summary & Discussion

19th Topical Conference on RF Power in Plasmas, Newport, 2011 5/34

ITER half-field H plasmas (L-mode)

Plasma: ~80%H, (He3) , 2%Be, …

B0=2.65T, IP=7.5MA (L-mode)

Auxiliary power:• 16.5MW H-NBI (elec/ion = 80/20)• 15.0MW ECRH• 10MW ICRH (elec/ion = 50/50)

n 3x1019/m3

T 8-10keV

ASTRA [A.Loarte, P.Lamalle]

ICRH (?)

L1

L2

19th Topical Conference on RF Power in Plasmas, Newport, 2011 6/34

ICRF scenarios for ITER at B0=2.65T

N=1 H

N=2 He3

(N=2 D)N=3 D

N=1 H (~40MHz)

N=2 3He (~53MHz)

(either H or 4He plasmas)

19th Topical Conference on RF Power in Plasmas, Newport, 2011 7/34

Outline

- Motivation ICRF scenarios for initial operation phase of ITER (non-activated, half-field)

- Summary of main results of JET experiments (H plasmas)

N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

- Preliminary modelling of half-field ICRH scenarios

H plasmas: N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

4He plasmas: (Standard) N=1 H ‘minority’ ICRH Impact of H concentration (H-pellet’s)

- Summary & Discussion

19th Topical Conference on RF Power in Plasmas, Newport, 2011 8/34

N=

1

HN

=2

D

N=

2

He3

N=

1

He3

N=

2

He3

N=

3

DN=

2

DN

=1

H

JET experiments in H plasmas at B0=2.65T

ITER ITER

N=

1 H

N=

2 3

He

JET JET

N=1 H majority ICRH [f=42MHz, Bo=2.65T]

N=2 3He ‘minority’ ICRH [f=51MHz, Bo=2.65T]

19th Topical Conference on RF Power in Plasmas, Newport, 2011 9/34

• B0=2.65T (ITER), IP=1.5MA (<<ITER)

• Similar Ne but lower T than ITER

• ICRF power up to 6MW (ITER 10MW)

• NBI: D-beams instead of H-beam (ITER non-active phase)

L2L1=L2

JET

L1

JET experiments in H plasmas at B0=2.65T

19th Topical Conference on RF Power in Plasmas, Newport, 2011 10/34

Outline

- Motivation ICRF scenarios for initial operation phase of ITER (non-activated, half-field)

- Summary of main results of JET experiments (H plasmas)

N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

- Preliminary modelling of half-field ICRH scenarios

H plasmas: N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

4He plasmas: (Standard) N=1 H ‘minority’ ICRH Impact of H concentration (H-pellet’s)

- Summary & Discussion

19th Topical Conference on RF Power in Plasmas, Newport, 2011 11/34

N=1 Hydrogen majority ICRH (f=42MHz)

N=

1

HN

=2

D

H

e-

Initial remarks:

• Low absorptivity scenario

• Electron absorption dominant

• No He3 !

N=

2

He3

N=

1

He3

TOMCAT #79332: B=2.67T, f=42.50MHz

Pow

er a

bsor

ptio

n

19th Topical Conference on RF Power in Plasmas, Newport, 2011 12/34

Typical N=1 H pulse (f=42MHz)

JPN 79335

• Weak energy response to RF power step (low absorbtivity)

• Considerable radiation losses (Prad / PICRH ≈ 1/3)

19th Topical Conference on RF Power in Plasmas, Newport, 2011 13/34

ICRF Heating efficiency

RF Power absorption

electrons

ions

elecs

ions = 0.3-0.4

Heating efficiency increases

with plasma temperature

(KK3)

(CXRS)

TOMCAT

electrons

ionsAbs

orbe

d po

wer

19th Topical Conference on RF Power in Plasmas, Newport, 2011 14/34

PICRH dependence

1 PINI = 1.3MW NBI2 PINIs = 2.6MW NBI

~0.1keV/MW ~0.1keV/MW

TeTi

Poor performance compared

to similar (H)-D ICRF expts.

(H)-D (JET)

~1keV/MW

Central temperatures

B0=2.7T

19th Topical Conference on RF Power in Plasmas, Newport, 2011 15/34

RF acceleration (NPA)

Horizontal neutral particle analyzer (KR2)

PRF=2.5MW PRF=5MW

H

H

• No clear effect of ICRF on D distribution

• (Hints of fast H with E~200keV in KF1)

Very modest tails if compared with minority ICRH experiments

SKIP if NEEDED

19th Topical Conference on RF Power in Plasmas, Newport, 2011 16/34

Outline

- Motivation ICRF scenarios for initial operation phase of ITER (non-activated, half-field)

- Summary of main results of JET experiments (H plasmas)

N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

- Preliminary modelling of half-field ICRH scenarios

H plasmas: N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

4He plasmas: (Standard) N=1 H ‘minority’ ICRH Impact of H concentration (H-pellet’s)

- Summary & Discussion

19th Topical Conference on RF Power in Plasmas, Newport, 2011 17/34

N=2 He3 ICRH (f=51MHz)

N=

2

He3

N=

3

DN=

2

DN

=1

H

Initial remarks:

• Low absorptivity scenario

• Largely dominant electron heating at low X[He3]

• Ion heating enhanced for higher X[He3]

• D-beams: N=2 / 3 parasitic absorption

TOMCAT

X[3He]=5%

#79357: B=2.66T, f=51.50MHz

Pow

er a

bsor

ptio

n

19th Topical Conference on RF Power in Plasmas, Newport, 2011 18/34

Typical N=2 He3 pulse

JPN 79359

elec elec + ion

~4MW

~2MW

X[He3]

RTC

• X[3He]<20%: only elec heating

• X[3He]>20%: elec + ion heating

• Large radiation losses (Prad / PICRH ≈ 1/2)

4Hz

19th Topical Conference on RF Power in Plasmas, Newport, 2011 19/34

JPN 79359

nkTe+nkTi

Global heating efficiency (Wpla)

• 2x larger heating efficiency at X[3He]=20% (w.r.t. 5-10%) • Efficiency increase is due to enhanced ion absorption

ICRF heating efficiency

TOMCAT

elecsionstotal

Abs

orbe

d po

wer

19th Topical Conference on RF Power in Plasmas, Newport, 2011 20/34

X[He3] dependence (2 PINIs , PICRH ~ 2.5MW)

• (Equilibrium) plasma energy and

temperature increase with X[3He]

(PICRH ~ 2.5MW)Overall performance increase

19th Topical Conference on RF Power in Plasmas, Newport, 2011 21/34

PICRH dependence (1 PINI, X[He3]=10-18%)

~0.25keV/MW ~0.2keV/MW

TeTi

Central temperatures

(H)-D (JET)

~1keV/MW

• Better performance than N=1 H maj. expts.

• Poor performance compared to similar

(H)-D ICRF expts.

B0=2.7T

19th Topical Conference on RF Power in Plasmas, Newport, 2011 22/34

RF acceleration (NPA)

Horizontal NPA (KR2)He3

D

• Dominant 3He RF acceleration for E<160keV

• Dominant (N=3) RF acceleration of D (beam) ions for E>160keV[V.Kiptily, to appear in PPCF]

19th Topical Conference on RF Power in Plasmas, Newport, 2011 23/34

Impurities: N=1 H vs. N=2 He3

Bolom

Be

0 1 2 3 4 5 6

0

2

4

6

8

N=2 He3N=1 H

I/n

2 e (1

0-2

2 Ph

*m2 /s

*sr

)

PICRH

(MW)

Ni 26 (KT7D)

Ni

Higher impurity content in N=2 3He discharges

[A.Czarnecka, to appear in PPCF]

0 1 2 3 4 5 60

1

2

3

4

5

6N=2 He3N=1 H

C 4 (KT7D)

I/n2 e (1

0-2

0 P

h*m

2 /s *

sr)

PICRH

(MW)

0 1 2 3 4 5 60,0

0,5

1,0

1,5

2,0N=2 He3N=1 H

C 6 (KT7D)

I/n2 e (1

0-2

0 P

h*m

2 /s *

sr)

PICRH

(MW)

C6 C4 • Higher radiation from plasma edge / divertor

• Confirmed by 2D bolometric tomography

19th Topical Conference on RF Power in Plasmas, Newport, 2011 24/34

Summary of JET experiments

N=1 H ICRH

N=2 He3 ICRH

• Low heating efficiency ( = 0.15 – 0.4, increasing with X[He3])• Largely dominant electron heating for low X[He3] (mainly LD + TTMP) • Ion absorption proportional to X[He3]: dominant for X[He3] > 20% • Fast He3 (up to 250keV) detected by NPA

• Clear parasitic D absorption with PNBI>5MW

• Poor global heating: ~0.2keV/MW

• Strong plasma-wall interaction (Prad/PICRH ≈ 1/2, impurities, etc…)

• Low heating efficiency ( = 0.3 - 0.4)

• Dominant electron heating: pe 2 x pi (LD + TTMP)

• Modest H acceleration (up to 50keV) registered by NPA• Negligible parasitic N=2 D absorption• Poor global heating: ~0.1keV/MW

• Considerable plasma-wall interaction (Prad/PICRH ≈ 1/3)

19th Topical Conference on RF Power in Plasmas, Newport, 2011 25/34

Outline

- Motivation ICRF scenarios for initial operation phase of ITER (non-activated, half-field)

- Summary of main results of JET experiments (H plasmas)

N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

- Preliminary modelling of half-field ICRH scenarios

H plasmas: N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

4He plasmas: (Standard) N=1 H ‘minority’ ICRH Impact of H concentration (H-pellet’s)

- Summary & Discussion

19th Topical Conference on RF Power in Plasmas, Newport, 2011 26/34

Preliminary ITER modelling

• Objectives:

- Intuitive picture of relative RF absorptivity (SPA) of the various heating scenarios

- Parametric scans for preliminary optimization

• More ‘rigorous’ numerical efforts

[R. Budny, IAEA2010, to appear in NF2011]

1D TOMCAT code

[Van Eester, PPCF98]

19th Topical Conference on RF Power in Plasmas, Newport, 2011 27/34

Outline

- Motivation ICRF scenarios for initial operation phase of ITER (non-activated, half-field)

- Summary of main results of JET experiments (H plasmas)

N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

- Preliminary modelling of half-field ICRH scenarios

H plasmas: N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

4He plasmas: (Standard) N=1 H ‘minority’ ICRH Impact of H concentration (H-pellet’s)

- Summary & Discussion

19th Topical Conference on RF Power in Plasmas, Newport, 2011 28/34

• E+ 0 @ =H (‘screening’)

• Low absorptivity scenario (= 0.3 - 0.4)

• Dominant electron heating (broad absorption)

• Higher TH helps ion absorption

• Possible 3He absorption (if present)

E+ electric field

=

H

Fundamental H majority ICRH (42MHz)

TH 8keV

TH 25keV

19th Topical Conference on RF Power in Plasmas, Newport, 2011 29/34

• Higher TH yields higher absorption (ions)

• Higher ne yields higher absorption (elecs)

• pe = pi @ TH 20keV

Parametric scan

L-mode 2: T =8/10keVn=34 (00)

ITER ITER

19th Topical Conference on RF Power in Plasmas, Newport, 2011 30/34

• Larger E+ at =2He3

• Low absorptivity scenario (= 0.25 - 0.4)

• Dominant electron heating (broad absorption)

• Ion heating enhanced at higher X[3He]

• Possible N=1 H (N=2,3 D) absorption

N=2 3He ‘minority’ ICRH (53MHz)

=

H

=2He3

X[3He]=4%

X[3He]=25%

E+ electric field

19th Topical Conference on RF Power in Plasmas, Newport, 2011 31/34

• Higher X[3He] yields higher absorption (ions)

• Higher ne yields higher absorption (elecs)

• pe = pi @ X[3He] 30%

Parametric scan

L-mode 2: T =8/10keVn=34 (00)

ITER ITER

19th Topical Conference on RF Power in Plasmas, Newport, 2011 32/34

Do we have an ICRH scenario for H plasmas?

N=2 H majority ICRH at 1/3 nominal field (B0=1.8T)

N=2 H

(N=3 D)

E+ electric field

pH = 70%

pe = 30%

• Full single-pass absorption (=1) • Dominant ion heating• But ECRH out of range, confinement (?)• Could be used for fast particle studies

19th Topical Conference on RF Power in Plasmas, Newport, 2011 33/34

Outline

- Motivation ICRF scenarios for initial operation phase of ITER (non-activated, half-field)

- Summary of main results of JET experiments (H plasmas)

N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

- Preliminary modelling of half-field ICRH scenarios

H plasmas: N=1 H majority ICRH

N=2 3He ‘large minority’ ICRH

4He plasmas: (Standard) N=1 H ‘minority’ ICRH Impact of H concentration (H-pellet’s)

- Summary & Discussion

19th Topical Conference on RF Power in Plasmas, Newport, 2011 34/34

N=1 H–4He minority ICRH (42MHz)

• Good absorption scenario (= 0.7 – 1.0)

• Dominant ion heating (for moderate X[H])

• Ion absorption decreased at higher X[H]

n=34 (00) L-mode 2 E+ electric field

=

H

19th Topical Conference on RF Power in Plasmas, Newport, 2011 35/34

N=1 H–4He minority ICRH (42MHz)

L-mode 2: T =8/10keV L-mode 1: T =4/5keV

• Ion absorption is reduced at higher X[H] (‘screening effect’)

• This effect is stronger at lower temperatures (L-mode 1):

• Operating at high k// phasing (00) helps

• Accounting for tail formation does not alter the behaviour at high X[H]

• No MC absorption (1D and 2D)

n=34 (00) n=34 (00) n=60 (0)

19th Topical Conference on RF Power in Plasmas, Newport, 2011 36/34

N=1 H–4He minority ICRH (42MHz)

Comparison with 2D wave codes

• Electron absorption slightly overestimated in 1D calculations

• Unlike for the H plasmas (touchy), for the better absorbing (H)-D scheme 2D calculations are converged

EVE code [R.Dumont, NF2009]

X[H]=5% X[H]=45%E+ E+

PabsPabs

19th Topical Conference on RF Power in Plasmas, Newport, 2011 37/34

SPA vs. heating efficiency

JET

pla=0.5 loss=0.1

Simple multi-pass model

Pow

er

ITER

(H plasmas)

(4He plasmas)loss=0

19th Topical Conference on RF Power in Plasmas, Newport, 2011 38/34

N=1 H majority ICRH

N=2 3He–H ICRH

• Moderate absorptivity (~0.5) → significant PWI? [seen in JET]

• Dominant electron heating [seen in JET]

• Increasing temperature favours ion heating [seen in JET] but pe=pi @ 25keV

• Increasing density favours overall heating (electron heating dominant)

• Low absorptivity (~0.3) significant PWI? [seen in JET]

• Largely dominant electron heating except for high X[He3] [seen in JET]

• Increasing X[He3] favours ion heating [seen in JET] but pe=pi @ X[He3]~30%

• Increasing temperature has small effect

• Increasing density favours overall heating (electron heating dominant)

Summary of ITER modelling

N=1 H-4He ICRH

• Good single-pass absorption (0.7) with dominant ion heating (X[H]<25%)

• ICRF efficiency lower for larger X[H], partic. at lower temperature (L mode-1)

• This effect can be compensated with higher k// phasing (00)

19th Topical Conference on RF Power in Plasmas, Newport, 2011 39/34

H plasmas:

• Both ICRF scenarios proposed for ITER’s half field phase in H suffer from low power absorptivity with dominant electron heating:

- N=1 H majority requires high plasma temperatures

- N=2 3He requires large X[3He] for efficient ion heating

• This DOES NOT mean that they are not suited for the commissioning of the ICRF system, but the power may be limited (enhanced PWI)

• One possible ICRF scenario with good ion absorption is N=2 H majority at 1/3 of the nominal B0 (but ECRH is out of range)

4He plasmas:

• (H)-4He minority ICRH is OK for moderate X[H] (<40%)

• At higher X[H] the ion absorption is jeopardized, particularly at low T

• Operating at higher k// phasing (e.g. 00) helps recovering good absorption in general (but lower coupling)

Final remarks

19th Topical Conference on RF Power in Plasmas, Newport, 2011 40/34

Wave modelling:

• Low absorption H-plasma scenarios require further modelling (touchy!)

• (H)-4He ICRF scenario well converged but further simulations at high X[H] welcome

Integrated scenario modelling:

• Use experimental heating efficiencies / SPA’s obtained for assessing which T can actually be expected in ITER’s half-field H-plasma phase

• Use realistic power absorption profiles in all cases (broader elec. absorption)

Final remarks

Experiments:

• High X[H] ICRH experiments in 4He plasmas (B0=2.65T, f=42MHz)

19th Topical Conference on RF Power in Plasmas, Newport, 2011 41/34

Discussion

JET ITER (prelim.)

N=1 H ICRH

• Low heating efficiency (= 0.3-0.4)

• Electron heating dominant (pe/pi=2)

• Pre-heating helps overall absorption

• Considerable plasma-wall interaction

• Reasonable heating efficiency (= 0.5)

• Electron heating dominant except for TH>40keV

• Higher ne and higher Te enhance absorption• ??

N=2 He3 ICRH

• Low heating efficiency (= 0.15-0.45) depending on X[He3]

• Elec. heating dominant for low X[He3]; • Ion heating dominant for X[He3]>20%

• NBI pre-heating helps (but parasitic D absorption)

• Strong plasma-wall interaction

• Low heating efficiency (= 0.2-0.4) depending on parameters • Electron heating dominant throughout

• Higher X[He3], higher ne or higher Te enhance overall efficiency:

• ??

19th Topical Conference on RF Power in Plasmas, Newport, 2011 42/34

EXTRAS

19th Topical Conference on RF Power in Plasmas, Newport, 2011 43/34

Impurities: N=1 H vs. N=2 He3 (KS3)

Bolom Zeff

Be

0 1 2 3 4 5 6

0

2

4

6

8

N=2 He3N=1 H

I/n2 e (

10-2

2 P

h*m

2 /s *

sr)

PICRH

(MW)

Ni 26 (KT7D)

0 1 2 3 4 5 60

1

2

3

4

5

6N=2 He3N=1 H

Cr 22 (KT7D)

I/n

2 e (1

0-2

2 Ph

*m2 /s

*sr

)

PICRH

(MW)

Ni Cr

Higher impurity content in N=2 3He discharges

[A.Czarnecka, to appear in PPCF]

19th Topical Conference on RF Power in Plasmas, Newport, 2011 44/34

Impurities: N=1 H vs. N=2 He3 (KT2/7)

VUV spectroscopy (KT2/KT7)

N=1 H

N=2 3He

0 1 2 3 4 5 60

1

2

3

4

5

6N=2 He3N=1 H

C 4 (KT7D)

I/n

2 e (1

0-2

0 Ph

*m2 /s

*sr

)

PICRH

(MW)

0 1 2 3 4 5 60,0

0,5

1,0

1,5

2,0N=2 He3N=1 H

C 6 (KT7D)

I/n

2 e (1

0-20 P

h*m

2 /s *

sr)

PICRH

(MW)

C6 C4

• Higher radiation losses in N=2 3He scenario come from plasma edge / divertor

• Confirmed by 2D bolometric tomography

19th Topical Conference on RF Power in Plasmas, Newport, 2011 45/34

coax • Larger k// yields higher absorption

• pe / pi roughly independent of k//

Effect of antenna phasing

coax

[A. Messiaen NF2010]

Fundamental H majority ICRH (42MHz)

19th Topical Conference on RF Power in Plasmas, Newport, 2011 46/34

• Low X[3He]:

Larger k// yields higher

absorption (elecs only)

X[3He]=4%

X[3He]=30%

coax

Effect of antenna phasing

Fundamental H majority ICRH (42MHz)co

ax

• High X[3He]:

Low k// → ion heating

Large k// → elec. heating

19th Topical Conference on RF Power in Plasmas, Newport, 2011 47/34

Effect of H dillution (4He contamination)

N=1 H majority ICRH

Preliminary modelling shows same tendency (but weaker)

Important to re-assess experimentally

X[4He] X[4He]

(PICRF=5MW)

no NBI1 PINI

no NBI1 PINI

Wdia NPA on H

Plasma dilution

19th Topical Conference on RF Power in Plasmas, Newport, 2011 48/34

RF acceleration (NPA)

Horizontal NPA (KR2)3He

D

• Relatively modest acceleation of 3He ions (E<160keV) (hints on KF1 E<260keV)• Clear RF acceleration of D (beam) ions above beam source energy

19th Topical Conference on RF Power in Plasmas, Newport, 2011 49/34

RF acceleration (ion losses)

Scintillator probe (KA3)

• Main losses come from RF accelerated D beam ions

• Small fast 3He losses (No hints fast 3He detected by -spectroscopy)

t=46s

D

3He

[V.Kiptily]

19th Topical Conference on RF Power in Plasmas, Newport, 2011 50/34

Simple comparison with other scenarios

H minority in D (ILA)

PICRH(MW)T

(ke

V)

~1keV/MW

N=1 D majority (B0=3.3T, f=25MHz)

~0.5keV/MW

N=1 H majority

T/P 0.1keV/MW

N=2 He3

T/P 0.2keV/MW