Introduction to PDEs and Numerical Methods Lecture 13. The ...

Post on 16-Oct-2021

9 views 0 download

transcript

Platzhalter fรผr Bild, Bild auf Titelfolie hinter das Logo einsetzen

Dr. Noemi Friedman, 24. 01. 2018.

Introduction to PDEs and Numerical Methods

Lecture 13.

The finite element method: assembling the matrices,

isoparametric mapping, FEM in higher dimension

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture| Seite 2

RECAP: How to solve PDE with

FEM with nodal basis, piecewise linear shape functions

Finite Element method with piecewise linear functions in 1D, hom DBC

1) Weak formulation of the PDE, definition of the โ€šenergyโ€™ inner product (the bilinear

functional, ๐‘Ž) and and the linear functional (๐น)

๐‘Ž ๐‘ข, ๐‘ฃ = ๐น ๐‘ฃ2) Define approximating subspace by definition of a mesh (nodes 0,1,..N, with coordinates,

elements) and setup the hat functions on them

3) Compute the elements of the stiffness matrix (Grammian) โ€“ evaluation of integrals

๐พ๐‘–๐‘— = ๐‘Ž ๐‘๐‘–(๐‘ฅ), ๐‘๐‘—(๐‘ฅ) = ๐‘๐‘–(๐‘ฅ), ๐‘๐‘—(๐‘ฅ) ๐ธ๐‘–, ๐‘— = 1. . ๐‘ โˆ’ 1

4) Compute the elements of the vector of the right hand side โ€“ evaluation of integrals

๐‘“๐‘– = ๐น ๐‘๐‘– , ๐‘– = 1. . ๐‘ โˆ’ 15) Solve the system of equations:

for ๐ฎ, which gives the solution at the nodes.

The solution in between the nodes can be calculated from:

ฮฆ๐‘– ๐‘ฅ = Ni x =

๐‘ฅ โˆ’ ๐‘ฅ๐‘–โˆ’1

๐‘™๐‘ฅ โˆˆ [๐‘ฅ๐‘–โˆ’1, ๐‘ฅ๐‘–]

๐‘ฅ๐‘–+1 + ๐‘ฅ

๐‘™๐‘ฅ โˆˆ [๐‘ฅ๐‘– , ๐‘ฅ๐‘–+1]

0 else

๐Š๐ฎ = ๐Ÿ

๐‘ข x โ‰ˆ

๐‘–=1

๐‘

๐‘ข๐‘– ๐‘๐‘–(x)

๐‘– = 1. . ๐‘ โˆ’ 1

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture | Seite 3

Recap:

1D Example with linear nodal basis

๐‘(๐‘ฅ)

๐‘™

๐‘™/5 ๐‘™/5 ๐‘™/5๐‘™/5 ๐‘™/5

instead:

Compute stiffness matrix elementwisely and

then assemble

๐Š ๐Ÿ๐ฎ

Global stiffness matrix

1 2 3 4 5 6

๐พ4๐‘’ =

1 2 3 4 5 6

1

2

3

4

5

6

๐‘ข1

๐‘ข2

๐‘ข3

๐‘ข4

๐‘ข5

๐‘ข6

0

๐‘“2

๐‘“3

๐‘“4

๐‘“5

0

=

4 5

4

5

๐พ4๐‘’ 1,1 = ๐ธ๐ด

ฮฉ4

๐œ•๐œ“4(๐‘ฅ)

๐œ•๐‘ฅ

๐œ•๐œ“4(๐‘ฅ)

๐œ•๐‘ฅ๐‘‘๐‘ฅ

๐พ4๐‘’(1,1) ๐พ4

๐‘’(1,2)

๐พ4๐‘’(2,1) ๐พ4

๐‘’(2,2)

๐œ“4 ๐œ“5๐œ“3๐œ“2

๐พ4๐‘’ 1,2 = ๐ธ๐ด

ฮฉ4

๐œ•๐œ“4(๐‘ฅ)

๐œ•๐‘ฅ

๐œ•๐œ“5(๐‘ฅ)

๐œ•๐‘ฅ๐‘‘๐‘ฅ

๐พ4๐‘’ 2,1 = ๐ธ๐ด

ฮฉ4

๐œ•๐œ“5(๐‘ฅ)

๐œ•๐‘ฅ

๐œ•๐œ“4(๐‘ฅ)

๐œ•๐‘ฅ๐‘‘๐‘ฅ

๐พ4๐‘’ 2,2 = ๐ธ๐ด

ฮฉ4

๐œ•๐œ“5(๐‘ฅ)

๐œ•๐‘ฅ

๐œ•๐œ“5(๐‘ฅ)

๐œ•๐‘ฅ๐‘‘๐‘ฅ

๐พ4๐‘’(1,2)๐พ4

๐‘’(1,1)

๐พ4๐‘’(2,1) ๐พ4

๐‘’(2,2)๐พ5

๐‘’(1,1)

๐พ3๐‘’(2,2)

๐พ3๐‘’ 1,1

๐พ2๐‘’(2,2)

๐พ2๐‘’ 1,1

๐พ1๐‘’(2,2)

1

1

๐พ3๐‘’(1,2)

๐พ2๐‘’(1,2)

๐พ3๐‘’(2,1)

๐พ2๐‘’(2,1)

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture | Seite 4

Recap:

1D Example with linear nodal basis

๐‘(๐‘ฅ)

๐‘™

๐‘™/5 ๐‘™/5 ๐‘™/5๐‘™/5 ๐‘™/5

instead:

Compute stiffness matrix elementwisely and

then assemble

๐Š ๐Ÿ๐ฎ

1 2 3 4 5 6

๐‘“4๐‘’ =

1 2 3 4 5 6

1

2

3

4

5

6

๐‘ข1

๐‘ข2

๐‘ข3

๐‘ข4

๐‘ข5

๐‘ข6

0

0

=

4

5

๐‘“4๐‘’ 1 =

ฮฉ4

๐‘(๐‘ฅ)๐œ“4(๐‘ฅ)๐‘‘๐‘ฅ

๐‘“4๐‘’ 1

๐‘“4๐‘’ 2

๐œ“4 ๐œ“5๐œ“3๐œ“2

๐‘“4๐‘’ 2 =

ฮฉ4

๐‘(๐‘ฅ)๐œ“5(๐‘ฅ)๐‘‘๐‘ฅ

๐พ4๐‘’(1,2)๐พ4

๐‘’(1,1)

๐พ4๐‘’(2,1) ๐พ4

๐‘’(2,2)๐พ5

๐‘’(1,1)

๐พ3๐‘’(2,2)

๐พ3๐‘’ 1,1

๐พ2๐‘’(2,2)

๐พ2๐‘’ 1,1

๐พ1๐‘’(2,2)

1

1

๐พ3๐‘’(1,2)

๐พ2๐‘’(1,2)

๐พ3๐‘’(2,1)

๐พ2๐‘’(2,1)

๐‘“4๐‘’ 1

๐‘“4๐‘’ 2

๐‘“2๐‘’ 1

๐‘“1๐‘’ 2

๐‘“3๐‘’ 1

๐‘“2๐‘’ 2

๐‘“3๐‘’ 2

๐‘“5๐‘’ 1

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture| Seite 5

The same but elementwisely: How to solve PDE with

FEM with nodal basis, piecewise linear shape functions

Finite Element method with piecewise linear functions in 1D, hom DBC

1) Weak formulation of the PDE, definition of the โ€šenergyโ€™ inner product (the bilinear

functional, ๐‘Ž) and and the linear functional (๐‘™)๐‘Ž ๐‘ข, ๐‘ฃ = ๐‘™ ๐‘ฃ

2) a.) Define reference element, define maping between global and local coordinate systems

ฮพ ๐‘ฅ ๐‘ฅ(๐œ‰)

b.) Define reference linear shape functions

3) Compute the โ€šelement stiffnessโ€™ matrix โ€“ evaluation of integrals

๐พ๐‘–๐‘— = ๐‘Ž ๐‘๐‘–(๐‘ฅ), ๐‘๐‘—(๐‘ฅ) = ๐‘๐‘–(๐‘ฅ), ๐‘๐‘—(๐‘ฅ) ๐ธ๐‘–, ๐‘— = 1. . 2

4) Compute the right hand side elementwisely ๐‘“๐‘–๐‘’ = ๐‘™ ๐‘๐‘– , ๐‘– = 1,2

5) Compileโ€š global stiffnessโ€™ matrix

6) Solve the system of equations:

for ๐ฎ, which gives the solution at the nodes.

The solution in between the nodes can be calculated from:

๐Š๐ฎ = ๐Ÿ

๐‘ข x โ‰ˆ

๐‘–=1

๐‘

๐‘ข๐‘– ๐‘๐‘–(x)

N1 ฮพ = 1 โˆ’ ฮพ N2 ฮพ = ฮพ

๐พ ๐‘’ = ๐พ4๐‘’(1,1) ๐พ4

๐‘’(1,2)

๐พ4๐‘’(2,1) ๐พ4

๐‘’(2,2)

๐‘“4๐‘’ = ๐‘“4

๐‘’ 1

๐‘“4๐‘’ 2

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture | Seite 6

Local/global coordinate system 1D

๐พ4๐‘’ ๐‘˜, ๐‘™ = ๐ธ๐ด

ฮฉ4

๐œ•๐‘๐‘˜(๐œ‰)

๐œ•๐œ‰

๐œ•๐œ‰

๐œ•๐‘ฅ

๐œ•๐‘๐‘™(๐œ‰)

๐œ•๐œ‰

๐œ•๐œ‰

๐œ•๐‘ฅ๐‘‘๐‘ฅ =

๐ธ๐ด

๐‘™4๐‘’ 2

ฮฉ4

๐œ•๐‘๐‘˜(๐œ‰)

๐œ•๐œ‰

๐œ•๐‘๐‘™(๐œ‰)

๐œ•๐œ‰๐‘‘๐‘ฅ

๐œ‰ = [0,1]

1

๐‘™๐‘’

1

๐‘™๐‘’

๐พ4๐‘’ ๐‘˜, ๐‘™ =

๐ธ๐ด

๐‘™ ๐‘’ 2 0

1 ๐œ•๐‘๐‘˜(๐œ‰)

๐œ•๐œ‰

๐œ•๐‘๐‘™(๐œ‰)

๐œ•๐œ‰

๐‘‘๐‘ฅ(๐œ‰)

๐‘‘๐œ‰๐‘‘๐œ‰ =

๐ธ๐ด

๐‘™ ๐‘’ 0

1 ๐œ•๐‘๐‘˜(๐œ‰)

๐œ•๐œ‰

๐œ•๐‘๐‘™(๐œ‰)

๐œ•๐œ‰๐‘‘๐œ‰

๐‘™ ๐‘’

Idea:

coordinate transformation to have unit length elements element stiffnes matrix is the same for each element

๐œ•๐œ‰

๐œ•๐‘ฅ=

1

๐‘™ ๐‘’

๐พ4๐‘’ ๐‘˜, ๐‘™ = ๐ธ๐ด

ฮฉ4

๐œ•๐œ“4(๐‘ฅ)

๐‘ฅ

๐œ•๐œ“5(๐‘ฅ)

๐œ•๐‘ฅ๐‘‘๐‘ฅ

๐‘˜, ๐‘™ โˆˆ [1,2]

๐‘–, ๐‘— โˆˆ [4,5]

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture | Seite 7

Local/global coordinate system 1D

๐‘“4๐‘’ ๐‘™ =

ฮฉ4

๐‘(๐‘ฅ)๐œ“4(๐‘ฅ)๐‘‘๐‘ฅ

ฮฉ4

๐‘(๐‘ฅ)๐œ“5(๐‘ฅ)๐‘‘๐‘ฅ=

0

1

๐‘(๐œ‰)๐‘๐‘™(๐œ‰)๐‘‘๐‘ฅ(๐œ‰)

๐‘‘๐œ‰๐‘‘๐œ‰ = ๐‘™ ๐‘’

0

1

๐‘(๐œ‰)๐‘๐‘™(๐œ‰)๐‘‘๐œ‰

๐‘™ โˆˆ [1,2]

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture | Seite 8

Local/ coordinate system, isoparametric mapping 1D

coordinate transformation

using the ansatzfunctions isoparametric mapping

functions of lower order: subparametric

functions of higher order: superparametric

๐‘ฅ ๐œ‰ = ๐‘ฅ๐‘–๐‘1 ๐œ‰ + ๐‘ฅ๐‘–+1๐‘2 ๐œ‰ = ๐‘1 ๐œ‰ ๐‘2 ๐œ‰๐‘ฅ๐‘–

๐‘ฅ๐‘–+1

local coordinate

global coordinate

๐œ‰ = 0 ๐œ‰ = 1

๐‘ฅ๐‘– ๐‘ฅ2

Shape functions:

Transformation from local to global coordinates:

Stiffness matrix with isoparametric elements:

๐œ‰ = [0,1]๐‘ฅ

๐‘1 ๐œ‰ = 1 โˆ’ ๐œ‰

๐‘2 ๐œ‰ = ๐œ‰

๐พ4๐‘’ ๐‘˜, ๐‘™ = ๐ธ๐ด

ฮฉ4

๐œ•๐œ“๐‘–(๐‘ฅ)

๐‘ฅ

๐œ•๐œ“๐‘—(๐‘ฅ)

๐œ•๐‘ฅ๐‘‘๐‘ฅ = ๐ธ๐ด

ฮฉ4

๐œ•๐‘๐‘˜(๐œ‰)

๐œ•๐œ‰

๐œ•๐œ‰

๐œ•๐‘ฅ

๐œ•๐‘๐‘™(๐œ‰)

๐œ•๐œ‰

๐œ•๐œ‰

๐œ•๐‘ฅ๐‘‘๐‘ฅ

๐‘˜, ๐‘™ โˆˆ [1,2]

๐‘–, ๐‘— โˆˆ [4,5]

๐พ4๐‘’ ๐‘˜, ๐‘™ = ๐ธ๐ด

0

1 ๐œ•๐‘๐‘˜(๐œ‰)

๐œ•๐œ‰

๐‘‘๐‘ฅ

๐‘‘๐œ‰

โˆ’1๐œ•๐‘๐‘™(๐œ‰)

๐œ•๐œ‰

๐‘‘๐‘ฅ

๐‘‘๐œ‰

โˆ’1๐‘‘๐‘ฅ(๐œ‰)

๐‘‘๐œ‰๐‘‘๐œ‰

๐‘‘๐‘ฅ

๐‘‘๐œ‰= ๐‘ฅ๐‘–

๐‘‘๐‘1 ๐œ‰

๐‘‘๐œ‰+ ๐‘ฅ๐‘–+1

๐‘‘๐‘2 ๐œ‰

๐‘‘๐œ‰

๐‘‘๐‘ฅ

๐‘‘๐œ‰=

๐‘‘๐‘1 ๐œ‰

๐‘‘๐œ‰

๐‘‘๐‘2 ๐œ‰

๐‘‘๐œ‰

๐‘ฅ๐‘–

๐‘ฅ๐‘–+1

๐‘‘๐‘ฅ

๐‘‘๐œ‰

โˆ’1 ๐‘‘๐‘ฅ

๐‘‘๐œ‰

โˆ’1

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture | Seite 9

The same but differently:

Local/ coordinate system, isoparametric mapping 1D

coordinate transformation

using the ansatzfunctions isoparametric mapping

functions of lower order: subparametric

functions of higher order: superparametric

๐‘ฅ๐‘”๐‘™๐‘œ๐‘ ๐œ‰ = ๐‘ฅ๐‘–๐‘1 ๐œ‰ + ๐‘ฅ๐‘–+1๐‘2 ๐œ‰ = ๐‘1 ๐œ‰ ๐‘2 ๐œ‰๐‘ฅ๐‘–

๐‘ฅ๐‘–+1

local coordinate

global coordinate

๐œ‰ = โˆ’1 ๐œ‰ = 0 ๐œ‰ = 1

๐‘ฅ๐‘– ๐‘ฅ2

Basis functions:

Transformation from local to global coordinates:

Stiffness matrix with isoparametric elements:

ยฑ1/2 ยฑ1/2

๐œ•

๐œ•๐œ‰๐‘ฅ๐‘”๐‘™๐‘œ๐‘ ๐œ‰ =

๐œ•

๐œ•๐œ‰๐‘1 ๐œ‰

๐œ•

๐œ•๐œ‰๐‘2 ๐œ‰

๐‘ฅ๐‘–

๐‘ฅ๐‘–+1

=1

2๐‘™๐‘’โˆ’1/2 +1/2

2๐‘™๐‘’ 2๐‘™๐‘’ 1/2๐‘™๐‘’

๐พ๐‘–๐‘— = ๐ธ๐ด

๐พ4๐‘’ =

๐ธ๐ด

๐‘™ ๐‘’1 โˆ’1

โˆ’1 1

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture| Seite 10

FROM STRONG FORM TO WEAK FORM in higher dimension

Steps of formulating the weak form (recipe)

๐ฟ๐‘ข, ๐‘ฃ โˆ’ ๐‘, ๐‘ฃ = 0 โˆ€๐‘ฃ โˆˆ ๐‘‰

1.) Multiply by test function ๐œ‘ and integrate

๐ฟ๐‘ข(๐ฑ) = ๐‘“(๐ฑ)

๐ฟ๐‘ข ๐ฑ ๐‘ฃ ๐ฑ ๐‘‘๐ฑ โˆ’ ๐‘“ ๐ฑ ๐‘ฃ ๐ฑ ๐‘‘๐ฑ = 0

2.) Reduce order of ๐ฟ๐‘ข, ๐œ‘ by using Greenโ€™s theoreem (generalized integration by

parts)

3.) Apply boundary conditions

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture| Seite 11

FROM STRONG FORM TO WEAK FORM

Recap: differential operators (grad, div, curl), Greenโ€™s theorem

Greenโ€™s identity

1) rewrite equation with the product rule in multiple dimensions

๐›ป โˆ™ ๐‘ฃ ๐›ป๐‘ข = ๐›ป๐‘ฃ โˆ™ ๐›ป๐‘ข + ๐‘ฃ โˆ†๐‘ข

2) integrate both sides over the domain ฮฉ (bounded by ๐œ•ฮฉ)

ฮฉ

๐›ป โˆ™ ๐‘ฃ ๐›ป๐‘ข ๐‘‘ฮฉ = ฮฉ

๐›ป๐‘ฃ โˆ™ ๐›ป๐‘ข ๐‘‘ฮฉ + ฮฉ

๐‘ฃ โˆ†๐‘ข ๐‘‘ฮฉ

3) apply divergence theorem

ฮฉ

๐›ป โˆ™ ๐‘ฃ ๐›ป๐‘ข ๐‘‘ฮฉ = ฮฉ

๐‘‘๐‘–๐‘ฃ ๐‘ฃ ๐›ป๐‘ข ๐‘‘ฮฉ = ๐œ•ฮฉ

๐‘ฃ ๐›ป๐‘ข โˆ™ ๐‘› ๐‘‘๐œ•ฮฉ

โˆ’ ฮฉ

๐‘ฃ โˆ†๐‘ข ๐‘‘ฮฉ = ฮฉ

๐›ป๐‘ฃ โˆ™ ๐›ป๐‘ข ๐‘‘ฮฉ โˆ’ ๐œ•ฮฉ

๐‘ฃ ๐›ป๐‘ข โˆ™ ๐‘› ๐‘‘๐œ•ฮฉ

similar to integration by part in multiple dimensions

Recap: Multidimensional stationary heat equation

with inhomogeneous Dirichlet and Neumann BC.

๐ฟ๐‘ข(๐ฑ) = ๐‘“(๐ฑ)Strong form:

Example:

1.) Multiply by test function ๐‘ฃ and integrate

โˆ’ฮ”๐‘ข ๐ฑ ๐‘ฃ ๐ฑ ๐‘‘ฮฉ โˆ’ ๐‘“ ๐ฑ ๐‘ฃ ๐ฑ ๐‘‘ฮฉ = 0

โˆ’ฮ”๐‘ข ๐ฑ ๐‘ฃ ๐ฑ ๐‘‘ฮฉ = ฮฉ

๐›ป๐‘ข ๐ฑ โˆ™ ๐›ป๐‘ฃ ๐ฑ ๐‘‘ฮฉ โˆ’ ๐œ•ฮฉ

๐œ•๐‘ข

๐œ•๐‘›๐‘ฃ ๐ฑ ๐‘‘ฮ“

2.) Reduce order of ๐ฟ๐‘ข, ๐‘ฃ by using divergence theorem

โˆ’ฮ”๐‘ข ๐ฑ = ๐‘“๐‘ข = ๐‘”๐œ•๐‘ข

๐œ•๐‘›= โ„Ž

convert to homogeneous problem:

๐‘ข = ๐œ” + ๐‘ข๐œ”:known function,๐œ” = ๐‘” on ฮ“๐ท ๐‘ข:new function that we look for

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture| Seite 12

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture| Seite 13

Recap: Multidimensional stationary heat equation

with inhomogeneous Dirichlet and Neumann BC.

ฮฉ

๐›ป๐‘ข ๐ฑ โˆ™ ๐›ป๐‘ฃ ๐ฑ ๐‘‘ฮฉ = ฮฉ

๐‘“ ๐ฑ ๐‘ฃ ๐ฑ ๐‘‘ฮฉ + ฮ“๐‘

โ„Ž๐‘ฃ ๐ฑ ๐‘‘ฮ“

โˆ’ฮ”๐‘ข ๐ฑ ๐‘ฃ ๐ฑ ๐‘‘ฮฉ = ฮฉ

๐›ป๐‘ข ๐ฑ โˆ™ ๐›ป๐‘ฃ ๐ฑ ๐‘‘ฮฉ โˆ’ ๐œ•ฮฉ

๐œ•๐‘ข

๐œ•๐‘›๐‘ฃ ๐ฑ ๐‘‘ฮ“

3.) Apply boundary conditions

๐œ•ฮฉ

๐œ•๐‘ข

๐œ•๐‘›๐‘ฃ ๐ฑ ๐‘‘ฮ“ =

ฮ“๐‘

๐œ•๐‘ข

๐œ•๐‘›๐‘ฃ ๐ฑ ๐‘‘ฮ“ +

ฮ“๐ท

๐œ•๐‘ข

๐œ•๐‘›๐‘ฃ ๐ฑ ๐‘‘ฮ“ =

ฮ“๐‘

โ„Ž๐‘ฃ ๐ฑ ๐‘‘ฮ“

โ„Ž 0

ฮฉ

๐›ป ๐œ” ๐ฑ + ๐‘ข ๐ฑ โˆ™ ๐›ป๐‘ฃ ๐ฑ ๐‘‘ฮฉ = ฮฉ

๐‘“ ๐ฑ ๐‘ฃ ๐ฑ ๐‘‘ฮฉ + ฮ“๐‘

โ„Ž๐‘ฃ ๐ฑ ๐‘‘ฮ“

ฮฉ๐›ป ๐‘ข ๐ฑ โˆ™ ๐›ป๐‘ฃ ๐ฑ ๐‘‘ฮฉ = ฮฉ๐‘“ ๐ฑ ๐‘ฃ ๐ฑ ๐‘‘ฮฉ + ฮ“๐‘โ„Ž๐‘ฃ ๐ฑ ๐‘‘ฮ“ โˆ’ ฮฉ๐›ป๐œ” ๐ฑ โˆ™ ๐›ป๐‘ฃ ๐ฑ ๐‘‘ฮฉ

from natural/Neumann BC from essential/Dirichlet BC

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture | Seite 14

Isoparametric linear mapping 2D

triangular elements

Basis functions:

Transformation from local to global coordinates:

Stiffness matrix:

1

๐‘–, ๐‘— โˆˆ [1,2,3]

๐‘ฅ๐‘”๐‘™๐‘œ๐‘ ๐œ‰, ๐œ‚

๐‘ฆ๐‘”๐‘™๐‘œ๐‘ ๐œ‰, ๐œ‚=

๐‘1 ๐œ‰, ๐œ‚ ๐‘2 ๐œ‰, ๐œ‚

๐‘1 ๐œ‰, ๐œ‚

๐‘3 ๐œ‰, ๐œ‚

๐‘2 ๐œ‰, ๐œ‚ ๐‘3 ๐œ‰, ๐œ‚

๐‘ฅ1๐‘ฆ1

๐‘ฅ2๐‘ฆ2

๐‘ฅ3

๐‘ฆ3

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture | Seite 15

Isoparametric linear mapping 2D

triangular elements

Stiffness matrix:

Stiffness matrix with local coordinates:

where:

substitution rule

determinant should not be negative or zero!

๐‰ =

๐‘–=1

3๐œ•๐‘๐‘– ๐œ‰, ๐œ‚

๐œ•๐œ‰๐‘ฅ๐‘–

๐‘–=1

3๐œ•๐‘๐‘– ๐œ‰, ๐œ‚

๐œ•๐œ‚๐‘ฅ๐‘–

๐‘–=1

3๐œ•๐‘๐‘– ๐œ‰, ๐œ‚

๐œ•๐œ‰๐‘ฆ๐‘–

๐‘–=1

3๐œ•๐‘๐‘– ๐œ‰, ๐œ‚

๐œ•๐œ‚๐‘ฆ๐‘–

๐‘–, ๐‘— โˆˆ [1,2,3]

๐‘–, ๐‘— โˆˆ [1,2,3]๐‘ฒ๐‘–๐‘— =

0

1

0

1โˆ’๐œ‚

๐‘ฑโˆ’๐‘ป

๐œ•๐‘๐‘—

๐œ•๐œ‰๐œ•๐‘๐‘—

๐œ•๐œ‚

โˆ™ ๐‘ฑโˆ’๐‘ป

๐œ•๐‘๐‘–

๐œ•๐œ‰๐œ•๐‘๐‘–

๐œ•๐œ‚

๐‘ฑ ๐‘‘๐œ‰๐‘‘๐œ‚

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture | Seite 16

Isoparametric linear mapping 2D

triangular elements, example

๐‘ฅ ๐œ‰, ๐œ‚

๐‘ฆ ๐œ‰, ๐œ‚=

1 โˆ’ ๐œ‰ โˆ’ ๐œ‚ ๐œ‰

1 โˆ’ ๐œ‰ โˆ’ ๐œ‚

๐œ‚๐œ‰ ๐œ‚

237197

Transformation from local to global coordinates (isoparametric mapping):

๐‘ฅ๐‘”๐‘™๐‘œ๐‘ ๐œ‰, ๐œ‚

๐‘ฆ๐‘”๐‘™๐‘œ๐‘ ๐œ‰, ๐œ‚=

๐‘1 ๐œ‰, ๐œ‚ ๐‘2 ๐œ‰, ๐œ‚

๐‘1 ๐œ‰, ๐œ‚

๐‘3 ๐œ‰, ๐œ‚

๐‘2 ๐œ‰, ๐œ‚ ๐‘3 ๐œ‰, ๐œ‚

๐‘ฅ1๐‘ฆ1

๐‘ฅ2๐‘ฆ2

๐‘ฅ3

๐‘ฆ3

1 2

3

4

5 6

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture | Seite 17

Local/ coordinate system, isoparametric mapping 2D

triangular elements, example

Stiffness matrix with local coordinates:

๐‘–, ๐‘— โˆˆ [1,2,3]๐‘ฒ๐‘–๐‘— = 0

1

0

1โˆ’๐œ‚

๐‘ฑโˆ’๐‘ป

๐œ•๐‘๐‘—

๐œ•๐œ‰๐œ•๐‘๐‘—

๐œ•๐œ‚

โˆ™ ๐‘ฑโˆ’๐‘ป

๐œ•๐‘๐‘–

๐œ•๐œ‰๐œ•๐‘๐‘–

๐œ•๐œ‚

๐‘ฑ ๐‘‘๐œ‰๐‘‘๐œ‚

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture | Seite 18

Local/ coordinate system, isoparametric mapping 2D

triangular elements, example

๐‘ฑ๐‘ป = ๐‘ฑ๐‘ป = ๐‘ฑ = 34๐‘ฑ =๐Ÿ“ ๐Ÿ•โˆ’๐Ÿ ๐Ÿ’

๐‘ฑโˆ’๐‘ป =๐Ÿ

๐‘ฑ๐‘ป๐Ÿ’ ๐Ÿโˆ’๐Ÿ• ๐Ÿ“

๐‘ฒ๐‘–๐‘—

๐‘’=

0

1

0

1โˆ’๐œ‚ 1

344 2โˆ’7 5

๐œ•๐‘๐‘—

๐œ•๐œ‰๐œ•๐‘๐‘—

๐œ•๐œ‚

โˆ™1

344 2โˆ’7 5

๐œ•๐‘๐‘–

๐œ•๐œ‰๐œ•๐‘๐‘–

๐œ•๐œ‚

34๐‘‘๐œ‰๐‘‘๐œ‚

๐‘ฒ21

๐‘’= 0

1 01โˆ’๐œ‚ 1

34

4 2โˆ’7 5

โˆ’1โˆ’1

โˆ™1

34

4 2โˆ’7 5

10

34๐‘‘๐œ‰๐‘‘๐œ‚ == 01 โˆ’1

1โˆ’๐œ‚ 1

34

โˆ’62

โˆ™4โˆ’7

๐‘‘๐œ‰๐‘‘๐œ‚

๐‘ฒ21

๐‘’==โˆ’1.118 0

1 01โˆ’๐œ‚

๐‘‘๐œ‰๐‘‘๐œ‚ = โˆ’1.118 โ‹…1

2= โˆ’0.559

๐‘ฒ๐‘–๐‘—

๐‘’=

0

1

0

1โˆ’๐œ‚

๐‘ฑโˆ’๐‘ป

๐œ•๐‘๐‘—

๐œ•๐œ‰๐œ•๐‘๐‘—

๐œ•๐œ‚

โˆ™ ๐‘ฑโˆ’๐‘ป

๐œ•๐‘๐‘–

๐œ•๐œ‰๐œ•๐‘๐‘–

๐œ•๐œ‚

๐‘ฑ ๐‘‘๐œ‰๐‘‘๐œ‚

๐‘ฒ11

๐‘’๐‘ฒ12

๐‘’๐‘ฒ13

๐‘’

๐‘ฒ21

๐‘’๐‘ฒ22

๐‘’๐‘ฒ23

๐‘’

๐‘ฒ13

๐‘’๐‘ฒ23

๐‘’๐‘ฒ33

๐‘’

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture | Seite 19

Local/ coordinate system, isoparametric mapping 2D

triangular elements, example

๐‘ฑ๐‘ป = ๐‘ฑ = 34๐‘ฒ11

๐‘’๐‘ฒ12

๐‘’๐‘ฒ13

๐‘’

๐‘ฒ21

๐‘’๐‘ฒ22

๐‘’๐‘ฒ23

๐‘’

๐‘ฒ13

๐‘’๐‘ฒ23

๐‘’๐‘ฒ33

๐‘’

๐‘“๐‘’ =

ฮฉ๐‘’

๐‘(๐‘ฅ)๐‘1(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฅ

ฮฉ๐‘’

๐‘(๐‘ฅ)๐‘2(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฅ

ฮฉ๐‘’

๐‘(๐‘ฅ)๐‘3(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฅ

=

0

1

0

1โˆ’๐œ‚

๐‘(๐œ‰)๐‘1(๐œ‰, ๐œ‚) ๐‘ฑ ๐‘‘๐œ‰๐‘‘๐œ‚

0

1

0

1โˆ’๐œ‚

๐‘(๐œ‰)๐‘2(๐œ‰, ๐œ‚) ๐‘ฑ ๐‘‘๐œ‰๐‘‘๐œ‚

0

1

0

1โˆ’๐œ‚

๐‘(๐œ‰)๐‘3(๐œ‰, ๐œ‚) ๐‘ฑ ๐‘‘๐œ‰๐‘‘๐œ‚

๐‘ข1๐‘’

๐‘ข2๐‘’

๐‘ข3๐‘’

๐‘“1๐‘’

๐‘“2๐‘’

๐‘“3๐‘’

=

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture | Seite 20

Local/ coordinate system, isoparametric mapping 2D

triangular elements, example

๐‘ฒ11

๐‘’๐‘ฒ12

๐‘’๐‘ฒ13

๐‘’

๐‘ฒ21

๐‘’๐‘ฒ22

๐‘’๐‘ฒ23

๐‘’

๐‘ฒ31

๐‘’๐‘ฒ32

๐‘’๐‘ฒ33

๐‘’

๐‘ข1๐‘’

๐‘ข2๐‘’

๐‘ข3๐‘’

๐‘“1๐‘’

๐‘“2๐‘’

๐‘“3๐‘’

=

1 2

3

4

5

local 1 2 3global 4 3 6

6

๐‘ฒ22

๐‘’๐‘ฒ21

๐‘’๐‘ฒ23

๐‘’

๐‘ฒ12

๐‘’๐‘ฒ11

๐‘’๐‘ฒ13

๐‘’

๐‘ฒ32

๐‘’๐‘ฒ31

๐‘’๐‘ฒ33

๐‘’

๐‘ข1

๐‘ข2

๐‘ข3

๐‘ข4

๐‘ข5

๐‘ข6

๐‘“2๐‘’

๐‘“1๐‘’

๐‘“3๐‘’

4

3

6

1

2

3

4

5

6

1

2

3

1 2 3 4 5 6

=

4

3

6

24. 01. 2018. | Dr. Noemi Friedman | PDE lecture | Seite 21

Local/ coordinate system, isoparametric mapping 2D

quadrilateral elements

๐œ‰

๐œ‚(โˆ’1,1)

(1, โˆ’1)(โˆ’1, โˆ’1)

(1,1)

1

32

4

Basis functions:

Transformation from local to global coordinates:

Stiffness matrix:

1

๐‘ฅ๐‘”๐‘™๐‘œ๐‘ ๐œ‰, ๐œ‚

๐‘ฆ๐‘”๐‘™๐‘œ๐‘ ๐œ‰, ๐œ‚=

๐‘1 ๐œ‰, ๐œ‚ ๐‘2 ๐œ‰, ๐œ‚

๐‘1 ๐œ‰, ๐œ‚

๐‘3 ๐œ‰, ๐œ‚

๐‘2 ๐œ‰, ๐œ‚ ๐‘3 ๐œ‰, ๐œ‚

๐‘4 ๐œ‰, ๐œ‚

๐‘4 ๐œ‰, ๐œ‚

๐‘ฅ1๐‘ฆ1

๐‘ฅ2๐‘ฆ2

๐‘ฅ3๐‘ฆ3

๐‘ฅ4

๐‘ฆ4

๐พ๐‘–๐‘— = ฮฉ

๐›ป๐‘๐‘–(๐ฑ) โˆ™ ๐›ป๐‘๐‘— ๐ฑ ๐‘‘ฮฉ