Jorg Peters, SurfLab Generalized spline subdivision Polynomial Heritage Computing Moments Shape and...

Post on 21-Dec-2015

219 views 0 download

Tags:

transcript

Jorg Peters, SurfLab

Generalized spline subdivision

• Polynomial Heritage• Computing Moments• Shape and Eigenvalues

Jorg Peters SurfLab (Purdue,UFL)

Jorg Peters, SurfLab

Polynomial heritageof generalized spline subdivision

• Doo-Sabin

Catmull-Clark

Jorg Peters, SurfLab

Polynomial heritageof generalized spline subdivision

• Increasing regions are regular: points and faces have standard valence

Jorg Peters, SurfLab

Polynomial heritageof generalized spline subdivision

• Doo-Sabin bi-2 B-spline

• Catmull-Clark bi-3 B-spline

• Midedge Zwart-Powell C^1 box-spline

• Loop C^2 box-spline

box-spline = generalization of B-spline to shift-invariant partitions book: [de Boor, Hollig, Riemenschneider 94]

Jorg Peters, SurfLab

Polynomial heritageof generalized spline subdivision

• Subdivision of the Zwart-Powell C^1 quadratic box-spline

a

c dSubdivision

Subdivision

basis function

Subdivision Rule

Subdivision

Jorg Peters, SurfLab

Polynomial heritageof generalized spline subdivision

2 steps 4 steps

Zwart-Powell subdivision = 2 steps of Midedge subdivision

21

1

regular: 4-valence, quadrilaterals

Mid-edge Rule (“simplest rule”)

Jorg Peters, SurfLab

Polynomial heritageof generalized spline subdivision

• Increasing regions are regular (polynomial)

• Union of surface layers at an extra-ordinary point

Jorg Peters, SurfLab

Polynomial heritageof generalized spline subdivision

• Uses:

Representation as Bezier patches

Evaluation at non-binary points

Fast moment computation

Jorg Peters, SurfLab

Generalized spline subdivision

• Polynomial Heritage• Computing Moments• Shape and Eigenvalues

Jorg Peters SurfLab (Purdue,UFL)

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

• Challenge: Exponential increase in the number of facets!

Volume

Inertia Frame

Center of mass

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

V

f

V S U

dUn f dS nn/ f f dV

S

dSnn/ f

Theory: Gauss’ Divergence Theorem:

The integral of the divergence over the volume

equals the integral of the normal component over the surface S

dV

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

U

n

Theory: Change of variables

The area of the surface element S

equals the integral of the Jacobian |n| of the surface parametrization (x,y,z) over the domain U

S

dS

dU

V S

U

dUn f dS nn/ f f dV

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

V U

uvvu dvdu ]yx-y[x z dV1

For example, f=[0,0,z] n =

f n = z is piecewise polynomial in regular regions

Volume =

uvvu yxyx

uvvu yxyx

ppatch Up

pu

pv

pv

pu

p dvdu )yxyx(z

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

“Volume” patch p = Up

pu

pv

pv

pu

p dvdu )yxyx(z

Schema for bi-3 Bezier patch

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

Volume patch p = Up

pu

pv

pv

pu

p dvdu )yxyx(z

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

Volume patch p = Up

pu

pv

pv

pu

p dvdu )yxyx(z

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

Volume patch p = Up

pu

pv

pv

pu

p dvdu )yxyx(z

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

Work: at each subdivision step linear for each extraordinary point add volume contribution of 3n patches

Doo-Sabin

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

Up

pu

pv

pv

pu

p dvdu )yxyx(z

m

m

ii

WV 0V iVi+1

i

iVlayer in p

Volume

mW

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

• Error estimation: bounding boxes

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

• Geometric decay of error volume 1, 1/8, 1/64, ...

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

• Computing geometry given a fixed volume

Bisection

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

• Higher moments and the inertia frame

center of mass:

V VV

dV zdV,y ,dVx

inertia tensor:

V

dV,...xy ..., eigenvector frame

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

• Higher moments and the inertia frame

center of mass

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

• Physics-based animation

Center of mass support

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

• Simple registration, comparison

matching frames = computing a 3x3 matrix Q:

IP Q = IS

Jorg Peters, SurfLab

Moments of objects enclosed by generalized subdivision surfaces

• Solution: Moments efficiently and exactly computed via Gauss’ theorem and polynomial heritage

Volume

Inertia Frame

Center of mass

Jorg Peters, SurfLab

Jorg Peters, SurfLab

Shape and eigenvalues

• Union of surface layers at an extra-ordinary point

• Control points transformed by the subdivision matrix

Jorg Peters, SurfLab

Shape and eigenvalues

i

eigenvector expansion

Jorg Peters, SurfLab

Shape and eigenvalues

• If all < 1, then collapse• If some > 1, then unbounded growth• Good sequence: 1, , , … where | | < 1• Eigenvectors of determine the tangent plane

Jorg Peters, SurfLab

Shape and eigenvalues• Fast contraction of 3-sided facets

= (1+cos(2pi/ 3))/2 = .25

• Slow contraction of large facets

= (1+cos(2pi/16))/2 = .962...midedge subdivision

Jorg Peters, SurfLab

Shape and eigenvalues

• adjust subdominant eigenvalues (modified midedge subdivision)

<=> =. 5

Jorg Peters, SurfLab

Shape and eigenvalues

Jorg Peters, SurfLab

Generalized spline subdivisionSummary

• Polynomial Heritage regular regions

• Computing MomentsGauss’ theorem

• Shape and Eigenvaluessubdominant values