Lecture 14 maternal effects inherited - University of...

Post on 30-May-2020

1 views 0 download

transcript

Lecture 14 1

Lecture 14

Maternal Effects-InheritedReference: Lynch and Walsh Ch 23

Schaeffer, LR Linear Models and Computing Strategies in Animal Breeding

Lecture 14 2

Maternal Effects• Maternal

– Genetic (Nuclear DNA)• Mendelian Segregation• Inherited maternal effects

– Milking ability– Mothering ability

– Genetic (Cytoplasmic DNA)• Transmitted along maternal lines

– Permanent Environmental • Non inherited maternal effects

– Mastitis– Other maternal infection– Maternal Injuries (Damaged teats)

Lecture 14 3

Maternal Genetic Effectsijkmnnkjiijkmn eMDSHYy ++++= )(

Herd Year Sex DirectGenetic

MaternalGenetic

Random error

Fixed Effects Random Effects

Lecture 14 4

Maternal Genetic Effects

=

2

2,

,2

0000

e

mmd

mdd

σσσσ

IAAAA

emd

The are inherited and determined by additive effects in the mother

emZdZXby 21 +++=

There is a genetic correlation between the animals direct and maternal genetic effect

No environmental correlations

Direct effect Maternal Genetic

Lecture 14 5

Maternal Effects ExampleSchaeffer Table 8.7

370F8861613430M8851612390F8841611390M8811510360F874156420M872149350F871155410M863158380F862144400M861147

Wean WtSexYearDamSireAnimal

Lecture 14 6

2 14 1 15 3

16 9 4 7 5 8

11 12 6

13

Pedigree

The effect of a good or bad mother is reflected in the performance of the offspring

10

Lecture 14 7

=

0100110001001100001010100010100100011001

X

Year sex86 87 88 m

=

370430390390360420350410380400

Y

=

4

3

2

1

bbbb

BHerdYear

Sex

Lecture 14 8

=

1000000000000000010000000000000000100000000000000001000000000000000010000000000000000100000000000000001000000000000000010000000000000000100000000000000001000000

1Z

Animal

61613

51612

41611

11510

4156

2149

1155

3158

2144

1147

DamSireAn 14 1 2 15 3 16 7 4 8 5 9 6 10 11 12 13

Lecture 14 9

61613

51612

41611

11510

4156

2149

1155

3158

2144

1147

DamSireAn

=

0000100000000000000000100000000000000000100000000000000000000010000000001000000000000000000001000000000000000010000000000001000000000000000001000000000000000010

2Z

14 1 2 15 3 16 7 4 8 5 9 6 10 11 12 13

Animal 1 was the mother of animals 7, 5, 10

Lecture 14 10

MME

=

++++

−−

−−

yZyZyX

mab

kAZZkAZZXZkAZZkAZZXZ

ZX'ZX'XX'

'2

'1

'

221

2'221

11

'2

'2

121

2'111

11

'1

'1

21

ˆˆ

ˆ

2

1

2

2

2221

1211e

mdm

dmd

kkkk

σσσσσ

=

=

−=

6288.58441.8441.3766.3

650012003003002000 1

2221

1211

kkkk

Lecture 14 11

proc iml;start main;

y={400,380,410,350,420,360,390,390,430,370};

X={1 0 0 1,1 0 0 0,1 0 0 1,0 1 0 0,0 1 0 1,0 1 0 0,0 0 1 1,0 0 1 0,0 0 1 1,0 0 1 0};

Z1={0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1};

Z2={ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0,0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0,0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0,0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0};

Lecture 14 12

Ainv={2.5 .5 1 0 0 0 -1 -1 0 0 -1 0 0 0 0 0,.5 2.5 0 1 0 0 -1 0 0 -1 0 0 -1 0 0 0,1 0 2 0 0 0 0 -1 0 0 -1 0 0 0 0 0,0 1 0 3 .5 0 0 .5 -1 -1 0 -1 -1 0 0 0,0 0 0 .5 1.5 0 0 0 -1 0 0 0 0 0 0 0,0 0 0 0 0 2.5 0 .5 0 .5 0 .5 0 -1 -1 -1,

-1 -1 0 0 0 0 2 0 0 0 0 0 0 0 0 0,-1 0 -1 .5 0 .5 0 3 0 0 0 -1 0 -1 0 0,0 0 0 -1 -1 0 0 0 2 0 0 0 0 0 0 0,0 -1 0 -1 0 .5 0 0 0 2.5 0 0 0 0 -1 0,

-1 0 -1 0 0 0 0 0 0 0 2 0 0 0 0 0,0 0 0 -1 0 .5 0 -1 0 0 0 2.5 0 0 0 -1,0 -1 0 -1 0 0 0 0 0 0 0 0 2 0 0 0,0 0 0 0 0 -1 0 -1 0 0 0 0 0 2 0 0,0 0 0 0 0 -1 0 0 0 -1 0 0 0 0 2 0,0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 0 2};

K11=3.3766;K12=.8441;K21=.8441;K22=5.6288;LHS=((X`*X)||(X`*Z1)||(X`*Z2))

//((Z1`*X)||(Z1`*Z1+AINV#K11)||(Z1`*Z2+AINV#K12))//((Z2`*X)||(Z2`*Z1+AINV#K21)||(Z2`*Z2+AINV#K22));

RHS=(X`*Y)//(Z1`*Y)//(Z2`*Y);C=INV(LHS);BU=C*RHS;print BU ;finish main;run;quit;

Lecture 14 13

369.40 363.10374.5641.48

1.567-2.431.79-3.570.072.58-1.342.67-1.65-3.283.15-1.26-5.594.131.56-0.16

0.09-3.652.681.160.10-0.38-1.641.550.61-0.091.161.00-0.850.36-0.520.43

Year

Sex

B a

14 1 2 15 3 16 7 4 8 5 9 6 10 1112 13

14 1 2 15 3 16 7 4 8 5 9 6 10 1112 13

Animal Animal

Note that it is possible to estimate a maternal genetic effects for males. Why?

m

Lecture 14 14

What to do with the estimates in a breeding program

• Selection Index (to be covered later)– Give a weight to each effect and combine in

an index

iii mwawI ˆˆ 21 +=

Weights are dependent on the economic impact of each trait on overall profits

Lecture 14 15

Lab Problem 14.1

A B C D

E F

G H

Find the best estimate of the environmental trend, genetic worth of each animal, Maternal Genetic Effect (males are in boxes), assume error variance as previously estimated in 6.2a and

J

1

2

3

4

9 13 4 12

11 11

13 9

10

12

2

=a

e

σσ 5.2

2

=m

e

σσ 25.2

, −=e

ma

σσ

Lecture 14 16

Cytoplasmic Effects

Follows Maternal Lines Only

Lecture 14 17

2 14 1 15 3

16 9 4 7 5 8

11 12 6

13

Pedigree

The effect of a good or bad mother is reflected in the performance of the offspring

10

Lecture 14 18

Model Cytoplasmic Effectsijkmnnkjiijkmn eMDSHYy ++++= )(

Herd Year Sex DirectGenetic

Cytoplasmic Random error

Fixed Effects Random Effects

Lecture 14 19

Cytoplasmic Effects Mixed Model

=

2

2

2

000000

e

m

d

σσ

II

A

emd

ecZdZXby 21 +++=Direct effect Cytoplasmic

Assumes no cytoplasmic –nuclear gene interaction

Lecture 14 20

=

0100110001001100001010100010100100011001

X

Year sex86 87 88 m

=

370430390390360420350410380400

Y

=

4

3

2

1

bbbb

BHerdYear

Sex

Lecture 14 21

=

1000000000000000010000000000000000100000000000000001000000000000000010000000000000000100000000000000001000000000000000010000000000000000100000000000000001000000

1Z

Animal

61613

51612

41611

11510

4156

2149

1155

3158

2144

1147

DamSireAn 14 1 2 15 3 16 7 4 8 5 9 6 10 11 12 13

Lecture 14 22

61613

51612

41611

11510

4156

2149

1155

3158

2144

1147

DamSireAn

=

010001010001010010001100010001

2Z

1 2 3

Animal 1 was the mother lineage of animals 7, 5, 10, 12Cytoplasmic

Maternal Lineages

Lecture 14 23

MME

=

++ −

yZyZyX

cab

IZZZZXZZZAZZXZZX'ZX'XX'

'2

'1

'

2'21

'2

'2

2'1

11

'1

'1

21

ˆˆ

ˆ

22

11

kk

=

=

2

2

2

2

0

0

00 2

1

2

2

2221

1211

c

e

d

e

ec

d

kkkk

σσ

σσ

σσ

σ

=

=

42.50025.3

65001200002000 1

2221

1211

kkkk

=

000010001

I

Lecture 14 24

proc iml;start main;

y={400,380,410,350,420,360,390,390,430,370};

X={1 0 0 1,1 0 0 0,1 0 0 1,0 1 0 0,0 1 0 1,0 1 0 0,0 0 1 1,0 0 1 0,0 0 1 1,0 0 1 0};

Z1={0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1};

Z2={ 1 0 0,0 1 0,0 0 1,1 0 0,0 1 0,0 0 0,1 0 0,0 0 0,0 0 0,0 0 0};

I={1 0 0,0 1 0,0 0 1};

Lecture 14 25

Ainv={2.5 .5 1 0 0 0 -1 -1 0 0 -1 0 0 0 0 0,.5 2.5 0 1 0 0 -1 0 0 -1 0 0 -1 0 0 0,1 0 2 0 0 0 0 -1 0 0 -1 0 0 0 0 0,0 1 0 3 .5 0 0 .5 -1 -1 0 -1 -1 0 0 0,0 0 0 .5 1.5 0 0 0 -1 0 0 0 0 0 0 0,0 0 0 0 0 2.5 0 .5 0 .5 0 .5 0 -1 -1 -1,

-1 -1 0 0 0 0 2 0 0 0 0 0 0 0 0 0,-1 0 -1 .5 0 .5 0 3 0 0 0 -1 0 -1 0 0,0 0 0 -1 -1 0 0 0 2 0 0 0 0 0 0 0,0 -1 0 -1 0 .5 0 0 0 2.5 0 0 0 0 -1 0,

-1 0 -1 0 0 0 0 0 0 0 2 0 0 0 0 0,0 0 0 -1 0 .5 0 -1 0 0 0 2.5 0 0 0 -1,0 -1 0 -1 0 0 0 0 0 0 0 0 2 0 0 0,0 0 0 0 0 -1 0 -1 0 0 0 0 0 2 0 0,0 0 0 0 0 -1 0 0 0 -1 0 0 0 0 2 0,0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 0 2};

K11=3.25;K12=0;K21=0;K22=5.42;LHS=((X`*X)||(X`*Z1)||(X`*Z2))//((Z1`*X)||(Z1`*Z1+AINV#K11)||(Z1`*Z2))//((Z2`*X)||(Z2`*Z1)||(Z2`*Z2+I#K22));RHS=(X`*Y)//(Z1`*Y)//(Z2`*Y);C=INV(LHS);BU=C*RHS;RMSE=(Y`*Y-BU`*RHS)#(1/6);print BU RMSE;finish main;run;quit;

Lecture 14 26

Year

Sex

B a

14 1 2 15 3 16 7 4 8 5 9 6 10 1112 13

1 2 3

Animal Animalc-2.812.730.08

368.15 361.75373.5542.94

1.55-3.452.53-3.400.062.70-1.923.17

-1.60-3.203.44-1.106.124.371.95-0.14

Lecture 14 27

What to do with the estimates in a breeding program

• Selection Index – Give a weight to each effect and combine in

an index

iii cwawI ˆˆ 21 +=

Weights are dependent on the economic impact of each trait on overall profits. Economic impact of cytoplasmic effect changes with the time horizon. Over a large number of generation could be a very substantial effect

Lecture 14 28

Lab Problem 14.2

A B C D

E F

G H

Find the best estimate of the environmental trend, genetic worth of each animal, and cytogenetic effects. Assume error variance as previously estimated in 6.2a and

J

1

2

3

4

9 13 4 12

11 11

13 9

10

12

2

=a

e

σσ 5.2

2

=c

e

σσ