Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D....

Post on 22-Aug-2020

0 views 0 download

transcript

Linear IndependenceMath 218

Brian D. Fitzpatrick

Duke University

March 3, 2020

MATH

Overview

Geometric MotivationCounting “Directions”

BackgroundLinear Combinations as Matrix MultiplicationAn Important Observation

Definitions and ExamplesDefinitionsExamples

The Linear Independence TestStatementExample

The “Pivot Columns” of a MatrixDefinitionExample

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v

3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v

3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v

−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v

−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Geometric MotivationCounting “Directions”

Span{ #»v }Defines a one-directional object (line) if #»v 6= #»

O .

Span{ #»v 1,#»v 2}

Defines a two-directional object (plane) if #»v 1 and #»v 2 are notparallel.

QuestionHow can we determine if Span{ #»v 1,

#»v 2, . . . ,#»v n} defines an

n-directional object?

AnswerSpan{ #»v 1,

#»v 2, . . . ,#»v n} defines an n-directional object if the list

{ #»v 1,#»v 2, . . . ,

#»v n} is linearly independent.

Geometric MotivationCounting “Directions”

Span{ #»v }Defines a one-directional object (line) if #»v 6= #»

O .

Span{ #»v 1,#»v 2}

Defines a two-directional object (plane) if #»v 1 and #»v 2 are notparallel.

QuestionHow can we determine if Span{ #»v 1,

#»v 2, . . . ,#»v n} defines an

n-directional object?

AnswerSpan{ #»v 1,

#»v 2, . . . ,#»v n} defines an n-directional object if the list

{ #»v 1,#»v 2, . . . ,

#»v n} is linearly independent.

Geometric MotivationCounting “Directions”

Span{ #»v }Defines a one-directional object (line) if #»v 6= #»

O .

Span{ #»v 1,#»v 2}

Defines a two-directional object (plane) if #»v 1 and #»v 2 are notparallel.

QuestionHow can we determine if Span{ #»v 1,

#»v 2, . . . ,#»v n} defines an

n-directional object?

AnswerSpan{ #»v 1,

#»v 2, . . . ,#»v n} defines an n-directional object if the list

{ #»v 1,#»v 2, . . . ,

#»v n} is linearly independent.

Geometric MotivationCounting “Directions”

Span{ #»v }Defines a one-directional object (line) if #»v 6= #»

O .

Span{ #»v 1,#»v 2}

Defines a two-directional object (plane) if #»v 1 and #»v 2 are notparallel.

QuestionHow can we determine if Span{ #»v 1,

#»v 2, . . . ,#»v n} defines an

n-directional object?

AnswerSpan{ #»v 1,

#»v 2, . . . ,#»v n} defines an n-directional object if the list

{ #»v 1,#»v 2, . . . ,

#»v n} is linearly independent.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3.

Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)

#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)

#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)

#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)

#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

1 2 7 6−8 −16 3 11

3 6 −2 −52 4 −9 −11

Note that Col(A) ⊂ R4.

2 · #»a 1

#»a 3

− #»a 1 + #»a 3#»a 1

This means that Col(A) = Span{〈1, −8, 3, 2〉 , 〈7, 3, −2, −9〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

1 2 7 6−8 −16 3 11

3 6 −2 −52 4 −9 −11

Note that Col(A) ⊂ R4.

2 · #»a 1

#»a 3

− #»a 1 + #»a 3#»a 1

This means that Col(A) = Span{〈1, −8, 3, 2〉 , 〈7, 3, −2, −9〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

1 2 7 6−8 −16 3 11

3 6 −2 −52 4 −9 −11

Note that Col(A) ⊂ R4.

2 · #»a 1

#»a 3

− #»a 1 + #»a 3

#»a 1

This means that Col(A) = Span{〈1, −8, 3, 2〉 , 〈7, 3, −2, −9〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

1 2 7 6−8 −16 3 11

3 6 −2 −52 4 −9 −11

Note that Col(A) ⊂ R4.

2 · #»a 1

#»a 3

− #»a 1 + #»a 3

#»a 1

This means that Col(A) = Span{〈1, −8, 3, 2〉 , 〈7, 3, −2, −9〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

1 2 7 6−8 −16 3 11

3 6 −2 −52 4 −9 −11

Note that Col(A) ⊂ R4.

2 · #»a 1

#»a 3

− #»a 1 + #»a 3

#»a 1

This means that Col(A) = Span{〈1, −8, 3, 2〉 , 〈7, 3, −2, −9〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

1 2 7 6−8 −16 3 11

3 6 −2 −52 4 −9 −11

Note that Col(A) ⊂ R4.

2 · #»a 1

#»a 3

− #»a 1 + #»a 3#»a 1

This means that Col(A) = Span{〈1, −8, 3, 2〉 , 〈7, 3, −2, −9〉 }.

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

1 2 7 6−8 −16 3 11

3 6 −2 −52 4 −9 −11

Note that Col(A) ⊂ R4.

2 · #»a 1

#»a 3

− #»a 1 + #»a 3#»a 1

This means that Col(A) = Span{〈1, −8, 3, 2〉 , 〈7, 3, −2, −9〉 }.

BackgroundLinear Combinations as Matrix Multiplication

ObservationLet { #»v 1,

#»v 2, . . . ,#»v n} be a list of vectors in Rm.

Every linearcombination

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

b

is of the form A #»c =#»

b where

A =[

#»v 1#»v 2 · · · #»v n

]#»c =

c1c2...cn

b =

b1b2...bm

Note that A is an m × n matrix.

BackgroundLinear Combinations as Matrix Multiplication

ObservationLet { #»v 1,

#»v 2, . . . ,#»v n} be a list of vectors in Rm. Every linear

combination

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

b

is of the form A #»c =#»

b where

A =[

#»v 1#»v 2 · · · #»v n

]#»c =

c1c2...cn

b =

b1b2...bm

Note that A is an m × n matrix.

BackgroundLinear Combinations as Matrix Multiplication

ObservationLet { #»v 1,

#»v 2, . . . ,#»v n} be a list of vectors in Rm. Every linear

combination

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

b

is of the form A #»c =#»

b where

A =[

#»v 1#»v 2 · · · #»v n

]#»c =

c1c2...cn

b =

b1b2...bm

Note that A is an m × n matrix.

BackgroundLinear Combinations as Matrix Multiplication

ObservationLet { #»v 1,

#»v 2, . . . ,#»v n} be a list of vectors in Rm. Every linear

combination

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

b

is of the form A #»c =#»

b where

A =[

#»v 1#»v 2 · · · #»v n

]#»c =

c1c2...cn

b =

b1b2...bm

Note that A is an m × n matrix.

BackgroundLinear Combinations as Matrix Multiplication

Example

The linear combination

c1 ·[

131

]+ c2 ·

[0−3

]+ c3 ·

[7−5

]+ c4 ·

[−5−3

]=

[33−11

]may be written as

[1 0 7 −5

31 −3 −5 −3

] c1c2c3c4

=

[33−11

]

BackgroundLinear Combinations as Matrix Multiplication

Example

The linear combination

c1 ·[

131

]+ c2 ·

[0−3

]+ c3 ·

[7−5

]+ c4 ·

[−5−3

]=

[33−11

]may be written as

[1 0 7 −5

31 −3 −5 −3

] c1c2c3c4

=

[33−11

]

BackgroundAn Important Observation

ObservationLet { #»v 1,

#»v 2, . . . ,#»v n} be a list of vectors in Rm. The equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O (∗)

can always be solved by c1 = c2 = · · · = cn = 0.

This is called thetrivial linear combination.

QuestionWhen is (∗) solved by a nontrivial linear combination?

BackgroundAn Important Observation

ObservationLet { #»v 1,

#»v 2, . . . ,#»v n} be a list of vectors in Rm. The equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O (∗)

can always be solved by c1 = c2 = · · · = cn = 0. This is called thetrivial linear combination.

QuestionWhen is (∗) solved by a nontrivial linear combination?

BackgroundAn Important Observation

ObservationLet { #»v 1,

#»v 2, . . . ,#»v n} be a list of vectors in Rm. The equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O (∗)

can always be solved by c1 = c2 = · · · = cn = 0. This is called thetrivial linear combination.

QuestionWhen is (∗) solved by a nontrivial linear combination?

Definitions and ExamplesDefinitions

DefinitionA list of vectors { #»v 1,

#»v 2, . . . ,#»v n} in Rm is linearly independent if

the only solution to

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O

is the trivial solution c1 = c2 = · · · = cn = 0.

The list{ #»v 1,

#»v 2, . . . ,#»v n} is linearly dependent if it is not linearly

independent.

NoteThe list { #»v 1,

#»v 2, . . . ,#»v n} is linearly dependent if the equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O

has a nontrivial solution.

Definitions and ExamplesDefinitions

DefinitionA list of vectors { #»v 1,

#»v 2, . . . ,#»v n} in Rm is linearly independent if

the only solution to

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O

is the trivial solution c1 = c2 = · · · = cn = 0. The list{ #»v 1,

#»v 2, . . . ,#»v n} is linearly dependent if it is not linearly

independent.

NoteThe list { #»v 1,

#»v 2, . . . ,#»v n} is linearly dependent if the equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O

has a nontrivial solution.

Definitions and ExamplesDefinitions

DefinitionA list of vectors { #»v 1,

#»v 2, . . . ,#»v n} in Rm is linearly independent if

the only solution to

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O

is the trivial solution c1 = c2 = · · · = cn = 0. The list{ #»v 1,

#»v 2, . . . ,#»v n} is linearly dependent if it is not linearly

independent.

NoteThe list { #»v 1,

#»v 2, . . . ,#»v n} is linearly dependent if the equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O

has a nontrivial solution.

Definitions and ExamplesExamples

Example

Note that

(3)

10−4

+ (1)

−21

15

+ (1)

−1−1−3

+ (0)

−53

41

=

000

This means that columns of 1 −2 −1 −50 1 −1 3−4 15 −3 41

are linearly dependent.

Definitions and ExamplesExamples

Example

Note that

(3)

10−4

+ (1)

−21

15

+ (1)

−1−1−3

+ (0)

−53

41

=

000

This means that columns of 1 −2 −1 −5

0 1 −1 3−4 15 −3 41

are linearly dependent.

Definitions and ExamplesExamples

Example

Determine if the list { #»v 1,#»v 2,

#»v 3} is linearly independent where

#»v 1 = 〈−1, 1, 1, 2〉 #»v 2 = 〈1, −2, −1, −3〉 #»v 3 = 〈1, 0, 0, 2〉

To determine if { #»v 1,#»v 2,

#»v 3} is linearly independent, we consider

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 =#»

O

This gives the system−1 1 1 0

1 −2 0 01 −1 0 02 −3 2 0

1 0 0 00 1 0 00 0 1 00 0 0 0

Thus c1 = c2 = c3 = 0. Hence { #»v 1,

#»v 2,#»v 3} is linearly

independent.

Definitions and ExamplesExamples

Example

Determine if the list { #»v 1,#»v 2,

#»v 3} is linearly independent where

#»v 1 = 〈−1, 1, 1, 2〉 #»v 2 = 〈1, −2, −1, −3〉 #»v 3 = 〈1, 0, 0, 2〉

To determine if { #»v 1,#»v 2,

#»v 3} is linearly independent, we consider

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 =#»

O

This gives the system−1 1 1 0

1 −2 0 01 −1 0 02 −3 2 0

1 0 0 00 1 0 00 0 1 00 0 0 0

Thus c1 = c2 = c3 = 0. Hence { #»v 1,

#»v 2,#»v 3} is linearly

independent.

Definitions and ExamplesExamples

Example

Determine if the list { #»v 1,#»v 2,

#»v 3} is linearly independent where

#»v 1 = 〈−1, 1, 1, 2〉 #»v 2 = 〈1, −2, −1, −3〉 #»v 3 = 〈1, 0, 0, 2〉

To determine if { #»v 1,#»v 2,

#»v 3} is linearly independent, we consider

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 =#»

O

This gives the system−1 1 1 0

1 −2 0 01 −1 0 02 −3 2 0

1 0 0 00 1 0 00 0 1 00 0 0 0

Thus c1 = c2 = c3 = 0. Hence { #»v 1,

#»v 2,#»v 3} is linearly

independent.

Definitions and ExamplesExamples

Example

Determine if the list { #»v 1,#»v 2,

#»v 3} is linearly independent where

#»v 1 = 〈−1, 1, 1, 2〉 #»v 2 = 〈1, −2, −1, −3〉 #»v 3 = 〈1, 0, 0, 2〉

To determine if { #»v 1,#»v 2,

#»v 3} is linearly independent, we consider

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 =#»

O

This gives the system−1 1 1 0

1 −2 0 01 −1 0 02 −3 2 0

1 0 0 00 1 0 00 0 1 00 0 0 0

Thus c1 = c2 = c3 = 0. Hence { #»v 1,#»v 2,

#»v 3} is linearlyindependent.

Definitions and ExamplesExamples

Example

Determine if the list { #»v 1,#»v 2,

#»v 3} is linearly independent where

#»v 1 = 〈−1, 1, 1, 2〉 #»v 2 = 〈1, −2, −1, −3〉 #»v 3 = 〈1, 0, 0, 2〉

To determine if { #»v 1,#»v 2,

#»v 3} is linearly independent, we consider

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 =#»

O

This gives the system−1 1 1 0

1 −2 0 01 −1 0 02 −3 2 0

1 0 0 00 1 0 00 0 1 00 0 0 0

Thus c1 = c2 = c3 = 0.

Hence { #»v 1,#»v 2,

#»v 3} is linearlyindependent.

Definitions and ExamplesExamples

Example

Determine if the list { #»v 1,#»v 2,

#»v 3} is linearly independent where

#»v 1 = 〈−1, 1, 1, 2〉 #»v 2 = 〈1, −2, −1, −3〉 #»v 3 = 〈1, 0, 0, 2〉

To determine if { #»v 1,#»v 2,

#»v 3} is linearly independent, we consider

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 =#»

O

This gives the system−1 1 1 0

1 −2 0 01 −1 0 02 −3 2 0

1 0 0 00 1 0 00 0 1 00 0 0 0

Thus c1 = c2 = c3 = 0. Hence { #»v 1,

#»v 2,#»v 3} is linearly

independent.

Definitions and ExamplesExamples

Example

Suppose that { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent. Show that

{ #»v 1 − #»v 4,#»v 2 − #»v 4,

#»v 3 − #»v 4} is linearly independent.

SolutionSuppose that

c1 · ( #»v 1 − #»v 4) + c2 · ( #»v 2 − #»v 4) + c3 · ( #»v 3 − #»v 4) =#»

O

Then

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 + (−c1 − c2 − c3) · #»v 4 =#»

O (∗)

Since { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent, each coefficient in

(∗) must be zero. In particular, c1 = c2 = c3 = 0.

Definitions and ExamplesExamples

Example

Suppose that { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent. Show that

{ #»v 1 − #»v 4,#»v 2 − #»v 4,

#»v 3 − #»v 4} is linearly independent.

SolutionSuppose that

c1 · ( #»v 1 − #»v 4) + c2 · ( #»v 2 − #»v 4) + c3 · ( #»v 3 − #»v 4) =#»

O

Then

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 + (−c1 − c2 − c3) · #»v 4 =#»

O (∗)

Since { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent, each coefficient in

(∗) must be zero. In particular, c1 = c2 = c3 = 0.

Definitions and ExamplesExamples

Example

Suppose that { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent. Show that

{ #»v 1 − #»v 4,#»v 2 − #»v 4,

#»v 3 − #»v 4} is linearly independent.

SolutionSuppose that

c1 · ( #»v 1 − #»v 4) + c2 · ( #»v 2 − #»v 4) + c3 · ( #»v 3 − #»v 4) =#»

O

Then

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 + (−c1 − c2 − c3) · #»v 4 =#»

O (∗)

Since { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent, each coefficient in

(∗) must be zero. In particular, c1 = c2 = c3 = 0.

Definitions and ExamplesExamples

Example

Suppose that { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent. Show that

{ #»v 1 − #»v 4,#»v 2 − #»v 4,

#»v 3 − #»v 4} is linearly independent.

SolutionSuppose that

c1 · ( #»v 1 − #»v 4) + c2 · ( #»v 2 − #»v 4) + c3 · ( #»v 3 − #»v 4) =#»

O

Then

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 + (−c1 − c2 − c3) · #»v 4 =#»

O (∗)

Since { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent, each coefficient in

(∗) must be zero.

In particular, c1 = c2 = c3 = 0.

Definitions and ExamplesExamples

Example

Suppose that { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent. Show that

{ #»v 1 − #»v 4,#»v 2 − #»v 4,

#»v 3 − #»v 4} is linearly independent.

SolutionSuppose that

c1 · ( #»v 1 − #»v 4) + c2 · ( #»v 2 − #»v 4) + c3 · ( #»v 3 − #»v 4) =#»

O

Then

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 + (−c1 − c2 − c3) · #»v 4 =#»

O (∗)

Since { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent, each coefficient in

(∗) must be zero. In particular, c1 = c2 = c3 = 0.

The Linear Independence TestStatement

NoteThe equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ ck · #»v k =#»

O

is given by the augmented matrix[#»v 1

#»v 2 · · · #»v k#»

O]

So, { #»v 1,#»v 2, . . . ,

#»v k} is linearly independent if and only if

A =[

#»v 1#»v 2 · · · #»v k

]has full column rank.

The Linear Independence TestStatement

NoteThe equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ ck · #»v k =#»

O

is given by the augmented matrix[#»v 1

#»v 2 · · · #»v k#»

O]

So, { #»v 1,#»v 2, . . . ,

#»v k} is linearly independent if and only if

A =[

#»v 1#»v 2 · · · #»v k

]has

full column rank.

The Linear Independence TestStatement

NoteThe equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ ck · #»v k =#»

O

is given by the augmented matrix[#»v 1

#»v 2 · · · #»v k#»

O]

So, { #»v 1,#»v 2, . . . ,

#»v k} is linearly independent if and only if

A =[

#»v 1#»v 2 · · · #»v k

]has full column rank.

The Linear Independence TestStatement

Theorem (The Linear Independence Test)

The list { #»v 1,#»v 2, . . . ,

#»v k} is linearly independent if and only if[#»v 1

#»v 2 · · · #»v k

]has full column rank.

The Linear Independence TestExample

Example

Determine if the list

{〈−14, −5, −5, −3〉 , 〈−53, −19, −18, −13〉 , 〈78, 28, 26, 20〉 }

is linearly independent.

SolutionNote that

rref

−14 −53 78−5 −19 28−5 −18 26−3 −13 20

=

1 0 20 1 −20 0 00 0 0

Since rank = 2 < # columns, the list is linearly dependent.

The Linear Independence TestExample

Example

Determine if the list

{〈−14, −5, −5, −3〉 , 〈−53, −19, −18, −13〉 , 〈78, 28, 26, 20〉 }

is linearly independent.

SolutionNote that

rref

−14 −53 78−5 −19 28−5 −18 26−3 −13 20

=

1 0 20 1 −20 0 00 0 0

Since rank = 2 < # columns, the list is linearly dependent.

The Linear Independence TestExample

Example

Determine if the list

{〈−14, −5, −5, −3〉 , 〈−53, −19, −18, −13〉 , 〈78, 28, 26, 20〉 }

is linearly independent.

SolutionNote that

rref

−14 −53 78−5 −19 28−5 −18 26−3 −13 20

=

1 0 20 1 −20 0 00 0 0

Since rank = 2 < # columns, the list is linearly dependent.

The Linear Independence TestExample

Example

Determine if the list

{〈−1, −5, −1, 1〉 , 〈7, −14, −1, −2〉 , 〈33, −31, 2, −13〉 }

is linearly independent.

SolutionNote that

rref

−1 7 33−5 −14 −31−1 −1 2

1 −2 −13

=

1 0 00 1 00 0 10 0 0

Since rank = 3 = # columns, the list is linearly independent.

The Linear Independence TestExample

Example

Determine if the list

{〈−1, −5, −1, 1〉 , 〈7, −14, −1, −2〉 , 〈33, −31, 2, −13〉 }

is linearly independent.

SolutionNote that

rref

−1 7 33−5 −14 −31−1 −1 2

1 −2 −13

=

1 0 00 1 00 0 10 0 0

Since rank = 3 = # columns, the list is linearly independent.

The Linear Independence TestExample

Example

Determine if the list

{〈−1, −5, −1, 1〉 , 〈7, −14, −1, −2〉 , 〈33, −31, 2, −13〉 }

is linearly independent.

SolutionNote that

rref

−1 7 33−5 −14 −31−1 −1 2

1 −2 −13

=

1 0 00 1 00 0 10 0 0

Since rank = 3 = # columns, the list is linearly independent.

The Linear Independence TestExample

Example

Determine if the list 1

5−5

,

−2−914

,

−6−29

35

,

526−23

is linearly independent.

SolutionThe matrix

A =

1 −2 −6 55 −9 −29 26−5 14 35 −23

satisfies rank(A) ≤ 3. Since rank(A) 6= # columns = 4, the list isnot linearly independent.

The Linear Independence TestExample

Example

Determine if the list 1

5−5

,

−2−914

,

−6−29

35

,

526−23

is linearly independent.

SolutionThe matrix

A =

1 −2 −6 55 −9 −29 26−5 14 35 −23

satisfies rank(A) ≤

3. Since rank(A) 6= # columns = 4, the list isnot linearly independent.

The Linear Independence TestExample

Example

Determine if the list 1

5−5

,

−2−914

,

−6−29

35

,

526−23

is linearly independent.

SolutionThe matrix

A =

1 −2 −6 55 −9 −29 26−5 14 35 −23

satisfies rank(A) ≤ 3.

Since rank(A) 6= # columns = 4, the list isnot linearly independent.

The Linear Independence TestExample

Example

Determine if the list 1

5−5

,

−2−914

,

−6−29

35

,

526−23

is linearly independent.

SolutionThe matrix

A =

1 −2 −6 55 −9 −29 26−5 14 35 −23

satisfies rank(A) ≤ 3. Since rank(A) 6= # columns = 4, the list isnot linearly independent.

The “Pivot Columns” of a MatrixDefinition

DefinitionThe pivot columns of a matrix A are the columns of A thatcorrespond to pivot columns in rref(A).

Example

Consider the calculation

rref

A3 −9 7−2 6 2

1 −3 −613 −39 0

=

1 −3 00 0 10 0 00 0 0

The pivot columns of A are 〈3, −2, 1, 13〉 and 〈7, 2, −6, 0〉 .

The “Pivot Columns” of a MatrixDefinition

DefinitionThe pivot columns of a matrix A are the columns of A thatcorrespond to pivot columns in rref(A).

Example

Consider the calculation

rref

A3 −9 7−2 6 2

1 −3 −613 −39 0

=

1 −3 00 0 10 0 00 0 0

The pivot columns of A are 〈3, −2, 1, 13〉 and 〈7, 2, −6, 0〉 .

The “Pivot Columns” of a MatrixDefinition

DefinitionThe pivot columns of a matrix A are the columns of A thatcorrespond to pivot columns in rref(A).

Example

Consider the calculation

rref

A3 −9 7−2 6 2

1 −3 −613 −39 0

=

1 −3 00 0 10 0 00 0 0

The pivot columns of A are 〈3, −2, 1, 13〉 and 〈7, 2, −6, 0〉 .

The “Pivot Columns” of a MatrixDefinition

TheoremThe pivot columns of a matrix are linearly independent.

TheoremLet { #»v 1,

#»v 2, . . . ,#»v d} be the pivot columns of A. Then

Col(A) = Col([

#»v 1#»v 2 · · · #»v d

])

In particular, every column of A is a linear combination of the pivotcolumns of A.

The “Pivot Columns” of a MatrixDefinition

TheoremThe pivot columns of a matrix are linearly independent.

TheoremLet { #»v 1,

#»v 2, . . . ,#»v d} be the pivot columns of A. Then

Col(A) = Col([

#»v 1#»v 2 · · · #»v d

])

In particular, every column of A is a linear combination of the pivotcolumns of A.

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 = − 3 · #»a 1#»a 3 = 4 · #»a 1

#»a 5 = 7 · #»a 1 + 6 · #»a 4

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 = − 3 · #»a 1#»a 3 = 4 · #»a 1

#»a 5 = 7 · #»a 1 + 6 · #»a 4

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 =

− 3 · #»a 1#»a 3 = 4 · #»a 1

#»a 5 = 7 · #»a 1 + 6 · #»a 4

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 = − 3 · #»a 1

#»a 3 = 4 · #»a 1#»a 5 = 7 · #»a 1 + 6 · #»a 4

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 = − 3 · #»a 1#»a 3 =

4 · #»a 1#»a 5 = 7 · #»a 1 + 6 · #»a 4

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 = − 3 · #»a 1#»a 3 = 4 · #»a 1

#»a 5 = 7 · #»a 1 + 6 · #»a 4

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 = − 3 · #»a 1#»a 3 = 4 · #»a 1

#»a 5 =

7 · #»a 1 + 6 · #»a 4

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 = − 3 · #»a 1#»a 3 = 4 · #»a 1

#»a 5 = 7 · #»a 1 + 6 · #»a 4