Molecular Interaction Studies of Chitosan Cross-linked ... · The molecular docking...

Post on 09-Jul-2020

1 views 0 download

transcript

Journal of Biomedical SciencesISSN 2254-609X

2016Vol. 5 No. 3:18

iMedPub Journalshttp://www.imedpub.com

Research Article

© Under License of Creative Commons Attribution 3.0 License | This Article is Available in: www.jbiomeds.com 1

DOI: 10.4172/2254-609X.100032

Parimal Chandra Bhomick1, Salam Pradeep Singh2*, Chitta Ranjan Deb3, Dipak Sinha1, Lakshmi Narayan Kakati4 and Bolin Kumar Konwar5

1 Department of Chemistry, Nagaland University, Lumami-798627, Nagaland, India

2 BioinformaticsInfrastructureFacility,Nagaland University, Lumami-798627, Nagaland, India

3 Department of Botany, Nagaland University, Lumami-798627, Nagaland, India

4 Department of Zoology, Nagaland University, Lumami-798627, Nagaland, India

5 DepartmentofMolecularBiologyandBiotechnology,TezpurUniversity,Tezpur-784028,Assam,India(On-lienViceChancellor,NagalandUniversity,Lumami-798627, Nagaland, India)

Corresponding author: Salam Pradeep Singh

salampradeep@gmail.com

Tel: +918486268935

BioinformaticsInfrastructureFacility,Nagaland University, Lumami-798627, Nagaland, India.

Citation:BhomickPC,SinghSP,DebCR, et al.MolecularInteractionStudiesofChitosanCross-linkedCompoundsasDrugDeliverySubstrateforAnticancerAgents. JBiomedicalSci.2016,5:3.

Molecular Interaction Studies of Chitosan Cross-linked Compounds as Drug Delivery

Substrate for Anticancer Agents

AbstractChitosanisknownforitsabsorptionandadhesionpropertyanditisanon-toxicbiodegradableheteropolymer.Ithasastrongaffinityforwaterandhighdegreeofsolubilityinacidicmedium.Inaddition,chitosanhydrogelsshowedlowmechanicalstrengthandminimumabilitytocontrolthedeliveryofencapsulatedcompounds.Andhence,inthisinvestigationasetofcompoundscrosslinkedwithChitosanwasscreenedforanticanceragentusingcomputationaltechnique(moleculardocking)againstNOSenzyme (PDB ID: 4NOS). The resultwas interesting asmajority ofthe compounds screened turned up with favorable molecular interaction andbindingaffinityasevidencedfromthedockingscore.Furthermorethemolecularinteraction analysis represents the cross linked compounds possessed heavymolecular interaction at the active site residue of the enzyme. Thus, Chitosancrosslinkedcompoundstargetthespecificactivesiteresidueandhencecanbeused in future for drug delivery.

Keywords: Chitosan;crosslinked;NOSenzyme;anticancer

Received: February19,2016; Accepted: May05,2016; Published: May11,2016

IntroductionHydrogelsarecross-linkedpolymericnetworksthattrapwaterinthepolymermatricesmainlybysurfacetensionandareusuallythreedimensionalwhilemostofitspropertiescanbealteredbystructuralmodification[1,2].Akindofhydrogelcalledchitosanis findingwideapplication inmanyareas suchas fuel cells, oilencapsulation, wound dressing and especially in drug deliveryin recent years [3-6]. Chitosan [β-(1,4)-2-amino-2-deoxy-d-glucopyranose] is a non-toxic biodegradable hetero polymer,hasagoodabsorptionandadhesionproperty.Itisaweakbaseobtainedbydeacetylationofchitin[3].Becauseoftheiraffinityforwaterandhighdegreeofsolubilityinacidicmedium,chitosanhydrogels comparatively shows low mechanical strengthand minimum ability to control the delivery of encapsulatedcompounds[7],therebyfacilitatingchemicalmodificationbyitsaminoandhydroxylgroups.Forahydrogeltobeintroducedinabiologicalsystems,itscompatibilityshouldbetakenintoaccountwhile it is seen that the pharmacy world will benefit fromhydrogels likechitosanbecauseof itshydrophilicity,flexibility,versatility,highwaterabsorptivity,andgreatercompatibilitywiththebiologicalsystem.It isalsoachoiceforthepharmaceuticalworldbecauseof its long lifespan incirculationandpossibilityof being actively or passively targeted to the known biophase

like cancer cells [8]. Chitosan can be blended with differentcrosslinkingagenttoproduceachemicallyactivehydrogelsforbioapplications. Like the amino group of chitosan can lead toionicinteractionbetweenandanionicgroups.Theseinteractionscanproducehydrogelswithdifferentmaterialpropertieswhichdependuponthesizeoftheanionicagentsandchargedensity,alsoondegreeofdeacetylationandamountofchitosanpolymer.

2016Vol. 5 No. 3:18

Journal of Biomedical SciencesISSN 2254-609X

This Article is Available in: www.jbiomeds.com2

Chitosancrosslinkedwithpolyelectrolyteshavebeenproducedbywater-solublenegativelychargedmoleculeslikeDNA,alginate,hyaluronicacid,proteinslikegelatinpolyacrylicacidandmostlythe stability of these compounds depends on solvent, chargedensity,temperature,ionicstrength,andpH[9-12].

TheNOSenzymesconsistofoxygenasedomainthatbindsarginine,tetrahydrobiopterinandhemeandreductasedomainwithFADand FMN prosthetic groups. They are complex, homodimerichemeenzymewhichproducesfreeradicalnitricoxidethatleadstovarietyofage-relateddiseases[13-15].Nitricoxidesynthase(NOS)incellsareofthreeisoforms.Neuronal/brainNOS(nNOS),endothelial NOS (eNOS) and inducible NOS (iNOS). nNOS andeNOSbelongstoconstitutiveNOS(cNOS)andNOproducedfromthistypehelpsinmaintainingnormalvasoactivitythroughaCa2+ -dependent pathway and also as a neurotransmitter for signaltransmission.WhileNOproducedfromiNOScantriggerseveraldisadvantage cellular responses and can cause some diseasesincludingsepsis,strokeandinflammation,[13-19].

Inthepresentinvestigationchitosancrosslinkedcompoundswere screened as inhibitors of iNOS revealing chitosan as agoodcarrierfordeliveringandunloadingthedrugatspecifictarget.

Materials and MethodChemical dataset The 2D structure of Diethylsquarate, Glutaraldehyde,Formaldehyde, Ethyleneglycol diglycildylether, BlockedDiisocyanate,PhloreticandActivatedQuinonecross-linkedwithChitosan was generatedwith Chemoffice 2010. The energy ofthesecross-linkedcompoundswerefurtheroptimizedusingMM2forcefieldmethodandsaveas sybylmol2 (threedimensional)fileformatusingChemOffice2010.

Protein preparation The 3D structure of human inducible nitric oxide synthase(PDB ID:4NOS)wasdownloaded from theProteinDatabankBank(http://www.rcsb.org/).Thecoordinatesofthisenzymeis complexedwithwatermolecules and ironprotoporphyrinIX (heme) along with the Cofactors such as BH4, Zn+2 atom. Moreoverthe3Dstructurehasaresolutionof2.25Å.makingit anexcellent choice formoleculardocking studies. All thewater molecules were removed for the molecular dockingsimulation purpose since they are not taken into accountduringthescoringfunction[20].

Docking computationThe3Dstructureofhumaninduciblenitricoxidesynthase(PDBID:4NOS)wasthenimportedinMolegroVirtualDocker(MVD).Thesidechainsconformationsof4NOSwere furtherminimizedusingPLP-potentialsforstericandhydrogenbondinginteractions,andtheCoulombpotentialfortheelectrostaticforces.Andonlythetorsionanglesaremodifiedduringtheminimizationwhichincludesbondlengthsandbackboneatompositionsareheldfixed[20].

Further, the potential ligand binding site of the enzyme waspredictedusingMVD.Thebindingsitehaveavolumeof470.02A3and1158.84A2.Thebindingsitewassetinsidearestrictionsphereofradius15A°(X0.65,Y99.58,Z11.19)usingMVD.

ThentheChitosancrosslinkedcompoundswerethenimportedinMVD.TheBondflexibilityofthecrossliknedcompoundswassetaswellasthesidechainflexibilityofresiduesnearthepotentialligandbindingsitewassetwithatoleranceof1.10andstrengthof0.90fordockingsimulations.TheRMSDthresholdwassetat2.00Åformultipleclusterposes.Thedockingalgorithmwassetat 1,500maximum iterationwith simplex evolution size of 50andaminimumof20runswereperformedforeachofthecrosslinkedcompound.Thebestposewasconsideredforsubsequentprotein-ligandinteractionanalysis.

MoleculardockingwascarriedoutusingMVDwhichisbasedonadifferentialevolutionalgorithm.ThealgorithmofMVDconsidersthe sumof the intermolecular interactionenergybetween theligandandtheproteinandtheintramolecularinteractionenergyof the ligand. Thedockingenergy scoring function isbasedonthemodifiedpiecewiselinearpotential(PLP)withnewhydrogenbondingandelectrostatictermsincluded.Fulldescriptionofthealgorithm anditsreliabilitycomparedtoothercommondockingalgorithmisdescribedbyThomsenetal.[20].

Results and DiscussionThe molecular docking simulation revealed the cross linkedcompoundsbindattheactivesiteoftheNOS.Fromthedockingscore, it is revealed that the MolDock score holds favorableinteractionfortheChitosanCrosslinkedcompoundsviz.DiethylSquarate (-181.13 kJmol-1), Formaldehyde (-179.522 kJmol-1), Glutaraldehyde (-145.48 kJmol-1), Blocked Diisocynate (-105.27kJmol-1),ActivatedQuinone(-104.72kJmol-1)intermsofnegativeenergy (Table 1).WhileEthyleneglycoldiglycildylether,PhloreticacidandGenepindonotpossessedafavourableinteraction.

Chitosan Cross Linked Ligands MolDock Score Interaction HBond LE1 LE3DiethylSquarate -181.13 -313.47 -7.75 -1.46 0.17Formaldehyde -179.52 -259.00 -14.09 -1.51 2.25Glutaraldehyde -145.48 -245.14 -12.19 -1.22 2.12

BlockedDiisocyanate -105.27 -210.05 -10.23 -0.81 1.82ActivatedQuinone -104.73 -207.40 -8.29 -0.84 3.18

Ethyleneglycoldiglycildylether -35.45 -105.79 -8.16 -0.27 2.94Phloreticacid 24.85 -124.02 -10.23 0.19 2.25

Genepin 90.39 20.50 -3.59 0.61 9.12

Table 1 Molecular docking score of the Chitosan cross linked compounds

2016Vol. 5 No. 3:18

Journal of Biomedical SciencesISSN 2254-609X

3© Under License of Creative Commons Attribution 3.0 License

Chitosan Cross Linked Ligands Ligand---ProteinInteraction Interactionenergy InteractionDistance

Diethylsquarate

O

O

O

O

O

O

O

OOH

OH

OH

OH

OH

HO

HO

HO

HO

HO

H2N

NH

O

HN

NH

H2N

OO

O

O

O

O

O

O

OHO

HO

HO

HO

HO

OH

OH

OH

OH

OH

NH2

HN

O

HN

HN

NH2

O

OO

N(54)---Glu494(OE1) -2.5 2.87ÅO(97)---Arg388(NH2) -0.28 2.73ÅO(65)---Gln263(NE2) -2.5 2.90ÅO(101)---Asn283(OD1) -2.44 2.90ÅO(106)---Ala282(O) -1.82 3.23ÅO(28)---Val386(N) -1.88 2.85Å

O(26)---Thr121(OG1) -0.59 3.48ÅO(36)---Asp385(OD2) -2.02 3.20ÅO(95)---Tyr373(OH) -0.67 3.47Å

O(101)---Agr266(NH1) -2.5 2.93ÅO(77)---Agr266(NH1) -0.38 3.52ÅN(112)---Ala282(O) -0.65 2.82ÅO(70)---Gln263(NE2) -0.19 3.56ÅO(68)---Gln263(NE2) -0.01 3.60ÅO(97)---Asp383(OD1) -1.78 2.51ÅO(93)---Trp372(O) -0.96 2.42Å

O(93)---Glu377(OE2) -0.92 2.41ÅO(103)---Glu377(OE1) -1.46 3.31ÅO(93)---Met374(N) -0.60 3.40Å

O(102)---N(16)HEMCofactor -1.26 3.35ÅO(102)---N(24)HEMCofactor -2.19 3.16ÅN(107)---N(24)HEMCofactor -1.60 3.28ÅN(107)---N(32)HEMCofactor -2.5 3.01ÅN(108)---O(14)HEMCofactor -1.16 3.37ÅO(103)---O(14)HEMCofactor -0.93 3.41Å

Table 2a MolecularinteractionanalysisofChitosancrosslinkedDiethylsquarate

Formaldehyde

O

O

O

O

O

O

O

O OH

OH

OH

OH

OH

HO

HO

HO

HO

HO

H2N

NH

O

NH

NH

H2N

OO

O

O

O

O

O

O

OHO

HO

HO

HO

HO

OH

OH

OH

OH

OH

NH2

HN

O

HN

HN

NH2

O

O(93)---Lys497(NZ) -2.5 3.06ÅO(93)---Glu494(OE1) -2.5 2.98ÅO(51)---Gln492(N) -1.35 3.33Å

O(34)---Glu285(OE1) -2.02 3.20ÅO(95)---Thr121(OG1) -2.5 2.92ÅO(87)---Thr121(OG1) -0.56 3.49ÅN(54)---Pro350(O) -2.5 2.96ÅO(47)---Phe369(O) -0.82 3.44ÅO(40)---Ala262(O) -2.5 2.73ÅO(38)---Ala262(O) -1.24 3.35Å

O(38)---Asn354(ND2) -2.5 2.73ÅO(97)---Asp385(OD2) -1.74 3.25ÅO(70)---Arg381(NH2) -0.96 3.39ÅO(72)---Arg381(NH2) -0.57 3.45ÅO(72)---Arg381(NH1) -1.24 3.35ÅO(105)---Arg381(NH1) -0.67 2.56ÅO(42)---Glu377(OE1) -2.5 3.08ÅO(101)---IIe119(O) -2.38 3.00ÅO(56)---Tyr373(OH) -0.69 2.78Å

O(101)---Arg199(NH2) -0.17 3.36ÅO(45)---O(41)HEMCofactor -0.48 3.50ÅN(52)---O(14)HEMCofactor -1.08 3.38ÅN(111)---O(14)HEMCofactor -1.45 3.31Å

Table 2b MolecularinteractionanalysisofChitosancrosslinkedFormaldehyde

2016Vol. 5 No. 3:18

Journal of Biomedical SciencesISSN 2254-609X

This Article is Available in: www.jbiomeds.com4

TheMolDockscoringfunction(MolDockScore)whichdeterminedthebindingaffinityinthepresentinvestigationisderivedfromthePiecewiseLeastPotential (PLP)scoring functions.TheMolDockscoring function further improves the PLP scoring functionswithnewhydrogenbondingtermandnewchargeschemes.Thedockingscoringfunction,EScore,isdefinedbythefollowingenergyterms:

EScore=Einter+Eintra

Where,

Einteristheligand-proteininteractionenergy

Eintra is the internal energy of the ligand

Further, the ligand-protein interaction calculation using ligandenergy inspector for the Chitosan cross linked compounds isshowninTable 2whichindicatestheligand-proteininteractionenergy and its molecular interaction distances along with the

interactingatoms.Itisobservedthatthecompoundsalsoexhibitmolecular interaction with the Cofactor HEM molecule. Thus,indicating a strong binding affinity towards the active site ofNOS. The snap shots illustrating the protein-ligand interactionof Chitosan cross linkedwith Diethyl Squarate, Formaldehyde,Glutaraldehyde,BlockedDiisocyanateandActivatedQuinoneisshown inFigures 1-5 respectively.Hence, from thefigures theplausibilityofChitosancrosslinkedcompoundsdeliveringligandsatagivenspecifictargetisviable.

ConclusionToconclude,moleculardockingsimulationwascarriedoutagainstNOSenzymewithasetofChitosancrosslinkedcompounds.ThemoleculardockingresultsshowedfavourablebindingaffinityanddockingscoreofthemajorityofthecompoundsattheactivesiteofNOSenzyme.Themolecularinteractionanalysisalsorevealedheavymolecularinteractionwiththeactivesiteresidues.Thus,

Glutaraldehyde

O

O

O

O

O

O

O

O OH

OH

OH

OH

OH

HO

HO

HO

HO

HO

H2N

NH

O

NH

NH

H2N

OO

O

O

O

O

O

O

OHO

HO

HO

HO

HO

OH

OH

OH

OH

OH

NH2

HN

O

HN

HN

NH2

O

O(46)---Arg381(NH1) -2.5 2.92ÅO(46)---Arg381(NH2) -1.61 2.61ÅO(110)---Tyr347(OH) -2.5 2.68ÅO(65)---Gln263(NE2) -2.5 2.74ÅO(101)---Glu494(OE1) -0.63 3.47ÅH(180)---Gln492(O) -2.5 1.76ÅN(113)---Asn354(O) -2.5 2.75Å

O(106)---Asn354(OD1) -2.5 2.94ÅO(99)---Tyr491(OH) -1.95 3.21ÅO(56)---Trp463(NE1) -0.38 2.94ÅO(42)---Met120(N) -0.52 3.05ÅO(102)---Trp372(O) -2.5 2.92Å

N(107)---Glu377(OE1) -0.07 2.31ÅO(95)---O(41)HEMCofactor -2.5 2.82ÅO(102)---N(16)HEMCofactor -2.5 3.09ÅO(99)---O(42)HEMCofactor -0.20 3.56ÅH(177)---O(41)HEMCofactor -2.5 1.82Å

Table 2c MolecularinteractionanalysisofChitosancrosslinkedGlutaraldehyde

Blockeddiisocyanate

OO

OO

O

O

O

O OH

OH

OH

OH

OH

HO

HO

HO

HO

HO

NH

NHO

H2N

NH

H2N

O

O

O

O

O

O

O

O

OHO

HO

HO

HO

HO

OH

OH

OH

OH

OH

HN

HN

O

NH2

HN

NH2

O

NH

HN

O

O

N(113)---Thr121(O) -2.5 2.99ÅO(106)---Thr121(N) -1.99 3.20ÅO(36)---Glu494I(OE2) -2.32 2.58ÅH(152)---Ala282(O) -2.5 1.95ÅO(45)---Thr121(OG1) -0.74 3.45ÅN(52)---Thr121(OG1) -0.02 2.30ÅO(127)---Arg266(NH1) -2.01 2.83ÅN(48)---Ala282(O) -0.95 3.12Å

O(34)---Trp496(NE1) -0.68 2.64ÅO(44)---Asn354(ND2) -2.5 3.09ÅO(129)---Arg381(NH2) -1.97 2.66ÅO(87)---Arg381(NH1) -2.5 2.64ÅO(79)---Arg381(NH1) -2.28 3.14ÅO(79)---Arg381(NH2) -0.15 3.56Å

O(102)---O(15)HEMCofactor -2.5 2.61ÅO(102)---O(14)HEMCofactor -1.23 2.45ÅO(46)---O(41)HEMCofactor -1.28 3.35ÅN(53)---O(41)HEMCofactor -1.88 3.22Å

Table 2d MolecularinteractionanalysisofChitosancrosslinkedBlockeddiisocyanate

2016Vol. 5 No. 3:18

Journal of Biomedical SciencesISSN 2254-609X

5© Under License of Creative Commons Attribution 3.0 License

ActivatedQuinone

O

O

O

O

O

O

O

O OH

OH

OH

OH

OH

HO

HO

HO

HO

HO

H2N

NH

O

N

NH

H2N

OO

O

O

O

O

O

O

OHO

HO

HO

HO

HO

OH

OH

OH

OH

OH

NH2

HN

O

HN

HN

NH2

O

O

N(107)---Ser118(O) -2.45 3.11ÅO(93)---Arg381(NH1) -2.5 2.91ÅO(65)---Arg381(NH1) -2.5 2.60ÅO(63)---Arg381(NH1) -0.08 3.58ÅO(65)---Arg381(NH2) -0.22 3.31ÅO(63)---Arg381(NH2) -0.03 3.59ÅO(43)---Arg388(NH2) -0.65 3.20ÅO(43)---Asp382(OD1) -1.84 3.23ÅO(43)---Gln263(NE2) -0.12 3.56ÅO(45)---Gln263(NE2) -2.37 3.13ÅO(26)---Asn354(ND2) -0.97 3.41ÅO(18)---Asn354(ND2) -1.57 3.29ÅO(42)---Asn354(ND2) -2.06 3.07ÅO(42)---Asn354(O) -1.48 2.48Å

O(40)---Asn354(OD1) -2.37 2.58ÅO(47)---Thr121(OG1) -2.5 2.90ÅN(54)---Glu494(OE1) -2.5 2.88ÅO(28)---Tyr373(OH) -1.14 3.37ÅO(20)---Tyr347(OH) -2.5 2.97ÅN(48)---Tyr347(OH) -2.5 2.84ÅO(36)---Tyr347(OH) -2.5 2.94ÅO(43)---Arg388(NH1) -2.5 2.96ÅO(79)---Trp463(NE1) -0.15 2.95ÅO(44)---Tyr373(OH) -0.35 3.32ÅO(44)---Glu377(OE1) -1.89 2.53ÅN(49)---Glu377(OE1) -1.27 3.16Å

O(34)---O(15)HEMCofactor -1.48 3.30ÅN(108)---O(15)HEMCofactor -1.86 2.52ÅN(108)---O(14)HEMCofactor -0.97 3.41ÅO(104)---O(14)HEMCofactor -1.77 3.25ÅO(34)---O(14)HEMCofactor -0.84 3.43ÅO(46)---O(41)HEMCofactor -0.07 3.59Å

Table 2e MolecularinteractionanalysisofChitosancrosslinkedActivatedQuinone

A B C

(A)Bindingmode(B)Electrostaticinteractionand(C)EnergymapofChitosancrosslinkedDiethylSquarateattheactivesiteofNOSenzyme

Figure 1

2016Vol. 5 No. 3:18

Journal of Biomedical SciencesISSN 2254-609X

This Article is Available in: www.jbiomeds.com6

A B C

(A)Bindingmode(B)Electrostaticinteractionand(C)EnergymapofChitosancrosslinkedFormaldehydeattheactivesiteofNOSenzyme

Figure 2

A B C

(A)Bindingmode(B)Electrostaticinteractionand(C)EnergymapofChitosancrosslinkedGlutaraldehydeattheactivesiteofNOSenzyme

Figure 3

A B C

(A)Bindingmode(B)Electrostaticinteractionand(C)EnergymapofChitosancrosslinkedBlockedDiisocyanateattheactivesiteofNOSenzyme

Figure 4

2016Vol. 5 No. 3:18

Journal of Biomedical SciencesISSN 2254-609X

7© Under License of Creative Commons Attribution 3.0 License

webring toacause thatChitosancross linkedcompounds isagood inhibitorofNOSenzymeasanticanceragents.Moreover,Chitosanissuccessfulindeliveringthecompoundsatthespecificactivesiteofthetargetenzyme.

Conflict of interestTheauthorsdeclarenoconflictofinterestexist

A B C

(A)Bindingmode(B)Electrostaticinteractionand(C)EnergymapofChitosancrosslinkedActivatedQuinoneattheactivesiteofNOSenzyme

Figure 5

AcknowledgementThe authors would like to acknowledge the Department ofBiotechnology,MinistryofScienceandTechnology,GovernmentofIndia,NewDelhiforthenecessarysupport.PCBacknowledgedtheDepartmentofScienceandTechnology (DST),GovernmentofIndiaforDST-INSPIREfellowship(IF150297).

2016Vol. 5 No. 3:18

Journal of Biomedical SciencesISSN 2254-609X

This Article is Available in: www.jbiomeds.com8

References1 Choudhury NA, Sampath S, Shukla AK (2009) Hydrogel-polymer

electrolytes for electrochemical capacitors: an overview. EnergyEnvironSci2:55-67.

2 GiriTK,ThakurA,AlexanderA(2012)Modifiedchitosanhydrogelsasdrugdeliveryandtissueengineeringsystems:presentstatusandapplications.ActaPharmaceuticaSinicaB2:439-449.

3 Ma J, Choudhury NA, Sahai (2011) A high performance directborohydride fuel cell employing cross-linked chitosan membrane.PowerSources196:8257-8264.

4 BhattaraiN,GunnJ,ZhangM(2010)Chitosan-basedhydrogels forcontrolled,localizeddrugdelivery.AdvDrugDelivRev62:83-99.

5 AbreuFO,OliveiraEF,PaulaHC,dePaulaRC(2012)Chitosan/cashewgumnanogelsforessentialoilencapsulation.CarbohydrPolym89:1277-1282.

6 Mogoşanu GD, Grumezescu AM (2014) Natural and syntheticpolymersforwoundsandburnsdressing.IntJPharm463:127-136.

7 Crinia G, Badot PM (2008) Application of chitosan, a naturalaminopolysaccharide, for dye removal from aqueous solutionsby adsorption processes using batch studies: A review of recentliterature. Prog PolymSci33:399-447.

8 HamidiM,AzadiA,RafieiP (2008)Hydrogelnanoparticles indrugdelivery.AdvDrugDelivRev60:1638-1649.

9 BrackHP,TirmiziSA,RisenWM(1997)Aspectroscopicandviscometricstudyofthemetalion-inducedgelationofthebiopolymerchitosan.Polymer 38: 2351-2362.

10 Dambies L, Vincent T, Domard A, Guibal E (2001) Preparation ofchitosangelbeadsbyionotropicmolybdategelation.Biomacromolecules2:1198-1205.

11 SinghSP,KonwarBK(2012)Moleculardockingstudiesofquercetinand its analogues against human inducible nitric oxide synthase.Springerplus 1: 69.

12 TsuchidaE,AbeK (1982) InteractionsbetweenMacromolecules inSolution and Intermacromolecular Complexes. Adv Polym Sci 45:1-119.

13 GarthwaiteJ,BoultonCL(1995)Nitricoxidesignalinginthecentralnervoussystem.AnnuRevPhysiol57:683-706.

14 Stuehr DJ (1997) Structure-function aspects in the nitric oxidesynthases.AnnuRevPharmacolToxicol37:339-359.

15 ChungHY,CesariM,AntonS,MarzettiE,GiovanniniS,etal.(2009)Molecular inflammation: underpinnings of aging and age-relateddiseases.AgeingResRev8:18-30.

16 Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS (1988)MacrophageoxidationofL-argininetonitriteandnitrate:nitricoxideisanintermediate.Biochemistry27:8706-8711.

17 NathanC(1992)Nitricoxideasasecretoryproductofmammaliancells.FASEBJ6:3051-3064.

18 Yen-ChouC,Shing-ChuanS,Woan-RuohL,Wen-ChiH,etal.(2001)Inhibitionofnitricoxidesynthaseinhibitorsandlipopolysaccharideinduced inducible NOS and cyclooxygenase-2 gene expressionsby rutin, quercetin, and quercetin pentaacetate in RAW 264.7macrophages.JCellBiochem82:537-548.

19 FischmannTO,HruzaA,NiuXD,FossettaJD,LunnCA,etal.(1999)Structuralcharacterizationofnitricoxidesynthaseisoformsrevealsstrikingactive-siteconservation.NatStructBiol6:233-242.

20 ThomsenR,ChristensenMH(2006)MolDock:anewtechniqueforhigh-accuracymoleculardocking.JMedChem49:3315-3321.