New Generation Network (NWGN) Beyond NGN in Japan -...

Post on 13-Jun-2019

223 views 1 download

transcript

1

New Generation Network (NWGN)Beyond NGN in Japan

Tomonori AoyamaKeio University

NICT

May 8, 2007

2

Contents

- Broadband Networks in Japan

- Next (NXGN) and New (NWGN)

- Key Technologies for NWGN

3

No. of broadband customers in Japan

Source : MIC

0

10M

20M

30M

No.

of U

sers

’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10

NTT’s Target 30 M in 2010

Total 25 MillionMore than 50% of household

FTTH exceeded7 Million

CATVADSLFTTH

Year

4

Rapid Expansion of Internet Traffic in Japan

1000 times in 10 years

http://www.jpix.ad.jp/jp/techncal/traffic.html

5

NGN is entering into the deployment phase in Japan.

- Carriers and vendors are investing their

resources to the deployment of NGN.

- Standards for NGN are being established

in the ITU-T.

- NTT has started the field trial of NGN

services.

- Actual services over NGN may start

around 2007.

6

NGN Architecture standardized by ITU-T

Application

NNI

Transport Stratum

Service Stratum

・Service Control Function

・Transport Function

Oth

er Netw

ork

End U

ser System

UNIAPI

7

NXGN and NWGN

• NGN (NeXt Generation Network): NXGNImprovement of IP networking toprovide Triple-/Quadruple-play services

・ NWGN(NeW Generation Network)Network architectures and main protocols are different from IP networks,

Post-NGN

8

Next Generation Network and New Generation Network

2010 2020

NXGN / IP

NWGN /( IP + α

) or p

ost- IP

Variety of Appliances

Ubiquitous Appliances

Quadruple Play

Triple Play

Year

9

Overlay Network

( IP+ α) NW / Post IP NW

Underlay Network

Multi-layer C

ontrol Mechanism

Application

Photonic NW Mobile NW Sensor NW

Study Items for NWGN Architecture

10

Research Projects related to NWGN in Japan Network Architecture : AKARI Project in NICT

Underlay Network

Optical Packet Network Research in NICT

4 Photonic Network Projects funded by NICT

Cognitive Wireless Network Research in NICT

Overlay Network

Joint Research Project among NICT and Universities

Five Ubiquitous Network related projects funded by MIC

Applications for NWGN

4K and 8K Super High Definition Video Applications

Grid Computing and its applications for e-Science

11

Requirements for NWGN1. Network Capacity

Backbone Node: 1Pb/s , Backbone Link: 10 Tb/s

FTTH: 10Gb/s

2. No. of Appliances

100 billion appliances / 1 million broadcast stations

3. Capacity of contents

From 100 bit (sensor/RFID) to 5 TB (2 hour 4K non-

compressed digital cinema contents) and more

4. Transparency / Openness / Simplicity

KISS principle

Controlled transparency for security

12

K M GAccess frequency [page/day]

K

M

G

T

P

Yahoo300Mpage/day

InternetTVガイド11Mpage/day

Web content

Cap

acity

of c

onte

nt

SDTVDVD>GB

Web~10kB/page

MP3>MB/music

DigitalCinema> 100GB

e Commerce

IP TV

HDTV

Cine-grid

B2C

B2B

[bit]

Contents in the ubiquitous societyFrom tiny to huge

Sensor & RF ID

S2M

P2P

Both directions

13

Requirements for NWGN5. Robustness: More than four nine

6. Reliability: Protection of Privacy, Traceability

7. Ubiquity: Ubiquitous appliances and contents

Full mobility support

8. Sustainability and Adaptability for technological

advances

9. Business model : Industry incentive is needed.

10. Low power consumption

Prediction: ICT systems will occupy about 50%

of total power consumption with current technology

in 10 years.

14

NICT’s Mission

NWGN Architecture and Key Technologies

JGN 2 JGN2+ JGN 3

Funding for Research Projects in Univ. and/or Industry

AKARI Project

Research

Testbed

Funding

- a small light in the dark pointing to the future -

Designing new generation network architecture

- pick up techniques for NWGN- integrate & simplify them under the clean slate design

concept for NWGN

15

NWGN Architecture Study in AKARI ProjectConnectionless Datagram Packet

Combination of Packet and Circuit Switched Networking

Identification & Location Separate Structure

Naming & Discovery New Scheme should be needed

Layered Architecture Cross-layered Architecture

Mobile Networking PDMA (Packet Division Multiple

Access)

Overlay network Overlay testbed over JGN2

AAA Function

Autonomous/Self-organization mechanism

16

Optical Packet & Path Combination Architecture

OPS

OCS

m1λ

n1λ

Control/D

ataD

ata

Look-up

Forwarding table

delaydelay

RE

buffer

m2λ

n2λ

link

parallelwave transmission

Assumptions:Packet loss due to small buffer sizeOCS for guaranteed services(current buffer size by NICT = 31 p at 10Gbps)

Questions:OPS: Label Swapping? at L2OCS: GMPLS?

λc d c d…

* to avoid too short packet length

Hirabaru & Harai2006-10-19Akari meeting10GHz? 1Gbps

100GHz? 10Gbps200GHz? 40Gbps

17

All-optical Terabit-class LAN• Access-to-backbone seamless

networking• Access-to-backbone seamless

networking

WAN/MAN

TerabitTerabit--class

classoptical optical LANLAN

TerabitTerabit--class

classoptical optical LANLAN

Opt. IFOpt. IF

Multi-gigabit streaming・Dynamic multi-lane trans.

Ether-frame agrregation・Agrregation sw interface・Agrregation sw engine

>100Gbps transmission・100Gb/s Tx & Rx・Dispersion tolerance

Seamless networking・Dynamic λ/λ-band ・Signalling

NG Ethernet protocol・Carrier-class network mange.・Standardization activities

User

User User

User

Megabyte-frame switching・Megabyte buffering・MAC protocol

Opt. IFOpt. IF Opt. IFOpt. IF

Opt. IFOpt. IF

Dynamic Light Path Experiment over JGN IIWorld first experiment to transfer non-compressed 4K digital cinema contents over GMPLS controlled dynamic end-to-end optical path networks

World first experiment to transfer non-compressed 4K digital cinema contents over GMPLS controlled dynamic end-to-end optical path networks

18Tokyo 2

Tokyo 1

JGNⅡ

4K Camera4K-GW 4K Projector4K-GW

Sendai conference site

4K CinemaServer

4K-GW

NTT MusashinoR&DC

Osaka

GMPLS

GMPLS

GMPLS Signaling

Optical path set up

previously

Switch Wavelength

path by GMPLS

OXCOXC

OXC January,2006

Keio DMC

19

可動式コラムによる空間の自由なレ

遠隔会議

研究用超高速ネットワークJGN2

Copyright © Morikawa Laboratory / Ubila Project / Interior Design: Hiroshi Shoji Architect & Associates / Photo: Masa

Ubila Akihabara Ubiquitous Network Test Room・ユビキタスネットワーク技術の実証実験空間

・ユビキタスコラムシステム

可動式の中空柱の設置場所を変更することで、空間を自由にレイアウト可能

センサやアクチュエータの装着や各種ケーブルの配線が容易に可能

所在地:東京都千代田区外神田1-18秋葉原ダイビル13F 1303

問い合わせ先:東京大学 森川研究室電話:04-7136-3897メール:akihabara@mlab.k.u-tok

一般公開:2006年08月29日に開催.今後も月1回のペースで開催予定

20

Context-aware serviceApplications of Sensor Data

Bright

Temp

UV

Humid

Pre-process & feature extraction

Clustering

HumidityTemperatu

reAlcohol

BrightnessUV

Sensor Array

Acceleration sensor

standing

walking

21

Overlay Network• Role of overlay

– Testbed for distributed applications (general view)– Testbed for new architecture (general view)– “Infrastructure” enabling highly flexible service

composition and on-demand setup of virtual networks in accordance with users’ needs

• Key technologies– Control plane integrating underlay and overlay– Interoperability

• NICT’s activities– Core Project

• JGNII Overlay Testbed– PlanetLab Japan

Integration with mobile/wireless

Service composition

Interoperability

Integration with photonic network

22

Sendai

Tsukuba

Tokyo

NaganoKanazawa

Nagoya

Osaka Keihanna

Kochi

Okayama

Kitakyushu

Fukuoka

Sapporo

USAChicago

Kyutech

Hiroshima U.

Kochi-techOsaka U.

• 50 PCs• Multi-home connectivity

– SINET, APAN, JGNII L3,…• Future plans

– Wireless network integration– Photonic network integration

NICT Koganei

NICT Otemachi

U. Tokyo

Tohoku U.

Sapporo Medical U.

JGN II Overlay Testbed

23

Conclusion• NXGN is now being deployed, standardized, and

invested toward the service start in 2007.

• NWGN is in the research phase. Various Projects from underlay networking to applications

MIC is making a new report on a policy for future network research projects which Japanese Government should supports.

All Japan Forum for future network research will be established soon for global collaboration.

24

Current Photonic Network R&D supported by NICT

All-optical transport(1996〜2005)

All-optical transport(1996〜2005)

Photonic node enabling broadband access(2000〜2005)

Photonic node enabling broadband access(2000〜2005)

Optical burst switching network(2001〜2005)

Optical burst switching network(2001〜2005)

Control plane for terabit-class network(2001〜2005)

Control plane for terabit-class network(2001〜2005)

PHASE I

Photonic node with multi-granularityswitching capability(2005〜2009 )

Photonic node with multi-granularityswitching capability(2005〜2009 )

λ Access(2006〜2010 )λ Access(2006〜2010 )

λ Utility(2005〜2009 )λ Utility(2005〜2009 )

Photonic RAM(2005〜2009 )Photonic RAM(2005〜2009 )

PHASE II

25NICT R & DNICT R & D

26

Road Map of Photonic Networks

P-to-P WDMTransmission

OADM Ring NW

OADM : Optical Add/Drop MultiplexerOXC : Optical Cross-connect

Optical Packet Switching NW

OXC

OADM

WDM

WDM

Dyn

amic

Con

trol

of W

avel

engt

hH

our

〜Day

〜Year

msec

〜sec

Packet / B

urst

Optical MPLS NW(Distributed Control)

OXC Full-mesh NW (Centralized Control)

2001 2005 2010〜Year

~Se

vera

l 100

Gb/

s1T

~10

Tb/s

>10

Tb/s

λ1 λ2

λ3 λ2

λ1 λ3

/ Stream

Min

.

Stat

ic W

avel

engt

hO

pera

tion

Ban

dwid

th C

ontr

olU

sin

g P

hot

onic

Lab

els

WDMOptical Burst Switching NW

Optical MPLS Router

OpticalBurst Switch

〜msecOptical IP

Router

Government Funded Projects

NICT Project

Commercially introduced

27

Optical Packet Routing• Optical Packet Switching with optical label

01

00

10

0001

10

00

00

01

01

10

10

A

B

B A

B A

B A 10 10 01

B A 10 10 01

B A 10 10 01

エッジネットワーク

コアネットワーク

エッジネットワーク

宛先NW: X経由パス: B,C,D中継ポート: 01,10,10出力リンク: 01

X

ヘッダ解析部

p ビットn’ ビット

先頭からn’ビットを読み飛ばす,その次のpビットのみ解析し転送

先ポートを決定

n ビット

p ビット

(複製)

パケット開始を認識するためのプリアンブル

次ノードにおける経路情報の読み出し位置

n’ ビット

スイッチング部

p ビット遅延

ペイロード経路情報廃棄領域

n ビットn’ ビット

(プリアンブル)(経路情報+ペイロード)経路情報レコード

28

100Tbps-Class Photonic Node

• Nano-second switching capability for optical burst handling• Multiple granularity switching node up to waveband for throughput expansion• Architecture and networking of photonic NW with multiple switching granularity

100Tbps-Class Photonic Node

• Nano-second switching capability for optical burst handling• Multiple granularity switching node up to waveband for throughput expansion• Architecture and networking of photonic NW with multiple switching granularity

Grouped

wavele

ngth

path

Wavelength path

100 Tbps Class

photonic routerOptical sw with multiple granularity

WavelengthSW

Waveband SW

PAD

WDM

Architecture and networking of photonic NW with multiple granularity nodes

Grouped wavelengthpath network

Nano-second optical switching

WDM

Grouped wavelength (wave-band) path switching node

PAD: Payload Assembly Disassembly

IP/MPLS router

29

Optical RAM for all-optical packet switchingOptoelectricpacket router

Electric router All-optical packet routerCisco CRS-1

1000 kW80 shelves

Figu

re o

f Mer

it

1

2005 2010 2015

Power consumption

Data transparency

Size

13 kW10 shelves

3 kW2 shelves

0

Pwr consumption of telecom:7.4億teraWh, Growth rate : +5%/yr. 1/300

1/40

Scheduler

Buffer SwitchLabelProc. Photonic crystal bit memory

Sensor, RFID

Integration of Real Worldand Virtual World

Ubiquitous Society will be established on the integrated world.

Virtual World

Real World

Data Service

Network

Integrated

World

30

31

e - Coaching

Ex.Cold weather:

Let’s warm up for 10 minutesLow pulse rate::

Try harder, bring your pace upWalking form:

Watch your motion, keep it steady

PC

Dial

SensorSpeaher

32

2K vs 4K K : 1K=1024 Pixel2K=20484K=4096

=1920×1080

テレビ

【テレビの画素数】

=720×483

テレビ(ハイビジョン放送)

【デジタルシネマの画素数】

=2048×1080(2K)

=4096×2160(4K)

30 frames/s Interlace 24 frames/s Progressive

Japan USA

LA

SeattleTokyo

YokosukaOsaka

Burbank

Production StudioCinema Theater

Local Distribution Center

Global Distribution

Center

CompressionEncryptionKey Center

1Gb/s IP

Link

Structure of the 4K Pure Cinema Trial 33

Source: NTT

34

“4K Pure Cinema” Prototype In-Theater System

(In the projection room of VIRGIN TOHO CINEMAS)

4K Projector

SecureMedia Box

(SMB)

TheaterControl Box

(TCB)

Corpse BrideHarry Potter 4V for VendettaDaVinci Code

PoseidenMission

Impossible 3+

Tokyo Film Festival

Batman BeginsStealth

Source: NTT

35

World first experiment:Switch of non-compressed 4K image

contents over wavelength paths• IP streaming image from Keio Unv.

– 4KCamera(30fps) shooting

• IP Streaming image from NTT R&D Center– 4K digital cinema contents(24fps)

JGN2 Symposium in Sendai, January 2006

36

OptIPuter 100 MegaPixel Displays

55-Panel Display 100 Megapixels

30 x 10GE interfaces1/3 Tera bit/sec

Driven by 30 unit Cluster of 64 bit Dual Opterons

60 TB Disk

Linked to OptIPuter

Working with NASA ARC HyperwallTeam to Unify Software

Source: Jason Leigh, Tom DeFanti, EVL@UIC

37

World First 4K Digital Cinema Prototype SystemVertical scan lines 2000 LinesHorizontal pixels 4000 Pixels(4K)

Developed in 2001

D-ILA 4K Projector

JPEG2000 Real Time Decoder

Source: NTT Labs.

38

Distant lecture showing the Gutenberg Bible with the 4K digital camera

iGrid2005 held on September 26, 2005

Keio University

In Tokyo to UC

San Diego

Gutenberg Bible

4K digital camera

39Combined 4K image of a car-race game using 4 PS3 game machines

40Network Structure of a car-race game with 4 PS3

41

GLIF:Global Lambda Integrated Facility