No Slide Title - LTH4.1_4.10).pdfIE Exercise 4.1 Solution 2. Phase current ripple, at positive or...

Post on 04-Nov-2019

3 views 0 download

transcript

IE

Exercise 4.1

L,R

UD

iD

i

+ u -

+ e

-

C

Buck converter UD=300 V e=100 V L=2 mH R=0 ohm Fs=3.33 kHz iavg=10 A

P1 P2 P3 P4

Task Determine the voltages and currents and the powers p1, p2, p3 and p4 Calculation steps 1. Duty cycle 2. Phase current ripple, at positive or negative current slope. Max and min current 3. Phase current graph, phase voltage graph and dclink current graph 4. Average current and average voltage at p1, p2, p3 and p4 5. Power at p1, p2, p3 and p4

IE

Exercise 4.1 Solution 1. Duty cycle

33.0300100

1000100

_

_

===

=+=⋅+=

d

avgphasecycle

avgavgphase

UU

Duty

ViReU

IE

Exercise 4.1 Solution 2. Phase current ripple, at positive or negative current

slope. Min and Max current

( ) ( )

AIIIAIII

ADutyTL

eUI

currentandrippleCurrent

rippleavg

rippleavg

cycleperd

ripple

155.0

55.0

1033.00003.0002.0

100300minmax,.2

max

min

=⋅+=

=⋅−=

=⋅⋅−

=⋅⋅−

=

IE

Exercise 4.1 Solution 3. Phase current graph, phase voltage graph and dclink

current graph The modulation =1 during 33% of the period time(the duty cycle), and =0 the rest of the time. The phase voltage = the modulation times the UD. The phase current increases from 5 A to 10 A while the modulation =1, and returns from 15 A back to 5 A when the modulation =0. The dclink current = the phase current times the modulation .

IE

Exercise 4.1 Solution 4. Average current and average voltage at p1, p2, p3 and p4

=⋅=

=⋅=

=⋅==⋅=

=

==

=⋅=

==

=

=⋅==

=

=⋅==

kWIePPowerkWIUPPower

kWIUPPowerkWIUPPower

PandPPPatPowerVevoltagetCons

AIIcurrentlinkdcAveragePAt

VUcycledutyUvoltageAverageAIIcurrentlinkdcAverage

PAt

VUvoltagetConsAIcycledutyIIcurrentlinkdcAverage

PAt

VUvoltagetConsAIcycledutyIIcurrenttCons

PAt

avg

avgavg

avgd

constd

currentphaseavgavg

Davg

currentphaseavgavg

D

currentphaseavgcurrentdclinkavgavg

D

currentphaseavgcurrentdclinkavgconst

1

1

11

,,.5100tan

10

100

10

300tan

33.3

300tan

33.3tan

44

333

22

11

4321

__44

3

__33

____22

____11

IE

Exercise 4.1 Solution 5. Power at p1, p2, p3 and p4

=⋅=

=⋅=

=⋅⋅=

=⋅⋅=

kWIePPowerkWIUPPower

kWDutyIUPPowerkWDutyIUPPower

avg

avgavg

cycleavgd

cycleavgd

1

1

1

1

4

3

2

1

IE

Exercise 4.2

L,R

UD

iD

i

+ u -

+ e

-

C

Buck converter UD=300 V e=100 V R=1 ohm L=large Fs=3.33 kHz iavg=10 A P1 P2 P3

Task Determine the voltages and currents and the powers p1, p2 and p3 Calculation steps 1. Avg phase voltage 2. Duty cycle 3. Phase current. Ripple and min and max current 4. Phase current graph, phase voltage graph and dclink current graph 5. Average current and average voltage at p1, p2 and p3 6. Power at p1, p2 and p3

IE

Exercise 4.2 Solution 1. Avg phase voltage

ViReU avgavgphase 110101100_ =⋅+=⋅+=

IE

Exercise 4.2 Solution 2. Duty cycle

37.0300110_ ===

d

avgphasecycle U

UDuty

IE

Exercise 4.2 Solution 3. Phase current. Ripple and min and max current

( )

AIIAII

ADutyF

eiRUI

avg

avg

cycles

avgdripple

10

10

0.01

max

min

==

==

=⋅⋅∞

−⋅−=

IE

Exercise 4.2 Solution 4. Phase current graph, phase voltage graph and dclink

current graph

( ) { } AlinestraightahighisLtI phase 10, ==

IE

Exercise 4.2 Solution 5. Average current and average voltage at p1, p2 and p3

=

=

=

=

=

=⋅=

VU

VU

VU

AI

AI

AAcycledutyI

Pavg

Pavg

Pavg

Pavg

Pavg

Pavg

100

110

300

10

10

7.310

3

2

1

3

2

1

_

_

_

_

_

_

IE

Exercise 4.2cont’d Solution 6. Power at p1, p2 and p3

=⋅=⋅=

=⋅=⋅=

=⋅=⋅=

kWIePkWIUP

kWIUP

avgp

avgavgphasep

avgdp

110100

1.110110

1.17.3300

3

_2

1

IE

Exercise 4.3 Boost converter UD=300 V e=100 V R=1 ohm L=large Fs=3.33 kHz iavg=10 A

L,R

UD

iD

i

+ u -

+ e

-

C

P1 P2 P3

Task Determine the voltages and currents and the powers p1, p2 and p3 Calculation steps 1. Avg phase voltage 2. Duty cycle 3. Phase current. Ripple and min and max current 4. Phase current graph, phase voltage graph and dclink current graph 5. Average current and average voltage at p1, p2 and p3 6. Power at p1, p2 and p3

IE

Exercise 4.3 Solution 1. Avg phase voltage

ViReU avgavgphase 90101100_ =⋅−=⋅−=

IE

Exercise 4.3 Solution 2. Duty cycle

30.030090_ ===

d

avgphasecycle U

UDuty

IE

Exercise 4.3 Solution 3. Phase current. Ripple and min and max current

( )

=⋅+=

=⋅−=

=⋅⋅∞

−⋅+=

AIIIAIII

ADutyF

eiRUI

rippleavg

rippleavg

cycles

avgdripple

105.0

105.0

0.01

max

min

IE

Exercise 4.3 Solution 4. Phase current graph, phase voltage graph and dclink

current graph

IE

Exercise 4.3 Solution 5. Average current and average voltage at p1, p2 and p3

=

=

=

=

=

=⋅=

VU

VU

VU

AI

AI

AAcycledutyI

Pavg

Pavg

Pavg

Pavg

Pavg

Pavg

100

90

300

10

10

0.310

3

2

1

3

2

1

_

_

_

_

_

_

IE

Exercise 4.3 Solution 6. Power at p1, p2 and p3

=⋅=⋅=

=⋅=⋅=

=⋅⋅=⋅⋅=

kWIePkWIUP

kWDutyIUP

avgp

avgavgp

cycleavgdp

110100

9.01090

9.03.010300

3

2

1

IE

Exercise 4.4 Boost converter UD=300 V e=100 V R=0 ohm L=2 mH Fs=3.33 kHz imax=5 A

Calculation steps 1. Time for current to rise from 0 to 5 A 2. Time for current to fall from 5 back to 0 A 3. Phase voltage when thyristor is off and current =0 4. Phase current, Phase voltage and dclink current graph 5. Average current and average voltage at p1, p2 and p3 6. Power at p1, p2 and p3

L,R

UD

iD

i

+ u -

+ e

-

C

P1 P2 P3

IE

Exercise 4.4 Solution 1. Time for current to rise from 0 to 5 A

sieLT onthyristor µ1005

100002.0

_ =⋅=∆⋅=

IE

Exercise 4.4 Solution 2. Time for current to fall from 5 back to 0 A

( ) sieU

LTd

offthyristor µ505200002.0

_ =⋅=∆⋅−

=

IE

Exercise 4.4 Solution 3. Phase voltage when thyristor is off current =0

When the current =0 the diode is not conducting, and as the thyristor is off the phase voltage is ”floating” and there is no voltage drop over the inductor. Thus, the phase voltage = 100 V

IE

Exercise 4.4 Solution 4. Phase current, Phase voltage and dclink current graph

IE

Exercise 4.4 Solution 5. Average current and average voltage at p1, p2 and p3

( )( )

=

=⋅⋅

=

=⋅⋅

=

==

=−−⋅+⋅+⋅

=

==

23

2

1

3

2

1

_

_

_

_

_

_

25.1300

12

1505

4167.0300

12

505

100

100300

10050300100100050300

300

PPavg

Pavg

Pavg

Pavg

Pavg

dPavg

II

As

sI

As

sI

VeU

Vs

sssU

VUU

µµ

µµ

µµµµ

IE

Exercise 4.4 Solution 6. Power at p1, p2 and p3

=⋅=⋅=

=⋅=⋅=

=⋅=⋅=

WIeP

WIUP

WIUP

PavgP

PavgPavgP

PavgdP

12525.1100

12525.1100

1254167.0300

33

222

11

_

__

_

IE

Exercise 4.5

L,R

UD

iD

i

+ u -

+ e

-

C

Buck converter UD=300 V e=100 V R=0 ohm L=2 mH Fs=3.33 kHz imax=5 A P1 P2 P3

Calculation steps 1. Time for current to rise from 0 to 5 A 2. Time for current to fall from 5 back to 0 A 3. Phase voltage when thyristor is off and current =0 4. Phase current, Phase voltage and dclink current graph 5. Average current and average voltage at p1, p2 and p3 6. Power at p1, p2 and p3

IE

Exercise 4.5 Solution 1. Time for current to rise from 0 to 5 A

( ) sieLT onthyristor µ505

100300002.0

_ =⋅−

=∆⋅=

IE

Exercise 4.5 Solution 2. Time for current to fall from 5 back to 0 A

sieLT offthyristor µ1005

100002.0

_ =⋅=∆⋅=

IE

Exercise 4.5 Solution 3. Phase voltage when thyristor is off current =0

When the current =0 the diode is not conducting, and as the thyristor is off the phase voltage is ”floating” and there is no voltage drop over the inductor. Thus, the phase voltage = 100 V

IE

Exercise 4.5 Solution 4. Phase current, Phase voltage and dclink current graph

IE

Exercise 4.5 Solution 5. Average current and average voltage at p1, p2 and p3

( )( )

=

=⋅⋅

=

=⋅⋅

=

==

=−−⋅+⋅+⋅

=

==

23

2

1

3

2

1

_

_

_

_

_

_

25.1300

12

1505

4167.0300

12

505

100

100300

10050300100100050300

300

PPavg

Pavg

Pavg

Pavg

Pavg

dPavg

II

As

sI

As

sI

VeU

Vs

sssU

VUU

µµ

µµ

µµµµ

IE

Exercise 4.5 Solution 6. Power at p1, p2 and p3

=⋅=⋅=

=⋅=⋅=

=⋅=⋅=

WIeP

WIUP

WIUP

PavgP

PavgPavgP

PavgdP

12525.1100

12525.1100

1254167.0300

33

222

11

_

__

_

IE

Exercise 4.6

L,R

UD

iD

i e

+ - C

4QC bridge conv UD=300 V e=100 V R=0 ohm L=2 mH Fs=3.333 kHz iavg=10 A Phase leg 1 Phase leg 2

P1 P2 P3

Calculation steps 1. Duty cycle 2. Avg phase voltage 3. Phase current. Ripple and min and max current 4. Phase current graph, phase voltage graph and dclink current graph 5. Average current and average voltage at p1, p2 and p3 6. Power at p1, p2 and p3

IE

Exercise 4.6 Solution 1. Duty cycle

( )

=−=

=+

=+

=

−⋅⋅

=⋅−−⋅=⋅−⋅=

−=

33.01

67.023001001

2

1

12

1

1

1_2_

1_

1_

1_1_2_1_

2_1_

cyclecycle

dcycle

cycled

cycledcycledcycledcycled

cyclecycle

dutyduty

Ue

duty

dutyUdutyUdutyUdutyUdutyUe

Dutyduty

IE

Exercise 4.6 Solution 2. Avg phase voltage

=⋅=⋅=

=⋅=⋅=

VdutyUUVdutyUU

cycledavgphase

cycledavgphase

10033.0300

20067.0300

2__2_

1__1_

IE

Exercise 4.6 Solution 3. Phase current. Ripple and min and max current

=⋅+=

=⋅−=

=⋅−

=∆⋅−

=∆=

−−−

−−

=−=

−−

−=

−−

−=

AIIIAIII

AstL

eUII

ssVs

sVs

VVV

ssV

sV

ssV

sV

rippleavg

rippleavg

bridgeripple

phasephasebridge

phase

phase

5.125.0

5.75.0

550002.0

100300

30025002502003002001000

100503005000

3002000200100300

10000

300250025050300

5000

max

min

2_1_

2_

1_

µ

µµµ

µµ

µµ

µ

µµ

µ

IE

Exercise 4.6 Solution 4. Phase current graph, phase voltage graph and dclink

current graph

IE

Exercise 4.6 Solution 5. Average current and average voltage at p1, p2 and p3

=

=

=

=

=

=⋅−=

VU

VU

VU

AI

AI

AAdutydutyI

Pavg

Pavg

Pavg

Pavg

Pavg

cyclecyclePavg

100

200

300

10

10

3.310

3

2

1

3

2

1

_

_

_

_

_

2_1__

IE

Exercise 4.6cont’d Solution 6. Power at p1, p2 and p3

( )

=⋅=⋅=

=⋅−=⋅=

=⋅=⋅=

kWIUP

kWIUP

kWIUP

pavgpavgp

pavgpavgp

pavgpavgp

0.110100

0.110100200

0.133.3300

33

22

11

__3

__2

__1

IE

Exercise 4.7a Solution both flanks

Ud

T T/2

τ+

τ−

{ }

TYY

TYY

UTYY d

⋅⋅=

⋅−⋅=

⋅⋅==

−−

++

5.0

5.01

5.0

0

0

max0

τ

τ

See figures 2.4d and 2.5c in Power Electronics

ref

IE

Exercise 4.7b Solution positive flank

Ud

T T/2

τ+

{ }

−⋅=

⋅==

++ T

YY

UTYY d

τ10

max0

See figures 2.4b and 2.5a in Power Electronics

ref

IE

Exercise 4.7c Solution negative flank

Ud

T T/2

τ−

{ }

TYY

UTYY d

−− ⋅=

⋅==τ

0

max0

See figures 2.4c and 2.5b in Power Electronics

ref

IE

Exercise 4.9 Solution both flanks

{ }

TkYY

TkYY

flankNegativeflankPositiveT

YY

TYY

kYkYY

TYY

TYY

Y

Yk

VwithelectronictheinrepresentsYUTYY

ymel

ymel

ymely

vel

m

y

d

⋅⋅=

⋅−⋅=

⋅⋅=

⋅−⋅=

=⋅⇒=

⋅⋅=

⋅−⋅=

=

=

⋅⋅==

−+

−−

++

−−

++

5.05.01

5.0

5.01

5.0

5.01

10

105.0

00

0

0

0

0

0

0

max0

ττ

τ

τ

τ

τ

0

T 2T

T/2 3T/2 T 2T

Control on positive flank Control on both flank

IE

Exercise 4.10 Solution negative flank

IE

Exercise 4.10a Solution positive flank

This image cannot currently be displayed.

Vdc /2

Vref/2

0

1

-Vdc /2

-Vref/2

0

1

Phase 1

0

Phase 2

Phase 1- Phase 2

IE

Exercise 4.10b Solution negative flank

This image cannot currently be displayed.

Vdc /2

Vref/2

0

1

-Vdc /2

-Vref/2

0

1

Phase 1

0

Phase 2

Phase 1- Phase 2

IE

Exercise 4.29 A three phase grid with the voltages uR, uS, uT is loaded by sinusoidal currents

iR, iS, iT and the load angle f.

A three phase grid with the voltages uR, uS, uT is loaded by sinusoidal currents iR, iS, iT and the load angle f.

a) Derive the expression for the voltage vector b) Derive the expression for the current vector c) Determine the active power p(t)! Do the same derivations as above with the vectors expressed in the flux reference frame!

IE

Exercise 4.29 ( ) ( )

( )

( )

−−⋅=

−−⋅=

−⋅=

−⋅=

−⋅=

⋅=

−⋅+⋅=

⋅+⋅+⋅=

⋅⋅

ϕπω

ϕπω

ϕω

πω

πω

ω

ππ

αβ

34cosˆ

32cosˆ

cosˆ

34cosˆ

32cosˆ

cosˆ

40.2,38.22

123

23 3

43

2

tii

tii

tii

tuu

tuu

tuu

uuueueuuu

T

S

R

T

S

R

TSR

j

T

j

SR

IE

4.29 Solution a)

( )

( )

+

+⋅

+

+

+⋅⋅=

=

−⋅+⋅

−⋅+⋅⋅=

+

⋅=

−⋅=

+

⋅=

−⋅=

+⋅=⋅=

+−−+−−−

+−−

+−−

343

43

4

323

23

2

34

32

34

34

32

32

222ˆ

23

34cosˆ

32cosˆcosˆ

23

34cosˆ

32cosˆ

2ˆcosˆ

Re

ππωπωπ

πωπωωω

ππ

πωπω

πωπω

ωω

πωπωω

πω

πω

ω

jjtjjtj

jjtjjtjtjtj

jj

jtjjtj

T

jtjjtj

S

tjtj

R

eeeeeeeeu

etuetutu

eeetuu

eeetuu

eeetuu

write

IE

4.29 Solution a)

,ˆ23ˆ

2233

23

21

23

2113ˆ

22313ˆ

223

ˆ22

3

38

34

34

34

34

34

32

32

32

32

tjtj

tjtjjjtjtj

jjtjjjtjjjtjjjtjtjtj

eeeu

eeueeeeu

eeeeeeu

ωω

ωωππ

ωω

ππωππωππωππωωω

⋅⋅=⋅⋅=

=

+−−−⋅+⋅⋅⋅=

++⋅+⋅⋅⋅=

=

+++++⋅⋅=

−−

++−+−++−+−−

IE

4.29 Solution a) ( )

( )

,ˆ23

32

23

23

23ˆ

23

21

23

2113

21ˆ13ˆ

2

222ˆ

34cosˆ

32cosˆcosˆ

34cosˆ

32cosˆ

2ˆcosˆ

38

34

343

43

4

323

23

2

34

32

34

34

32

32

34

32

tjtj

tjtjjjtjtj

jjtjjtj

jjtjjtjtjtj

jj

jtjjtj

T

jtjjtj

S

tjtj

R

j

c

j

ba

eeKKeKe

eeKeeeeeeK

eeeeeeeeeK

eteeteteK

eeetuu

eeetuu

eeetuu

eeeeeKe

ωω

ωωππ

ωω

ππωπωπ

πωπωωω

ππ

πωπω

πωπω

ωω

ππαβ

πωπωω

πω

πω

ω

⋅⋅=

=⇒=⋅=⋅⋅⋅=

=

+−−−⋅+⋅⋅⋅⋅=

++⋅+⋅⋅⋅=

=

+

+⋅

+

+

+⋅⋅=

=

−⋅+⋅

−⋅+⋅⋅=

=

+

⋅=

−⋅=

+

⋅=

−⋅=

+⋅=⋅=

=

⋅+⋅+⋅=

−−

+−−+−−−

+−−

+−−