Pseudo-likelihood estimation for non hereditary Gibbs ... › ~lavancie › slides ›...

Post on 27-Jan-2021

1 views 0 download

transcript

  • Introduction Definitions Campbell Estimation Simulations

    Pseudo-likelihood estimation for nonhereditary Gibbs point processes

    Frédéric Lavancier,Laboratoire Jean Leray, Nantes, France.

    Joint work withDavid Dereudre,

    LAMAV, Valenciennes, France.

    7th World Congress in Probability and StatisticsSingapore, July 14-19 2008

  • Introduction Definitions Campbell Estimation Simulations

    1 Introduction

  • Introduction Definitions Campbell Estimation Simulations

    Introduction

    SettingPseudo-likelihood estimation for Gibbs point processes.In the hereditary case : Besag (1975), Jensen and Moller(1991), Jensen and Kunsch (1994), Mase (1995), Billiot,Coeurjolly and Drouilhet (2008)Our aim : generalization to the non hereditary case.Motivation : non hereditary hardcore processes

    Our workCharacteristics of the non-hereditary interactions.A new equilibrium Campbell equation.Consistency of the Pseudo-likelihood estimator.Some simulations.

  • Introduction Definitions Campbell Estimation Simulations

    Introduction

    SettingPseudo-likelihood estimation for Gibbs point processes.In the hereditary case : Besag (1975), Jensen and Moller(1991), Jensen and Kunsch (1994), Mase (1995), Billiot,Coeurjolly and Drouilhet (2008)Our aim : generalization to the non hereditary case.Motivation : non hereditary hardcore processes

    Our workCharacteristics of the non-hereditary interactions.A new equilibrium Campbell equation.Consistency of the Pseudo-likelihood estimator.Some simulations.

  • Introduction Definitions Campbell Estimation Simulations

    2 Gibbs measure and hereditary interactions

  • Introduction Definitions Campbell Estimation Simulations

    Notations

    γ denotes a point configuration on Rd (i.e. aninteger-valued measure)δx denotes the Dirac measure at x.For Λ a subset in Rd, we note γΛ the projection of γ on Λ :

    γΛ =∑x∈γ∩Λ

    δx.

    M(Rd) = { γ }π is the Poisson process on Rd.πΛ is the Poisson process on Λ.λ is the Lebesgue measure on Rd.

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs measures

    (HΛ)Λ denotes a general family of energy functions :

    HΛ : (γΛ, γΛc) 7−→ HΛ(γΛ|γΛc)

    There are some minimal conditions on (HΛ)Λ.

    DefinitionA probability measure µ is a Gibbs measure if for everybounded Λ and for µ almost every γ

    µ(dγΛ|γΛc) ∝ e−HΛ(γΛ|γΛc )πΛ(dγΛ).

    If HΛ(γ) = +∞ then γ is forbidden µ a.s.

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs measures

    (HΛ)Λ denotes a general family of energy functions :

    HΛ : (γΛ, γΛc) 7−→ HΛ(γΛ|γΛc)

    There are some minimal conditions on (HΛ)Λ.

    DefinitionA probability measure µ is a Gibbs measure if for everybounded Λ and for µ almost every γ

    µ(dγΛ|γΛc) ∝ e−HΛ(γΛ|γΛc )πΛ(dγΛ).

    If HΛ(γ) = +∞ then γ is forbidden µ a.s.

  • Introduction Definitions Campbell Estimation Simulations

    Hereditary

    DefinitionThe family of energies (HΛ)Λ is said hereditary if for every Λ,every γ ∈M(Rd) and every x ∈ Λ

    HΛ(γ) = +∞⇒ HΛ(γ + δx) = +∞.

    γ is forbidden ⇒ γ + δx is forbiddenγ + δx is allowed ⇒ γ is allowed

    It is a standard assumption in classical statistical mechanics.Example : The classical hard ball model is hereditary.

  • Introduction Definitions Campbell Estimation Simulations

    Hereditary

    DefinitionThe family of energies (HΛ)Λ is said hereditary if for every Λ,every γ ∈M(Rd) and every x ∈ Λ

    HΛ(γ) = +∞⇒ HΛ(γ + δx) = +∞.

    γ is forbidden ⇒ γ + δx is forbidden

    γ + δx is allowed ⇒ γ is allowed

    It is a standard assumption in classical statistical mechanics.Example : The classical hard ball model is hereditary.

  • Introduction Definitions Campbell Estimation Simulations

    Hereditary

    DefinitionThe family of energies (HΛ)Λ is said hereditary if for every Λ,every γ ∈M(Rd) and every x ∈ Λ

    HΛ(γ) = +∞⇒ HΛ(γ + δx) = +∞.

    γ is forbidden ⇒ γ + δx is forbiddenγ + δx is allowed ⇒ γ is allowed

    It is a standard assumption in classical statistical mechanics.Example : The classical hard ball model is hereditary.

  • Introduction Definitions Campbell Estimation Simulations

    Hereditary

    DefinitionThe family of energies (HΛ)Λ is said hereditary if for every Λ,every γ ∈M(Rd) and every x ∈ Λ

    HΛ(γ) = +∞⇒ HΛ(γ + δx) = +∞.

    γ is forbidden ⇒ γ + δx is forbiddenγ + δx is allowed ⇒ γ is allowed

    It is a standard assumption in classical statistical mechanics.Example : The classical hard ball model is hereditary.

  • Introduction Definitions Campbell Estimation Simulations

    Non-hereditary

    We are interested in the non hereditary case.

    Examples :

    - If the interaction imposes clusters.

    HΛ(γ) = +∞ HΛ(γ + δx) < +∞

    - In Dereudre (2007), the author studies random GibbsVoronoi tesselations with geometric hardcore interactions.

  • Introduction Definitions Campbell Estimation Simulations

    Non-hereditary

    We are interested in the non hereditary case.Examples :

    - If the interaction imposes clusters.

    HΛ(γ) = +∞ HΛ(γ + δx) < +∞

    - In Dereudre (2007), the author studies random GibbsVoronoi tesselations with geometric hardcore interactions.

  • Introduction Definitions Campbell Estimation Simulations

    Non-hereditary

    We are interested in the non hereditary case.Examples :

    - If the interaction imposes clusters.

    HΛ(γ) = +∞ HΛ(γ + δx) < +∞

    - In Dereudre (2007), the author studies random GibbsVoronoi tesselations with geometric hardcore interactions.

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs Voronoi Tessellations.

    HΛ(γ) =∑

    {ver(x1,x2),(x1,x2)∈ Voronoi(γ)}

    V (ver(x1, x2)),

    where for every vertice ver(x1, x2),

    V (ver(x1, x2)) =

    {+∞ if ||x1 − x2|| > α,< +∞ otherwise.

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs Voronoi Tessellations.

    HΛ(γ) =∑

    {ver(x1,x2),(x1,x2)∈ Voronoi(γ)}

    V (ver(x1, x2)),

    where for every vertice ver(x1, x2),

    V (ver(x1, x2)) =

    {+∞ if ||x1 − x2|| > α,< +∞ otherwise.

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs Voronoi Tessellations.

    HΛ(γ) =∑

    {ver(x1,x2),(x1,x2)∈ Voronoi(γ)}

    V (ver(x1, x2)),

    where for every vertice ver(x1, x2),

    V (ver(x1, x2)) =

    {+∞ if ||x1 − x2|| > α,< +∞ otherwise.

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs Voronoi Tessellations.

    HΛ(γ) =∑

    {ver(x1,x2),(x1,x2)∈ Voronoi(γ)}

    V (ver(x1, x2)),

    where for every vertice ver(x1, x2),

    V (ver(x1, x2)) =

    {+∞ if ||x1 − x2|| > α,< +∞ otherwise.

  • Introduction Definitions Campbell Estimation Simulations

    HΛ(γ) = +∞ HΛ(γ + δx) < +∞

  • Introduction Definitions Campbell Estimation Simulations

    HΛ(γ) = +∞ HΛ(γ + δx) < +∞

  • Introduction Definitions Campbell Estimation Simulations

    3 Equilibrium equation

  • Introduction Definitions Campbell Estimation Simulations

    Nguyen-Zessin equilibrium equation

    Definition

    Let µ be a probability measure onM(Rd). The reduced Campbellmeasure C !µ is defined for all test function f from Rd ×M(Rd)into R by

    C !µ(f) = Eµ

    (∑x∈γ

    f(x, γ − δx)

    ).

    Theorem (Nguyen-Zessin (1979))

    Suppose that the energy (HΛ)Λ is hereditary. µ is a Gibbsmeasure if and only if

    C!µ(dx, dγ) = e−h(x,γ)λ⊗ µ(dx, dγ).

    where h(x, γ) = HΛ(γ + δx)−HΛ(γ).

    This theorem is not true in the non-hereditary case.

  • Introduction Definitions Campbell Estimation Simulations

    Nguyen-Zessin equilibrium equation

    Definition

    Let µ be a probability measure onM(Rd). The reduced Campbellmeasure C !µ is defined for all test function f from Rd ×M(Rd)into R by

    C !µ(f) = Eµ

    (∑x∈γ

    f(x, γ − δx)

    ).

    Theorem (Nguyen-Zessin (1979))

    Suppose that the energy (HΛ)Λ is hereditary. µ is a Gibbsmeasure if and only if

    C!µ(dx, dγ) = e−h(x,γ)λ⊗ µ(dx, dγ).

    where h(x, γ) = HΛ(γ + δx)−HΛ(γ).

    This theorem is not true in the non-hereditary case.

  • Introduction Definitions Campbell Estimation Simulations

    Removable points

    Definition

    Let γ be inM(Rd) and x be a point of γ.x is said removable from γ if

    ∃Λ such that x ∈ Λ and HΛ(γ − δx) < +∞.

    We note R(γ) the set of removable points in γ.

    DefinitionLet x in R(γ). We define the energy of x in γ − δx with thefollowing expression

    h(x, γ − δx) = HΛ(γ)−HΛ(γ − δx),

  • Introduction Definitions Campbell Estimation Simulations

    Removable points

    Definition

    Let γ be inM(Rd) and x be a point of γ.x is said removable from γ if

    ∃Λ such that x ∈ Λ and HΛ(γ − δx) < +∞.

    We note R(γ) the set of removable points in γ.

    DefinitionLet x in R(γ). We define the energy of x in γ − δx with thefollowing expression

    h(x, γ − δx) = HΛ(γ)−HΛ(γ − δx),

  • Introduction Definitions Campbell Estimation Simulations

    Equilibrium equations for non-hereditary Gibbs measures

    Theorem (Dereudre-Lavancier (2007))Let µ be a Gibbs measure,

    1Ix∈R(γ+δx)C!µ(dx, dγ) = e

    −h(x,γ)λ⊗ µ(dx, dγ). (1)

    Remark- If (HΛ)Λ is hereditary, x is always in R(γ + δx).So, (1) becomes equivalent to the Nguyen-Zessin’sequilibrium equation.

    - The equation (1) does not characterize the Gibbs measures.

  • Introduction Definitions Campbell Estimation Simulations

    Equilibrium equations for non-hereditary Gibbs measures

    Theorem (Dereudre-Lavancier (2007))Let µ be a Gibbs measure,

    1Ix∈R(γ+δx)C!µ(dx, dγ) = e

    −h(x,γ)λ⊗ µ(dx, dγ). (1)

    Remark- If (HΛ)Λ is hereditary, x is always in R(γ + δx).So, (1) becomes equivalent to the Nguyen-Zessin’sequilibrium equation.

    - The equation (1) does not characterize the Gibbs measures.

  • Introduction Definitions Campbell Estimation Simulations

    4 Pseudo-likelihood estimation

  • Introduction Definitions Campbell Estimation Simulations

    The pseudo likelihood contrast function

    Let Θ be a bounded open set in Rp.- θ in Θ : the smooth parameter of the energy.- α in R+ : the hardcore support parameter.- (Hα,θΛ )Λ : the parametric family of energies.- For x in R(γ), hα,θ(x, γ − δx) = Hα,θΛ (γ)−H

    α,θΛ (γ − δx).

    Let Λn the observation window of γ (e. g. Λn = [−n, n]d).

    DefinitionWe define the pseudo likelihood contrast function

    PLLΛn(γ, α, θ) =

    1Λn

    ∫Λn

    exp(−hα,θ(x, γ)

    )dx+

    ∑x∈Rα,θ(γ)∩Λn

    hα,θ(x, γ − δx)

    .

  • Introduction Definitions Campbell Estimation Simulations

    Estimation of both α and θ

    Let µ be a stationary Gibbs measure for the parameters α∗, θ∗.α∗ and θ∗ have to be estimated.

    DefinitionWe define for µ almost every γ

    α̂n(γ) = inf{α > 0, Hα,θΛn (γ)

  • Introduction Definitions Campbell Estimation Simulations

    Estimation of both α and θ

    Let µ be a stationary Gibbs measure for the parameters α∗, θ∗.α∗ and θ∗ have to be estimated.

    DefinitionWe define for µ almost every γ

    α̂n(γ) = inf{α > 0, Hα,θΛn (γ)

  • Introduction Definitions Campbell Estimation Simulations

    Estimation of both α and θ

    Let µ be a stationary Gibbs measure for the parameters α∗, θ∗.α∗ and θ∗ have to be estimated.

    DefinitionWe define for µ almost every γ

    α̂n(γ) = inf{α > 0, Hα,θΛn (γ)

  • Introduction Definitions Campbell Estimation Simulations

    5 Simulations

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs Voronoi Tessellations.

    Hα,θΛ (γ) =∑

    {ver(x1,x2),(x1,x2)∈ Voronoi(γ)}

    V α,θ(ver(x1, x2)),

    where for every vertice ver(x1, x2),

    V α,θ(ver(x1, x2)) =

    {+∞ if ||x1 − x2|| > αθ√

    max(V1,V2)min(V1,V2)

    − 1 otherwise,

    with Vj the volume of cell(xj).

  • Introduction Definitions Campbell Estimation Simulations

    Gibbs Voronoi Tessellations.

    Hα,θΛ (γ) =∑

    {ver(x1,x2),(x1,x2)∈ Voronoi(γ)}

    V α,θ(ver(x1, x2)),

    where for every vertice ver(x1, x2),

    V α,θ(ver(x1, x2)) =

    {+∞ if ||x1 − x2|| > αθ√

    max(V1,V2)min(V1,V2)

    − 1 otherwise,

    with Vj the volume of cell(xj).

  • Introduction Definitions Campbell Estimation Simulations

    α = 0.12, θ = 0.5 α = 0.12, θ = −0.5

  • Introduction Definitions Campbell Estimation Simulations

    α = 0.12, θ = 0.5 α = 0.12, θ = −0.5

    6/164 removable points 456/634 removable points

    α̂ = 0.119, θ̂ = 0.6 α̂ = 0.119, θ̂ = −0.49

  • Introduction Definitions Campbell Estimation Simulations

    α = 0.12, θ = 0.5 α = 0.12, θ = −0.5

    6/164 removable points 456/634 removable points

    α̂ = 0.119, θ̂ = 0.6 α̂ = 0.119, θ̂ = −0.49

  • Introduction Definitions Campbell Estimation Simulations

    Repartition of α̂n and θ̂n on 200 replicates

    α = 0.12, θ = 0.5 sd(α̂n) = 1.7 10−4 sd(θ̂n) = 0.102

    α = 0.12, θ = −0.5 sd(α̂n) = 2.3 10−4 sd(θ̂n) = 0.016

    Asymptotic normality of θ̂n ? −→ If α is known : ok.−→ Otherwise... ?

  • Introduction Definitions Campbell Estimation Simulations

    E. Bertin, J.M. Billiot, R. Drouilhet, (1999)Existence of nearest-neighbours spatial Gibbs models , Adv. Appl. Prob. (SGSA) 31, 895-909.

    J. Besag , (1975). Statistical analysis of non-lattice data, The statistician,24 192-236.

    J.-M. Billiot, , J.-F. Coeurjolly, and R. Drouilhet, (2008) Maximumpseudolikelihood estimator for exponential family models of marked Gibbspoint processes, Electronic Journal of Statistics.

    D. Dereudre , (2007) Gibbs Delaunay tessellations with geometric hardcoreconditions, to appear in J.S.P.

    D. Dereudre , F. Lavancier, (2007) Pseudo-likelihood estimation fornon-hereditary Gibbs point processes, preprint.

    J.L. Jensen and H.R. Künsch, (1994) On asymptotic normality of pseudolikelihood estimates for pairwise interaction process, Ann. Inst. Statist.Math., Vol. 46, 3 :487-7486.

    J.L. Jensen and J. Moller (1991) Pseudolikelihood for exponential familymodels of spatial point processes, Ann. Appl. Probab. 1, 445-461.

    S. Mase (1995) Consistency of maximum pseudo-likelihood estimator ofcontinuous state space Gibbsian process Ann. Appl. Probab. 5, 603-612.

    X.X. Nguyen and H. Zessin, (1979) Integral and differentialcharacterizations of the Gibbs process, Math. Nach. 88 105-115.

  • Introduction Definitions Campbell Estimation Simulations

    Random Tessellation with hardcore interaction

    Point processes with forced clustersIntro

    Introduction Gibbs measure and hereditary interactionsEquilibrium equationPseudo-likelihood estimationSimulations