purdue-2010 · 2016. 7. 28. · shapes element shapesmodeling of highly irregular particle shapes...

Post on 05-Oct-2020

2 views 0 download

transcript

!"#$%&'(&)*+#,(-."*'/&!#0.,1"*2*3*"%&'(&45-/#3-5&!"#$%&'(&)*+#,(-."*'/&!#0.,1"*2*3*"%&'(&45-/#3-5&!'*30&#0*/6&7*0.5,",&83,9,/"&:'$,3*/6!'*30&#0*/6&7*0.5,",&83,9,/"&:'$,3*/66 66 6

!"#$#%&#'(!"#$#%&#'(&)&)

;#5$#,&4,'",.</*.-3&!'.*,"%&='5>0<'1&?@A@;#5$#,&4,'",.</*.-3&!'.*,"%&='5>0<'1&?@A@

!"#$#%&#'(*+!"#$#%&#'(*+

75B&C,,/-&!#>#9-5-/D&75B&C,,/-&!#>#9-5-/D&* * 3 2* * 3 2E'F-/&G/*H,50*"%D&43-002'5'D&IJD&G!KE'F-/&G/*H,50*"%D&43-002'5'D&IJD&G!K

75B&!<5,,>-/"<&:-/$-%-9D&7-/*,3&75B&!<5,,>-/"<&:-/$-%-9D&7-/*,3&C-55'"C-55'"D&;-"5*.>&4*'5$-/'D&D&;-"5*.>&4*'5$-/'D&4,'56,&4,'56,&),.->,0),.->,0D&E'F-/&G/*H,50*"%D&43-002'5'D&IJD&G!KD&E'F-/&G/*H,50*"%D&43-002'5'D&IJD&G!K

75B&I*H,$*"-&7-075B&I*H,$*"-&7-0=,*$3*/6,5=,*$3*/6,5 K00'.*-",0D&L/.BD&M-925*$6,D&:KD&G!KK00'.*-",0D&L/.BD&M-925*$6,D&:KD&G!K

75B&K3--&NB&K0<9-F%75B&K3--&NB&K0<9-F%%%K9,5*.-/&G/*H,50*"%&*/&7#2-*D&GK8K9,5*.-/&G/*H,50*"%&*/&7#2-*D&GK8

:-%&AD&?@A@:-%&AD&?@A@

!"#$%&'

Background

Research Objectives

Shape Characterization and ReconstructionShape Characterization and Reconstruction

Discrete Element Modeling

Conclusions

()*+,-."&/,

Particle morphology governs micromechanical behavior

of granular mediaof granular media

Traditionally, 2-D DEM analyses adopted in studying

influence of particle shapes on mechanical response of

cohesionless soil and most analyses are limited to

circular or idealized shapesp

Limited knowledge available on 3-D discrete element

modeling of highly irregular particle shapesmodeling of highly irregular particle shapes

()*+,-."&/,Particle shape modeling techniques in 2-D using DEM

Circular/spherical discrete elements: Cundall and Strack (1979)

Polygonal discrete elements: Barbosa and Ghaboussi (1992)

Elli ti l di t l t Ti t l (1993)Elliptical discrete elements: Ting et al. (1993)

Overlapping discrete element cluster (ODEC): Ashmawy et al. (2003)( )

Particle shape modeling techniques in 3-D

3-D ellipsoid-based DEM - ELLIPSE3D: Lin and Ng (1997)

Polyhedron-based approach: Ghaboussi and Barbosa (1990)

3-D image-based DEM: Matsushima (2004)

!"#$%&'

Background

Research Objectives

Shape CharacterizationShape Characterization

Discrete Element Modeling

Conclusions

0'1')-*23!45'*#%6'15

To design and develop automated 3-D tomography

reconstruction algorithms applied to shape characterizationreconstruction algorithms applied to shape characterization

of sand particles

T i ll lid t th t ti th d bTo numerically validate the reconstruction method by

comparing with 3-D reconstructions obtained from multiple

projections of a single particle generated using optical and p j g p g g p

X-ray methods

2-D and 3-D discrete element modeling of particle shape2-D and 3-D discrete element modeling of particle shape

Evaluation of influence of particle shape on shear strength

f ilof soil

!"#$%&'

Background

Research Objectives

Shape Characterization and reconstructionShape Characterization and reconstruction

Discrete Element Modeling

Results

ConclusionsConclusions

7)#)38'#

7)9#.&)3(')*238)&/ :%*2%,)&37"&'38)&/

!"#$%&'

Background

Research Objectives

Shape Characterization and ReconstructionShape Characterization and Reconstruction

Discrete Element Modeling

Results

ConclusionsConclusions

0'1')-*23;-'<%1'

=>73?-.5'*#%.&13

.@3A>73?)-#%*$'13

=>73?-.5'*#%.&13.@3

B.<?.1%#'3;)-#%*$'B.<?.1%#'3A>73

C0'*.&1#-"*#%.&D

%&3<%E

!!"

##$

D

D

2

1

!!"

##$

D

D

2

1

!!"

##$

D

D

2

1 % &% & !

!"

##$

2

222

2

111

,

,

D

D

'(

'(

!!"

##$

D

D

2

1

!!"

##$

D

D

2

1

!!"

##$

D

D

2

1

!!!

)###

* ND

!

2

!!!

)###

* ND

!

2

!!!

)###

* ND

!

2 % &

% &!!!!

)####

*2

222

,

,

NNND '(

(

!

!!!

)###

* ND

!

2

!!!

)###

* ND

!

2

!!!

)###

* ND

!

2

)* )* )* N % &)* NNN ( )* N )* N )* N

A>73

7'1*-%?#.-1

=>737'1*-%?#.-13@-.<3

:%E

=>737'1*-%?#.-13@-.<3

;)-#%*$'

A7382)?'37'1*-%?#.-1? ?=73?-.5'*#%.&3@-.<3)3

?)-#%*$'(."&/)-93.@3#2'3

?)-#%*$'

F $$ / 4 / ;'-%./%* -'?-'1'&#)#%.& .@

200

250

200

250

F&>-.$$'/34."&/)-93)13)3

@"&*#%.&

;'-%./%*3-'?-'1'&#)#%.&3.@3

4."&/)-9

100

150

100

150

0 500 1000 1500 200050

0 200 400 600 80050

8'4'1#9&3)&/3('&1.&3> C"&-.$$%&,D3)3*$.1'/3."#$%&'

A7382)?'37'1*-%?#.-1? ?

The Fourier Coefficients can then be reduced using principal components analysis (PCA) to a desired set amount

200

250

100

150 GGH

1c$ "# ! D$ "

0 500 1000 1500 200050

2

3..

cc# !# !# !# !# !

1

2

DDD

$ "# !# !* )

;BI

.

nc# !# !* ) 3D# !* )

0J37"/)K3;JL)-#K37J38#.-+K3Pattern Classification

M$$%?1.%/3:./'$3@.-3N$$"1#-)#%&,3#2'3;'-@.-<)&*'3.@3#2'3I$,.-%#2<,

0 /% % O B'&#'- .@ M$$%?1.%/0)/%"13%&3O3P

Q)-%)&*'3.@3

G%-1#3

7'1*-%?#.-

B'&#'-3.@3M$$%?1.%/3

P

A>73B..-/%&)#'3.@3

7'1*-%?#.- :')&17'1*-%?#.-

0)/%"13%&3R3>

7'1*-%?#.-3:')&1

Q)-%)&*'3.@3

8'*.&/3

7'1*-%?#.-

0)/%"13%&3S3

P Q)-%)&*'3 E

T

.@3

H2%-/3

7'1*-%?#.-

9

I$,.-%#2<3)&/3;-'<%1'3Q)$%/)#%.&Q)$%/)#%.&

Q)$%/)#'1

;-'<%1'

!?#%*)$3:%*-.1*.?' !?#%*)$3H.<.,-)?293

8 #891#'<:"$#%?$'36%'U1K3:"$#%?$'3

;)-#%*$'1

:"$#%?$'36%'U1K38%&,$'3;)-#%*$'1

Q)$%/)#'1

I$,.-%#2<

O>0)93BH3891#'<

:"$#%?$'36%'U1K38%&,$'3;)-#%*$'3V:.1#3I**"-)#'W

=>73I$,'4-)%*30'*.&1#-"*#%.&3H'*2&%X"'3@.-3B.&1#-"*#%&,3A>73Q.$"<'1Q.$"<'1

Original Projections

2-D Reconstructed Slices 3-D Volume

For a set of 2-D projections, each row of pixels is treated as a set of 1-D

projections ART is performed on each set of these 1 D projections and 2projections. ART is performed on each set of these 1-D projections and 2-

D slices of the 3-D object are created. These slices are then stacked to

form the final 3-D object

I$,'4-)%*30'*.&1#-"*#%.&3H'*2&%X"', X

The following explanation of ART

is for the 2-D case, and is how one

can reconstruct a single 2-D slice

of a 3-D model, 1, 2, ,ij j iw f p i M+ +, "pn pn+1

th

jth th

ijth

i

f = constant value in the j cell

w = fractional area of the j cell intercepted by the i ray

p = the ray-sum measured with the i ray as shown in previous slide

pi

f1 f2 fn

fn+1 f2n

pi+1pi+2

i

M = the total number of rays in all projections

A B

The ith ra!"#$"%&'()"!

w f w f w f w f p- - - - +"

"

A B

C

wji $#*"()&+",-.."/"0*-0"#$"1234"2

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

31 1 32 2 33 3 3 3

N N

N N

N N

w f w f w f w f pw f w f w f w f p

w f w f w f w f p

- - - - +- - - - +

- - - - +

"

"

!

"

YJ3H)&)4'K3C;-.5'*#%.&3<'#2./3@.-31.$6%&,3)31%&,"$)-3

191#'<D315

89&#2'1%130'1"$#13V7 # ( 2W

!"#$%&"!'(")*

V7)9#.&)3(')*2W

+","# -.+ ,"#!-.

/.

/0

+"1"# -. /. /0+ 1"#!-.! /. /0

16

89&#2'1%130'1"$#1V:% 2% 7 W

02)*23"&!!4&(

V:%*2%,)&37"&'W

+","# -.

+"1"# -. /. /0

+ ,"#!-.

/.

/0

+ 1"#!-.! /. /0

Z'U3I0H3I$,.-%#2<

5!!6%748(!9,2:

,

;,%<()$2%&=;,%<()$2%&=

;"==(:!$*,%43*!"$

)%,,(=>%&:2&3!"&37(=

?&!$*(!&(@!"73%,2$*8A!$*(!(&$2,(!!>,%<()$2%&!2=!>"==(:!

$*,%43*!"!5!!",,"#A!),("$2&3!"!B"&C!%D!=488(:!E"74(=A!

@*2)*!",(!4=(:!D%,!,()%&=$,4)$2%&

02)*23"&!!4&(!F"&:!,()%&=$,4)$2%&!4=2&3!&(@!"73%,2$*83

-. /7: /. G(@ /.-. /7:!/. G(@!/.

!&$%&'3/)#)4)1'*$$>HII@@@J,%@"&J(:4I)%77(3(=I(&32&((,2&3I)72&2)=I=*,((C

/&72&(!

3(%8"$(,2"7

KLM!N!G48B(,!%D!;",$2)7(=

3(%8"$(,2"7!

:"$"B"=(

-%8>4$(: />$2)"7

+","#

-%8>4$(:!

.%8%3,">*#

/>$2)"702)*23"&!!4&(!KOP5M

/>$2)"7!

02),%=)%>#

+","#!

$%8%3,">*#

/>$2)"7!

$%8%3,">*#F$"&:",:!0(7$!K5PQM

!,#!RQ!K5SOM

02)*23"&!!4&(!KSM

: : 7 K M

02)*23"&!!4&(!KSM

F : : 0 7 KTM

!"#$%&"!'(")*!KOPPM

F$"&:",:!0(7$!KTM

1*%:(!?=7"&:!KTM

!,#!RQ!KUM

V7" W"2 '(")* KXM

F$"&:",:!0(7$!KTM

1*%:(!?=7"&:!KTM

!,#!RQ!KUM

V7" W"2 '(")* KXMV7"!W"2!'(")*!KXM

Y"*"7"!'(")*!KTM

V7"!W"2!'(")*!KXM

Y"*"7"!'(")*!KTM

!"#$%&"!'(")*!KXM!"#$%&"!'(")*!KXM

!"#$%&'

Background

Research Objectives

Data SetData Set

Shape Characterization and Reconstruction

Discrete Element Modeling

ConclusionsConclusions

0'1')-*23:'#2./.$.,9[3

;)-#%*$'382)?'3:./'$%&,3%&3HU.37%<'&1%.&1? ,

8+'$'#.&%T)#%.&

7)9#.&) (')*2 8)&/ \-)%& 8+'$'#.&7)9#.&)3(')*238)&/3\-)%& 8+'$'#.&

0'1')-*23:'#2./.$.,9[3

;)-#%*$'382)?'3:./'$%&,3%&3HU.37%<'&1%.&1? ,

!6'-$)??%&,37%1*-'#'3M$'<'&#3B$"1#'-3I$,.-%#2<[3!7MB>=7

8+'$'#.&3]3!7MB7)9#.&)3(')*23

8)&/ \-)%&

:./'$3;)-#%*$'

Z"<4'-3.@3*%-*$'13&''/'/3#.3*)?#"-'3#2'312)?'3^3_`

I-')3"&*.6'-'/3a3_b

8)&/3\-)%&

0'1')-*23:'#2./.$.,9[3

;)-#%*$'382)?'3:./'$%&,3%&3H2-''37%<'&1%.&1? ,

8+'$'#.&%T)#%.&

7)9#.&) (')*2 8)&/ 8"-@)*' 8+'$'#.&7)9#.&)3(')*238)&/3333333

V\-)%&3_W8"-@)*'38+'$'#.&

0'1')-*23:'#2./.$.,9[3

;)-#%*$'382)?'3:./'$%&,3%&3H2-''37%<'&1%.&1? ,

!6'-$)??%&,37%1*-'#'3M$'<'&#3B$"1#'-[3!7MB>A7

cdb33

B.6'-'/3

7)9#.&)3(')*233

8)&/3\-)%&deb3333

B.6'-'/3

c`b333

B.6'-'/3

ceb33

B.6'-'/3

0'1')-*23:'#2./.$.,9[3;)-#%*$'382)?'3:./'$%&,3

%&3HU.3)&/3H2-''37%<'&1%.&1

I-') f Q.$"<' Z"<4'- .@ 7%1*1 Z"<4'- .@ 8?2'-'1I-')3f3Q.$"<'3

B.6'-'/

Z"<4'-3.@37%1*1

=>7

Z"<4'-3.@38?2'-'1

A>7

98% 9 14 251251 29629698% 9 – 14 251 251 -- 296296

95% 4 – 8 123 123 -- 133133

90% 3 – 6 61 61 -- 6262

85% 2 - 4 35 35 -- 3939

26

0'1')-*23:'#2./.$.,9[3

7M:38%<"$)#%.&3.@37%-'*#382')-3H'1#F

Q3V<f1#'?W

8)<?$'[37)9#.&)3(')*238)&/

5 mmI&,"$)-3MX"%6)$'&#3.@3

=>73B%-*"$)-3;)-#%*$'1

12 mm F

Q3V<f1#'?W

I&,"$)-3MX"%6)$'&#3.@3

A 7 8 2 % $ ; #% $

2 mm

A>738?2'-%*)$3;)-#%*$'1

4 mm

7M:38%<"$)#%.&3%&3H2-''37%<'&1%.&13.@3

7)9#.&)3(')*238)&/9

=e`

_e`

=``

ess (

kP

a)

e`

_``

Sh

ea

r S

tre

Assembly 1

Assembly 2

`

` `JA `Jg `Jc _J= _Je _Jd =J_

Shear Displacement (mm)

Assembly 3

7%-'*#382')-3H'1#3.&37)9#.&)3(')*238)&/

V! ^3=e`3+;)W

p ( )

V W

7M:38%<"$)#%.&3%&3H2-''37%<'&1%.&13.@3

7)9#.&)3(')*238)&/9

`J`g)

`J`=

`J`h

cem

ent

(mm

)

` `h

>`J`=

`

` `JA `Jg `Jc _J= _Je _Jd =J_

ert

ica

l D

isp

la

Assembly 1

>`J`g

>`J`h

Shear Displacement (mm)

V Assembly 2

Assembly 3

7%-'*#382')-3H'1#3.&37)9#.&)3(')*238)&/

V! ^3=e`3+;)WV W

7M:38%<"$)#%.&3%&3H2-''37%<'&1%.&13.@3\$)113

(')/1

_=`

g`

d`

_``

ress (

kP

a)

=`

h`

g`

Sh

ea

r S

tr

Assembly 1

Assembly 2

Assembly 3

`

` `JA `Jg `Jc _J= _Je _Jd

Shear Displacement (mm)

7%-'*#382')-3H'1#3.&38?2'-%*)$3;)-#%*$'1

V! ^3=``3+;)WV W

0'1')-*23:'#2./.$.,9[3

7M:38%<"$)#%.&3%&3H2-''37%<'&1%.&1

` `J= `Jh `Jg `Jd _ _J= _Jh _Jg _Jd

Shear Displacement (mm)

>`J`h

>`J`=

`

em

en

t (m

m

>`J`d

>`J`g

`J`h

al D

isp

lace

Assembly 1

>`J_=

>`J_

Ve

rtic Assembly 2

Assembly 3

7%-'*#382')-3H'1#3.&38?2'-%*)$3;)-#%*$'1

V! ^3=``3+;)W

0'1')-*23:'#2./.$.,9[3

7M:38%<"$)#%.&3%&3H2-''37%<'&1%.&1

A``

=``

=e`kP

a)

Spherical Particles

Daytona Beach Sand

#)&35"^3`Jd=

_e`

ea

r S

tre

ss (

k

#)&35"^3`Je`

e`

_``

Sh

e

`

` e` _`` _e` =`` =e` A``

Normal Stress (kPa)

0'1')-*23:'#2./.$.,9[3

7M:38%<"$)#%.&3%&3H2-''37%<'&1%.&1

I&,$'3.@3N&#'-&)$3G-%*#%.&3@-.<3=>73)&/3A>738%<"$)#%.&

: # % $: # % $==>>77 AA>>77

M % #M % #:)#'-%)$:)#'-%)$== 7373

8%<"$)#%.&8%<"$)#%.&

AA 7373

8%<"$)#%.&8%<"$)#%.&ME?'-%<'&#1ME?'-%<'&#1

Daytona

B h S d27˚27˚ 39˚39˚ –– 43˚43˚ 37.4˚37.4˚

Beach Sand27 27 39 39 4343 37.437.4

Rounded

Particles17.2˚17.2˚ 25˚ 25˚ -- 26.6˚26.6˚ 24.4˚ 24.4˚ –– 27˚27˚ ii

i O’Sullivan et al. (2004); Phillips et al. (2006)

33

j%X"'@)*#%.&38#"/%'13"1%&,37M:

34

:)#'-%)$1

:)#'-%)$ 7e` B" 8G IGV W b b

Rounded Glass Beads 1.18 1.0 0 0

V<<W b b

Michigan Dune Sand 0.33 1.5 32 9

Syncrude Tailings Sand 0 18 2 5 45 27Syncrude Tailings Sand 0.18 2.5 45 27

Daytona Beach Sand 0.23 1.4 42 19

Ott A l S d 0 27 2 2 51 29Ottawa Angular Sand 0.27 2.2 51 29

Ottawa Rounded Sand 0.53 2.4 30 7

:./'$%&,3.@3k)#'-3;-'11"-',

Undrained conditions were simulated by restricting the

volume of the particle assembly (Ng and Dobry 1994)volume of the particle assembly (Ng and Dobry, 1994)

The difference between boundary stresses and initial

fi t tt ib t d t b ild f tconfinement are attributed to buildup of pore water

pressure under cyclic loading

#$ ##!

#$v

#T

#$v

#$h

Cyclic direct shear Cyclic simple shear Cyclic pure shearCyclic triaxial

8)<?$'3;-'?)-)#%.&3> 7-93;$"6%)#%.&? ? 9

Step 1

Granular assembly

Step 2

Grains are allowed

Step 3

Excess grains areGranular assembly

is generated

Grains are allowed

to settle under gravity

Excess grains are

cropped at the top

8)<?$'3;-'?)-)#%.&3> B.&1#)&#3Q.%/30)#%.? ?

Glass beads Ottawa rounded Ottawa angular

A single assembly is generated, and particles are transformed to

equivalent angular shapes, resulting in a similar fabric/arrangement

f ll t i l

38

for all materials

8%<"$)#'/3M@@'*#%6'38#-'113;)#23> B9*$%*382')-

5

0

q67809

Ottawa 20-70 Sand

(rounded)

at CSR=5%-5

10

0

q67809

Daytona Beach Sand

(angular)

at CSR = 16%

-10

0 10 20 30 40

at CSR = 16%

39

0 10 20 30 40

p' 67809

7'?'&/'&*'3.@3*.&#)*#3@.-*'13)&/3*..-/%&)#%.&3&"<4'-13.&3?)-#%*$'312)?'? ?

\$)113(')/1 !##)U)3-."&/'/ !##)U)3)&,"$)-

B80361 Z"<4'-3.@3B9*$'13P7-9 ;$"6%)#%.&7-93;$"6%)#%.&

0 4

0.3

0.4

\$)113(')/1

:%*2%,)&37"&'

!##)U)3-."&/'/

0.2

B80

7)9#.&)3(')*2

89&*-"/' H)%$%&,1

!##)U)3)&,"$)-

0.1

B

0

0.1 1 10 100 1000

Z"<4'- .@ B9*$'1Z"<4'-3.@3B9*$'1

B80361 Z"<4'-3.@3B9*$'13> B.&1#)&#3Q.%/30)#%.

0.4\$)113(')/1

:%*2%,)&37"&'

80

0.3

,

!##)U)3-."&/'/

7)9#.&)3(')*2

89&*-"/' H)%$%&,1

!##)U) )&,"$)-

B8

0.2!##)U)3)&,"$)-

0

0.1

Z"<4'-3.@3B9*$'1

0

0.1 1 10 100 1000

42

8"<<)-99Individual particles from six natural, processed, and

manufactured granular materials were digitized and

t d i ft lib f DEM d listored in a software library for DEM modeling

Simulations of cyclic shear tests were carried out on a

representative volumerepresentative volume

At the pluviated void ratio, the susceptibility to

liquefaction is independent of particle shapeliquefaction is independent of particle shape

At constant void ratio, the influence of particle

morphology on liquefaction susceptibility is significant

Further studies are underway to numerically evaluate

the influence of particle shape on other engineering

tiproperties

B.&*$"1%.&1

ODEC2D and ODEC3D algorithms can model irregular 2-

D and 3-D particle shape with desired accuracyp p y

Stress-strain and volumetric behavior of simulated

material followed typical soil behavior of angular andmaterial followed typical soil behavior of angular and

rounded particles

Th l f h i i t bt i d i thThe angles of shearing resistance obtained using three

different fabrics in 3-D simulation are very close to each

other for both Daytona beach sand and rounded spheres

Angularity and particles interlocking resulted in more

shearing resistance in Daytona Beach sand compared toshearing resistance in Daytona Beach sand compared to

rounded material

I*+&.U$'/,<'&#1,

H2%13-'1')-*23U.-+3%131"??.-#'/3493#2'3Z)#%.&)$3

8*%'&*' G."&/)#%.&8*%'&*'3G."&/)#%.&3

IU)-/3l3`A=hhAm3B%6%$3]3:'*2)&%*)$3891#'<1

IU)-/3l3`A=he_d3B%6%$3]3:'*2)&%*)$3891#'<1

IU)-/3l3`h=_```3M$'*#-%*)$3]3B.<<"&%*)#%.&13) / l ` ``` '*# *) ] B. " *)# . 1

891#'<1